Targeting Striatal Glutamate and Phosphodiesterases to Control L-DOPA-Induced Dyskinesia
Abstract
:1. Introduction
2. Dysregulation of Striatal Projection Neurons
2.1. Glutamate Signaling
2.2. Dopamine Signaling
2.3. Modulation of Dopamine Signaling by PDEs
3. Targeting Glutamatergic Dysfunction
3.1. Ionotropic Glutamate Receptors
3.2. Metabotropic Glutamate Receptors
Receptor | Findings | Species | References |
---|---|---|---|
NMDAR | NMDAR antagonists (e.g., amantadine, memantine, CP-101,606, and ramacemide) reduce LIDs (some studies also claim antiparkinsonian effects) | Rat | Papa et al., 1995; Tronci et al., 2014 [51,98] |
NHP | Singh et al., 2018 [14] | ||
Human | Nutt et al., 2008; Shoulson et al., 2001 [104,110] | ||
AMPAR | AMPAR antagonists reduce LIDs | Rat | Kobylecki et al., 2010 [91] |
NHP | Kobylecki et al., 2010 [91] | ||
AMPAR antagonists have no antidyskinetic effect | NHP Human | ||
Luquin et al., 1993 [92] | |||
Eggert et al., 2010 [111] | |||
Group I mGluRs | mGluR5 NAMs reduced LIDs | Rat NHP Human | Rylander et al., 2009 [112] |
Morin et al., 2010 [113] | |||
McFarthing et al., 2019 [114] | |||
mGluR1 antagonists modestly improved LIDs | Rat | Rylander et al., 2009 [112] | |
Group II mGluRs | mGluR2/3 agonist improved LID duration | Rat | Zheng et al., 2020 [102] |
Group III mGluRs | mGluR4 PAM has antidyskinetic effects | Rat NHP | Calabrese et al., 2022 [62] |
Charvin et al., 2018 [115] | |||
mGluR4 PAMs “spare” L-DOPA, reducing dose requirement | Rat | Iderberg et al., 2015 [116] | |
Rat Human | Le Poul et al., 2012 [117] | ||
mGluR4 PAMs have antiparkinsonian effects but no effect on LIDs | |||
Rascol et al., 2022 [118] |
3.3. Recent Clinical Trials
4. Targeting Phosphodiesterases
4.1. Families and Properties of PDEs
4.2. Preclinical Research in Animal Models
4.2.1. Phosphodiesterase 10
Family | Substrate | Regulation | CNS Expression | Inhibitor (s) | Role in PD and LIDs | References |
---|---|---|---|---|---|---|
PDE1 | cAMP/ cGMP | Cortex, hippocampus, cerebellum, striatum, nucleus accumbens, olfactory bulb, amygdala, thalamus | Vinpocetine, ITI-214, DSR-143136 | Upregulated in parkinsonian rats; genetic KO enhances responsiveness to DA agonists; inhibited by antiparkinsonian medications; antidyskinetic effect of inhibitors in NHPs | Sancesario et al., 2004; Lakics et al., 2010; Cenci et al., 2018; Enomoto et al., 2021; Kakkar et al., 1997; Kakkar et al., 1996; Polli et al., 1994; Reed et al., 2002 [77,133,147,148,149,150,151,152] | |
PDE2 | cAMP/ cGMP | cGMP stimulated | Cortex, hippocampus, striatum, hypothalamus, amygdala, midbrain | Lu AF64280, BAY 60-7550 | Upregulated activity in dyskinetic rats | Sancesario et al., 2014; Lakics et al., 2010; Doummar et al., 2020; Heckman et al., 2017; Salpietro et al., 2018; Simpson et al., 2010; Stephenson et al., 2009 [78,133,153,154,155,156,157] |
PDE3 | cAMP | cGMP inhibited | Hippocampus, striatum | Cilostazol | Lakics et al., 2010 [133] | |
PDE4 | cAMP | Cortex, hippocampus, striatum, olfactory bulb, thalamus, hypothalamus, cerebellum, midbrain | Rolipram, ND1251, MK-0952, MEM1414, HT-0712, roflumilast, Denbufylline | Modulates A2AR signaling; enhances A2AR- and D1R-mediated phosphorylation of DARPP-32; linked to LIDs in animal models | Nishi et al., 2008; Lakics et al., 2010; Casacchia et al., 1983; Cherry et al., 1999; Perez-Torres et al., 2000; Vignola et al., 2004; Yang et al., 2008 [69,133,158,159,160,161,162] | |
PDE5 | cGMP | Cerebellum, spinal cord, cortex, hippocampus | Sildenafil, udenafil, vardenafil | Lakics et al., 2010 [133] | ||
PDE6 | cGMP | Retinal rod, cone cells, pineal gland | Lakics et al., 2010 [133] | |||
PDE7 | cAMP | Hippocampus, striatum, cerebellum, cortex, thalamus, hypothalamus, midbrain | S14, BRL-50481 | Upregulated in degenerating DA cells; neuroprotective effects of inhibitors | Lakics et al., 2010; Casacchia et al., 1983; Ciccocioppo et al., 2021; Morales-Garcia et al., 2015; Morales-Garcia et al., 2020; Morales-Garcia et al., 2011 [133,158,163,164,165,166] | |
PDE8 | cAMP | Cortex, hippocampus, striatum, cerebellum, olfactory bulb, thalamus, hypothalamus, midbrain | Non-chiral 9-benzyl-2-chloro-adenine derivatives, PF-04957325 | Potential role in motor performance and coordination | Lakics et al., 2010; Golkowski et al., 2016; Kobayashi et al., 2003; Wu et al., 2022 [133,167,168,169] | |
PDE9 | cGMP | Striatum, cerebellum, thalamus, hypothalamus, amygdala, olfactory bulb, cortex, hippocampus, midbrain | PF-04447943, BI 409306, FRM-16606 | Inhibition enhanced antiparkinsonian action of L-DOPA in NHPs; no direct effect on LIDs | Masilamoni et al., 2022; Lakics et al., 2010 [21,133] | |
PDE10 | cAMP/ cGMP | cAMP inhibited | Striatum (hippocampus, cortex, midbrain, and cerebellum: very low mRNA levels detected) | MP-10, TAK-063, RO5545965, AMG 579, OMS824, PDM-042 | Inhibition shows antidyskinetic effects in animal models; regulates corticostriatal transmission; altered expression in PD patients | Beck et al., 2018; Addy et al., 2009; Lakics et al., 2010; Xie et al., 2006; Niccolini et al., 2015; Arakawa et al., 2020; Guimaraes et al., 2022; Schmidt et al., 2008; Uthayathas et al., 2014; Lenda et al., 2021 [20,103,133,136,140,141,142,145,146,170] |
PDE11 | cAMP/ cGMP | Hippocampus | Lakics et al., 2010 [133] |
4.2.2. Phosphodiesterase 1
4.2.3. Phosphodiesterase 2
4.2.4. Phosphodiesterase 4
4.2.5. Phosphodiesterase 7
4.2.6. Phosphodiesterase 9
4.3. Recent Clinical Trials
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nutt, J.G.; Holford, N.H. The response to levodopa in Parkinson’s disease: Imposing pharmacological law and order. Ann. Neurol. 1996, 39, 561–573. [Google Scholar] [CrossRef] [PubMed]
- Corsi, S.; Stancampiano, R.; Carta, M. Serotonin/dopamine interaction in the induction and maintenance of L-DOPA-induced dyskinesia: An update. Prog. Brain Res. 2021, 261, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Lopez, A.; Labandeira, C.M.; Labandeira-Garcia, J.L.; Munoz, A. Rho kinase inhibitor fasudil reduces l-DOPA-induced dyskinesia in a rat model of Parkinson’s disease. Br. J. Pharmacol. 2020, 177, 5622–5641. [Google Scholar] [CrossRef] [PubMed]
- Calabresi, P.; Ghiglieri, V.; Mazzocchetti, P.; Corbelli, I.; Picconi, B. Levodopa-induced plasticity: A double-edged sword in Parkinson’s disease? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140184. [Google Scholar] [CrossRef]
- Cenci, M.A.; Konradi, C. Maladaptive striatal plasticity in L-DOPA-induced dyskinesia. Prog. Brain. Res. 2010, 183, 209–233. [Google Scholar] [CrossRef] [PubMed]
- Cenci, M.A.; Lundblad, M. Post- versus presynaptic plasticity in L-DOPA-induced dyskinesia. J. Neurochem. 2006, 99, 381–392. [Google Scholar] [CrossRef]
- Calabresi, P.; Mercuri, N.B.; Sancesario, G.; Bernardi, G. Electrophysiology of dopamine-denervated striatal neurons. Implications for Parkinson’s disease. Brain 1993, 116 Pt 2, 433–452. [Google Scholar]
- Day, M.; Wokosin, D.; Plotkin, J.L.; Tian, X.; Surmeier, D.J. Differential excitability and modulation of striatal medium spiny neuron dendrites. J. Neurosci. 2008, 28, 11603–11614. [Google Scholar] [CrossRef]
- Surmeier, D.J.; Graves, S.M.; Shen, W. Dopaminergic modulation of striatal networks in health and Parkinson’s disease. Curr. Opin. Neurobiol. 2014, 29, 109–117. [Google Scholar] [CrossRef]
- Beck, G.; Singh, A.; Papa, S.M. Dysregulation of striatal projection neurons in Parkinson’s disease. J. Neural. Transm. 2018, 125, 449–460. [Google Scholar] [CrossRef]
- Liang, L.; DeLong, M.R.; Papa, S.M. Inversion of dopamine responses in striatal medium spiny neurons and involuntary movements. J. Neurosci. 2008, 28, 7537–7547. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Liang, L.; Kaneoke, Y.; Cao, X.; Papa, S.M. Dopamine regulates distinctively the activity patterns of striatal output neurons in advanced parkinsonian primates. J. Neurophysiol. 2015, 113, 1533–1544. [Google Scholar] [CrossRef] [PubMed]
- Papa, S.M.; Chase, T.N. Levodopa-induced dyskinesias improved by a glutamate antagonist in Parkinsonian monkeys. Ann. Neurol. 1996, 39, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Jenkins, M.A.; Burke, K.J., Jr.; Beck, G.; Jenkins, A.; Scimemi, A.; Traynelis, S.F.; Papa, S.M. Glutamatergic Tuning of Hyperactive Striatal Projection Neurons Controls the Motor Response to Dopamine Replacement in Parkinsonian Primates. Cell Rep. 2018, 22, 941–952. [Google Scholar] [CrossRef] [PubMed]
- Gardoni, F.; Sgobio, C.; Pendolino, V.; Calabresi, P.; Di Luca, M.; Picconi, B. Targeting NR2A-containing NMDA receptors reduces L-DOPA-induced dyskinesias. Neurobiol. Aging 2012, 33, 2138–2144. [Google Scholar] [CrossRef]
- Gerfen, C.R. The neostriatal mosaic: Multiple levels of compartmental organization. Trends Neurosci. 1992, 15, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Gerfen, C.R.; Surmeier, D.J. Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci. 2011, 34, 441–466. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, M.; D’Angelo, V.; Esposito, Z.; Nuccetelli, V.; Sorge, R.; Martorana, A.; Stefani, A.; Bernardi, G.; Sancesario, G. Lowered cAMP and cGMP signalling in the brain during levodopa-induced dyskinesias in hemiparkinsonian rats: New aspects in the pathogenetic mechanisms. Eur. J. Neurosci. 2008, 28, 941–950. [Google Scholar] [CrossRef]
- Beavo, J.A. Cyclic nucleotide phosphodiesterases: Functional implications of multiple isoforms. Physiol. Rev. 1995, 75, 725–748. [Google Scholar] [CrossRef]
- Beck, G.; Maehara, S.; Chang, P.L.; Papa, S.M. A Selective Phosphodiesterase 10A Inhibitor Reduces L-Dopa-Induced Dyskinesias in Parkinsonian Monkeys. Mov. Disord. 2018, 33, 805–814. [Google Scholar] [CrossRef]
- Masilamoni, G.J.; Sinon, C.G.; Kochoian, B.A.; Singh, A.; McRiner, A.J.; Leventhal, L.; Papa, S.M. Phosphodiesterase 9 inhibition prolongs the antiparkinsonian action of l-DOPA in parkinsonian non-human primates. Neuropharmacology 2022, 212, 109060. [Google Scholar] [CrossRef] [PubMed]
- Bagetta, V.; Picconi, B.; Marinucci, S.; Sgobio, C.; Pendolino, V.; Ghiglieri, V.; Fusco, F.R.; Giampa, C.; Calabresi, P. Dopamine-dependent long-term depression is expressed in striatal spiny neurons of both direct and indirect pathways: Implications for Parkinson’s disease. J. Neurosci. 2011, 31, 12513–12522. [Google Scholar] [CrossRef] [PubMed]
- Fieblinger, T.; Graves, S.M.; Sebel, L.E.; Alcacer, C.; Plotkin, J.L.; Gertler, T.S.; Chan, C.S.; Heiman, M.; Greengard, P.; Cenci, M.A.; et al. Cell type-specific plasticity of striatal projection neurons in parkinsonism and L-DOPA-induced dyskinesia. Nat. Commun. 2014, 5, 5316. [Google Scholar] [CrossRef] [PubMed]
- Nelson, A.B.; Kreitzer, A.C. Reassessing models of basal ganglia function and dysfunction. Annu. Rev. Neurosci. 2014, 37, 117–135. [Google Scholar] [CrossRef] [PubMed]
- Tseng, K.Y.; Kasanetz, F.; Kargieman, L.; Riquelme, L.A.; Murer, M.G. Cortical slow oscillatory activity is reflected in the membrane potential and spike trains of striatal neurons in rats with chronic nigrostriatal lesions. J. Neurosci. 2001, 21, 6430–6439. [Google Scholar] [CrossRef] [PubMed]
- Calabresi, P.; Picconi, B.; Tozzi, A.; Ghiglieri, V.; Di Filippo, M. Direct and indirect pathways of basal ganglia: A critical reappraisal. Nat. Neurosci. 2014, 17, 1022–1030. [Google Scholar] [CrossRef] [PubMed]
- Calabresi, P.; Pisani, A.; Rothwell, J.; Ghiglieri, V.; Obeso, J.A.; Picconi, B. Hyperkinetic disorders and loss of synaptic downscaling. Nat. Neurosci. 2016, 19, 868–875. [Google Scholar] [CrossRef]
- DeLong, M.R. Primate models of movement disorders of basal ganglia origin. Trends Neurosci. 1990, 13, 281–285. [Google Scholar] [CrossRef]
- Gubellini, P.; Picconi, B.; Bari, M.; Battista, N.; Calabresi, P.; Centonze, D.; Bernardi, G.; Finazzi-Agro, A.; Maccarrone, M. Experimental parkinsonism alters endocannabinoid degradation: Implications for striatal glutamatergic transmission. J. Neurosci. 2002, 22, 6900–6907. [Google Scholar] [CrossRef]
- Kita, H.; Kita, T. Role of Striatum in the Pause and Burst Generation in the Globus Pallidus of 6-OHDA-Treated Rats. Front. Syst. Neurosci. 2011, 5, 42. [Google Scholar] [CrossRef]
- Sharott, A.; Vinciati, F.; Nakamura, K.C.; Magill, P.J. A Population of Indirect Pathway Striatal Projection Neurons Is Selectively Entrained to Parkinsonian Beta Oscillations. J. Neurosci. 2017, 37, 9977–9998. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Mewes, K.; Gross, R.E.; DeLong, M.R.; Obeso, J.A.; Papa, S.M. Human striatal recordings reveal abnormal discharge of projection neurons in Parkinson’s disease. Proc. Natl. Acad. Sci. USA 2016, 113, 9629–9634. [Google Scholar] [CrossRef] [PubMed]
- Deffains, M.; Iskhakova, L.; Katabi, S.; Haber, S.N.; Israel, Z.; Bergman, H. Subthalamic, not striatal, activity correlates with basal ganglia downstream activity in normal and parkinsonian monkeys. Elife 2016, 5, e16443. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.H.; Mulcare, S.P.; Hilario, M.R.; Clouse, E.; Holloway, T.; Davis, M.I.; Hansson, A.C.; Lovinger, D.M.; Costa, R.M. Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nat. Neurosci. 2009, 12, 333–341. [Google Scholar] [CrossRef]
- Calabresi, P.; Pisani, A.; Mercuri, N.B.; Bernardi, G. Long-term Potentiation in the Striatum is Unmasked by Removing the Voltage-dependent Magnesium Block of NMDA Receptor Channels. Eur. J. Neurosci. 1992, 4, 929–935. [Google Scholar] [CrossRef]
- Calabresi, P.; Giacomini, P.; Centonze, D.; Bernardi, G. Levodopa-induced dyskinesia: A pathological form of striatal synaptic plasticity? Ann. Neurol. 2000, 47, S60–S68, discussion S68–S69. [Google Scholar]
- Shen, W.; Flajolet, M.; Greengard, P.; Surmeier, D.J. Dichotomous dopaminergic control of striatal synaptic plasticity. Science 2008, 321, 848–851. [Google Scholar] [CrossRef]
- Thiele, S.L.; Chen, B.; Lo, C.; Gertler, T.S.; Warre, R.; Surmeier, J.D.; Brotchie, J.M.; Nash, J.E. Selective loss of bi-directional synaptic plasticity in the direct and indirect striatal output pathways accompanies generation of parkinsonism and l-DOPA induced dyskinesia in mouse models. Neurobiol. Dis. 2014, 71, 334–344. [Google Scholar] [CrossRef]
- Picconi, B.; Centonze, D.; Hakansson, K.; Bernardi, G.; Greengard, P.; Fisone, G.; Cenci, M.A.; Calabresi, P. Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nat. Neurosci. 2003, 6, 501–506. [Google Scholar] [CrossRef]
- Belujon, P.; Lodge, D.J.; Grace, A.A. Aberrant striatal plasticity is specifically associated with dyskinesia following levodopa treatment. Mov. Disord. 2010, 25, 1568–1576. [Google Scholar] [CrossRef]
- Sebastianutto, I.; Cenci, M.A. mGlu receptors in the treatment of Parkinson’s disease and L-DOPA-induced dyskinesia. Curr. Opin. Pharmacol. 2018, 38, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Bagetta, V.; Sgobio, C.; Pendolino, V.; Del Papa, G.; Tozzi, A.; Ghiglieri, V.; Giampa, C.; Zianni, E.; Gardoni, F.; Calabresi, P.; et al. Rebalance of striatal NMDA/AMPA receptor ratio underlies the reduced emergence of dyskinesia during D2-like dopamine agonist treatment in experimental Parkinson’s disease. J. Neurosci. 2012, 32, 17921–17931. [Google Scholar] [CrossRef] [PubMed]
- Chase, T.N.; Oh, J.D. Striatal dopamine- and glutamate-mediated dysregulation in experimental parkinsonism. Trends Neurosci. 2000, 23, S86–S91. [Google Scholar] [CrossRef] [PubMed]
- Calon, F.; Morissette, M.; Ghribi, O.; Goulet, M.; Grondin, R.; Blanchet, P.J.; Bedard, P.J.; Di Paolo, T. Alteration of glutamate receptors in the striatum of dyskinetic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated monkeys following dopamine agonist treatment. Prog. Neuropsychopharmacol. Biol. Psychiatry 2002, 26, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Calon, F.; Rajput, A.H.; Hornykiewicz, O.; Bedard, P.J.; Di Paolo, T. Levodopa-induced motor complications are associated with alterations of glutamate receptors in Parkinson’s disease. Neurobiol. Dis. 2003, 14, 404–416. [Google Scholar] [CrossRef] [PubMed]
- Gardoni, F.; Picconi, B.; Ghiglieri, V.; Polli, F.; Bagetta, V.; Bernardi, G.; Cattabeni, F.; Di Luca, M.; Calabresi, P. A critical interaction between NR2B and MAGUK in L-DOPA induced dyskinesia. J. Neurosci. 2006, 26, 2914–2922. [Google Scholar] [CrossRef] [PubMed]
- Hallett, P.J.; Dunah, A.W.; Ravenscroft, P.; Zhou, S.; Bezard, E.; Crossman, A.R.; Brotchie, J.M.; Standaert, D.G. Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Neuropharmacology 2005, 48, 503–516. [Google Scholar] [CrossRef] [PubMed]
- Mellone, M.; Stanic, J.; Hernandez, L.F.; Iglesias, E.; Zianni, E.; Longhi, A.; Prigent, A.; Picconi, B.; Calabresi, P.; Hirsch, E.C.; et al. NMDA receptor GluN2A/GluN2B subunit ratio as synaptic trait of levodopa-induced dyskinesias: From experimental models to patients. Front. Cell Neurosci. 2015, 9, 245. [Google Scholar] [CrossRef]
- Nash, J.E.; Brotchie, J.M. Characterisation of striatal NMDA receptors involved in the generation of parkinsonian symptoms: Intrastriatal microinjection studies in the 6-OHDA-lesioned rat. Mov. Disord. 2002, 17, 455–466. [Google Scholar] [CrossRef]
- Ahmed, I.; Bose, S.K.; Pavese, N.; Ramlackhansingh, A.; Turkheimer, F.; Hotton, G.; Hammers, A.; Brooks, D.J. Glutamate NMDA receptor dysregulation in Parkinson’s disease with dyskinesias. Brain 2011, 134, 979–986. [Google Scholar] [CrossRef]
- Papa, S.M.; Boldry, R.C.; Engber, T.M.; Kask, A.M.; Chase, T.N. Reversal of levodopa-induced motor fluctuations in experimental parkinsonism by NMDA receptor blockade. Brain Res. 1995, 701, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Crabbe, M.; Van der Perren, A.; Weerasekera, A.; Himmelreich, U.; Baekelandt, V.; Van Laere, K.; Casteels, C. Altered mGluR5 binding potential and glutamine concentration in the 6-OHDA rat model of acute Parkinson’s disease and levodopa-induced dyskinesia. Neurobiol. Aging 2018, 61, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Morin, N.; Gregoire, L.; Morissette, M.; Desrayaud, S.; Gomez-Mancilla, B.; Gasparini, F.; Di Paolo, T. MPEP, an mGlu5 receptor antagonist, reduces the development of L-DOPA-induced motor complications in de novo parkinsonian monkeys: Biochemical correlates. Neuropharmacology 2013, 66, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Morin, N.; Morissette, M.; Gregoire, L.; Gomez-Mancilla, B.; Gasparini, F.; Di Paolo, T. Chronic treatment with MPEP, an mGlu5 receptor antagonist, normalizes basal ganglia glutamate neurotransmission in L-DOPA-treated parkinsonian monkeys. Neuropharmacology 2013, 73, 216–231. [Google Scholar] [CrossRef] [PubMed]
- Ouattara, B.; Gregoire, L.; Morissette, M.; Gasparini, F.; Vranesic, I.; Bilbe, G.; Johns, D.R.; Rajput, A.; Hornykiewicz, O.; Rajput, A.H.; et al. Metabotropic glutamate receptor type 5 in levodopa-induced motor complications. Neurobiol. Aging 2011, 32, 1286–1295. [Google Scholar] [CrossRef] [PubMed]
- Armentero, M.T.; Fancellu, R.; Nappi, G.; Bramanti, P.; Blandini, F. Prolonged blockade of NMDA or mGluR5 glutamate receptors reduces nigrostriatal degeneration while inducing selective metabolic changes in the basal ganglia circuitry in a rodent model of Parkinson’s disease. Neurobiol. Dis. 2006, 22, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Masilamoni, G.J.; Bogenpohl, J.W.; Alagille, D.; Delevich, K.; Tamagnan, G.; Votaw, J.R.; Wichmann, T.; Smith, Y. Metabotropic glutamate receptor 5 antagonist protects dopaminergic and noradrenergic neurons from degeneration in MPTP-treated monkeys. Brain 2011, 134, 2057–2073. [Google Scholar] [CrossRef]
- Sanchez-Pernaute, R.; Wang, J.Q.; Kuruppu, D.; Cao, L.; Tueckmantel, W.; Kozikowski, A.; Isacson, O.; Brownell, A.L. Enhanced binding of metabotropic glutamate receptor type 5 (mGluR5) PET tracers in the brain of parkinsonian primates. Neuroimage 2008, 42, 248–251. [Google Scholar] [CrossRef]
- Samadi, P.; Gregoire, L.; Morissette, M.; Calon, F.; Hadj Tahar, A.; Dridi, M.; Belanger, N.; Meltzer, L.T.; Bedard, P.J.; Di Paolo, T. mGluR5 metabotropic glutamate receptors and dyskinesias in MPTP monkeys. Neurobiol. Aging 2008, 29, 1040–1051. [Google Scholar] [CrossRef]
- Lea, P.M.t.; Faden, A.I. Metabotropic glutamate receptor subtype 5 antagonists MPEP and MTEP. CNS Drug Rev. 2006, 12, 149–166. [Google Scholar] [CrossRef]
- Pisani, A.; Bonsi, P.; Centonze, D.; Calabresi, P.; Bernardi, G. Activation of D2-like dopamine receptors reduces synaptic inputs to striatal cholinergic interneurons. J. Neurosci. 2000, 20, RC69. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, V.; Picconi, B.; Heck, N.; Campanelli, F.; Natale, G.; Marino, G.; Sciaccaluga, M.; Ghiglieri, V.; Tozzi, A.; Anceaume, E.; et al. A positive allosteric modulator of mGlu4 receptors restores striatal plasticity in an animal model of l-Dopa-induced dyskinesia. Neuropharmacology 2022, 218, 109205. [Google Scholar] [CrossRef] [PubMed]
- Seifert, R.; Schneider, E.H.; Bahre, H. From canonical to non-canonical cyclic nucleotides as second messengers: Pharmacological implications. Pharmacol. Ther. 2015, 148, 154–184. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, J.M.; Gainetdinov, R.R. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 2011, 63, 182–217. [Google Scholar] [CrossRef]
- Sibley, D.R.; Monsma, F.J., Jr.; Shen, Y. Molecular neurobiology of dopaminergic receptors. Int. Rev. Neurobiol. 1993, 35, 391–415. [Google Scholar] [CrossRef]
- Franco, R.; Ferre, S.; Agnati, L.; Torvinen, M.; Gines, S.; Hillion, J.; Casado, V.; Lledo, P.; Zoli, M.; Lluis, C.; et al. Evidence for adenosine/dopamine receptor interactions: Indications for heteromerization. Neuropsychopharmacology 2000, 23, S50–S59. [Google Scholar] [CrossRef]
- Hillion, J.; Canals, M.; Torvinen, M.; Casado, V.; Scott, R.; Terasmaa, A.; Hansson, A.; Watson, S.; Olah, M.E.; Mallol, J.; et al. Coaggregation, cointernalization, and codesensitization of adenosine A2A receptors and dopamine D2 receptors. J. Biol. Chem. 2002, 277, 18091–18097. [Google Scholar] [CrossRef]
- Rivas-Santisteban, R.; Rico, A.J.; Munoz, A.; Rodriguez-Perez, A.I.; Reyes-Resina, I.; Navarro, G.; Labandeira-Garcia, J.L.; Lanciego, J.L.; Franco, R. Boolean analysis shows a high proportion of dopamine D(2) receptors interacting with adenosine A(2A) receptors in striatal medium spiny neurons of mouse and non-human primate models of Parkinson’s disease. Neurobiol. Dis. 2023, 188, 106341. [Google Scholar] [CrossRef]
- Nishi, A.; Kuroiwa, M.; Miller, D.B.; O’Callaghan, J.P.; Bateup, H.S.; Shuto, T.; Sotogaku, N.; Fukuda, T.; Heintz, N.; Greengard, P.; et al. Distinct roles of PDE4 and PDE10A in the regulation of cAMP/PKA signaling in the striatum. J. Neurosci. 2008, 28, 10460–10471. [Google Scholar] [CrossRef]
- Siuciak, J.A.; McCarthy, S.A.; Chapin, D.S.; Fujiwara, R.A.; James, L.C.; Williams, R.D.; Stock, J.L.; McNeish, J.D.; Strick, C.A.; Menniti, F.S.; et al. Genetic deletion of the striatum-enriched phosphodiesterase PDE10A: Evidence for altered striatal function. Neuropharmacology 2006, 51, 374–385. [Google Scholar] [CrossRef]
- Bredt, D.S. Nitric oxide signaling specificity--the heart of the problem. J. Cell Sci. 2003, 116, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Garthwaite, J. Concepts of neural nitric oxide-mediated transmission. Eur. J. Neurosci. 2008, 27, 2783–2802. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, Y.; Wilson, C.J.; Augood, S.J.; Emson, P.C. Striatal interneurones: Chemical, physiological and morphological characterization. Trends Neurosci. 1995, 18, 527–535. [Google Scholar] [CrossRef] [PubMed]
- West, A.R.; Tseng, K.Y. Nitric Oxide-Soluble Guanylyl Cyclase-Cyclic GMP Signaling in the Striatum: New Targets for the Treatment of Parkinson’s Disease? Front. Syst. Neurosci. 2011, 5, 55. [Google Scholar] [CrossRef] [PubMed]
- Padovan-Neto, F.E.; Sammut, S.; Chakroborty, S.; Dec, A.M.; Threlfell, S.; Campbell, P.W.; Mudrakola, V.; Harms, J.F.; Schmidt, C.J.; West, A.R. Facilitation of corticostriatal transmission following pharmacological inhibition of striatal phosphodiesterase 10A: Role of nitric oxide-soluble guanylyl cyclase-cGMP signaling pathways. J. Neurosci. 2015, 35, 5781–5791. [Google Scholar] [CrossRef] [PubMed]
- Nishino, N.; Kitamura, N.; Hashimoto, T.; Tanaka, C. Transmembrane signalling systems in the brain of patients with Parkinson’s disease. Rev. Neurosci. 1993, 4, 213–222. [Google Scholar] [CrossRef]
- Sancesario, G.; Giorgi, M.; D’Angelo, V.; Modica, A.; Martorana, A.; Morello, M.; Bengtson, C.P.; Bernardi, G. Down-regulation of nitrergic transmission in the rat striatum after chronic nigrostriatal deafferentation. Eur. J. Neurosci. 2004, 20, 989–1000. [Google Scholar] [CrossRef]
- Sancesario, G.; Morrone, L.A.; D’Angelo, V.; Castelli, V.; Ferrazzoli, D.; Sica, F.; Martorana, A.; Sorge, R.; Cavaliere, F.; Bernardi, G.; et al. Levodopa-induced dyskinesias are associated with transient down-regulation of cAMP and cGMP in the caudate-putamen of hemiparkinsonian rats: Reduced synthesis or increased catabolism? Neurochem. Int. 2014, 79, 44–56. [Google Scholar] [CrossRef]
- Threlfell, S.; Sammut, S.; Menniti, F.S.; Schmidt, C.J.; West, A.R. Inhibition of Phosphodiesterase 10A Increases the Responsiveness of Striatal Projection Neurons to Cortical Stimulation. J. Pharmacol. Exp. Ther. 2009, 328, 785–795. [Google Scholar] [CrossRef]
- West, A.R.; Grace, A.A. The nitric oxide-guanylyl cyclase signaling pathway modulates membrane activity States and electrophysiological properties of striatal medium spiny neurons recorded in vivo. J. Neurosci. 2004, 24, 1924–1935. [Google Scholar] [CrossRef]
- Calabresi, P.; Di Filippo, M.; Ghiglieri, V.; Tambasco, N.; Picconi, B. Levodopa-induced dyskinesias in patients with Parkinson’s disease: Filling the bench-to-bedside gap. Lancet Neurol. 2010, 9, 1106–1117. [Google Scholar] [CrossRef] [PubMed]
- Dunah, A.W.; Wang, Y.; Yasuda, R.P.; Kameyama, K.; Huganir, R.L.; Wolfe, B.B.; Standaert, D.G. Alterations in subunit expression, composition, and phosphorylation of striatal N-methyl-D-aspartate glutamate receptors in a rat 6-hydroxydopamine model of Parkinson’s disease. Mol. Pharmacol. 2000, 57, 342–352. [Google Scholar] [PubMed]
- Picconi, B.; Piccoli, G.; Calabresi, P. Synaptic dysfunction in Parkinson’s disease. Adv. Exp. Med. Biol. 2012, 970, 553–572. [Google Scholar] [CrossRef] [PubMed]
- Vastagh, C.; Gardoni, F.; Bagetta, V.; Stanic, J.; Zianni, E.; Giampa, C.; Picconi, B.; Calabresi, P.; Di Luca, M. N-methyl-D-aspartate (NMDA) receptor composition modulates dendritic spine morphology in striatal medium spiny neurons. J. Biol. Chem. 2012, 287, 18103–18114. [Google Scholar] [CrossRef] [PubMed]
- Sgambato-Faure, V.; Cenci, M.A. Glutamatergic mechanisms in the dyskinesias induced by pharmacological dopamine replacement and deep brain stimulation for the treatment of Parkinson’s disease. Prog. Neurobiol. 2012, 96, 69–86. [Google Scholar] [CrossRef] [PubMed]
- Calabresi, P.; Centonze, D.; Gubellini, P.; Marfia, G.A.; Pisani, A.; Sancesario, G.; Bernardi, G. Synaptic transmission in the striatum: From plasticity to neurodegeneration. Prog. Neurobiol. 2000, 61, 231–265. [Google Scholar] [CrossRef] [PubMed]
- Centonze, D.; Gubellini, P.; Rossi, S.; Picconi, B.; Pisani, A.; Bernardi, G.; Calabresi, P.; Baunez, C. Subthalamic nucleus lesion reverses motor abnormalities and striatal glutamatergic overactivity in experimental parkinsonism. Neuroscience 2005, 133, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Gubellini, P.; Eusebio, A.; Oueslati, A.; Melon, C.; Kerkerian-Le Goff, L.; Salin, P. Chronic high-frequency stimulation of the subthalamic nucleus and L-DOPA treatment in experimental parkinsonism: Effects on motor behaviour and striatal glutamate transmission. Eur. J. Neurosci. 2006, 24, 1802–1814. [Google Scholar] [CrossRef]
- Picconi, B.; Centonze, D.; Rossi, S.; Bernardi, G.; Calabresi, P. Therapeutic doses of L-dopa reverse hypersensitivity of corticostriatal D2-dopamine receptors and glutamatergic overactivity in experimental parkinsonism. Brain 2004, 127, 1661–1669. [Google Scholar] [CrossRef]
- Picconi, B.; Pisani, A.; Centonze, D.; Battaglia, G.; Storto, M.; Nicoletti, F.; Bernardi, G.; Calabresi, P. Striatal metabotropic glutamate receptor function following experimental parkinsonism and chronic levodopa treatment. Brain 2002, 125, 2635–2645. [Google Scholar] [CrossRef]
- Kobylecki, C.; Cenci, M.A.; Crossman, A.R.; Ravenscroft, P. Calcium-permeable AMPA receptors are involved in the induction and expression of l-DOPA-induced dyskinesia in Parkinson’s disease. J. Neurochem. 2010, 114, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Luquin, M.R.; Obeso, J.A.; Laguna, J.; Guillen, J.; Martinez-Lage, J.M. The AMPA receptor antagonist NBQX does not alter the motor response induced by selective dopamine agonists in MPTP-treated monkeys. Eur. J. Pharmacol. 1993, 235, 297–300. [Google Scholar] [CrossRef] [PubMed]
- Bourque, M.; Gregoire, L.; Patel, W.; Dickens, D.; Snodgrass, R.; Di Paolo, T. AV-101, a Pro-Drug Antagonist at the NMDA Receptor Glycine Site, Reduces L-Dopa Induced Dyskinesias in MPTP Monkeys. Cells 2022, 11, 3530. [Google Scholar] [CrossRef] [PubMed]
- Frouni, I.; Belliveau, S.; Maddaford, S.; Nuara, S.G.; Gourdon, J.C.; Huot, P. Effect of the glycine transporter 1 inhibitor ALX-5407 on dyskinesia, psychosis-like behaviours and parkinsonism in the MPTP-lesioned marmoset. Eur. J. Pharmacol. 2021, 910, 174452. [Google Scholar] [CrossRef]
- Frouni, I.; Kang, W.; Bedard, D.; Belliveau, S.; Kwan, C.; Hadj-Youssef, S.; Bourgeois-Cayer, E.; Ohlund, L.; Sleno, L.; Hamadjida, A.; et al. Effect of glycine transporter 1 inhibition with bitopertin on parkinsonism and L-DOPA induced dyskinesia in the 6-OHDA-lesioned rat. Eur. J. Pharmacol. 2022, 929, 175090. [Google Scholar] [CrossRef]
- Papa, S.M.; Auberson, Y.P.; Greenamyre, J.T. Prolongation of levodopa responses by glycineB antagonists in parkinsonian primates. Ann. Neurol. 2004, 56, 723–727. [Google Scholar] [CrossRef] [PubMed]
- Boldry, R.C.; Papa, S.M.; Kask, A.M.; Chase, T.N. MK-801 reverses effects of chronic levodopa on D1 and D2 dopamine agonist-induced rotational behavior. Brain Res. 1995, 692, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Tronci, E.; Fidalgo, C.; Zianni, E.; Collu, M.; Stancampiano, R.; Morelli, M.; Gardoni, F.; Carta, M. Effect of memantine on L-DOPA-induced dyskinesia in the 6-OHDA-lesioned rat model of Parkinson’s disease. Neuroscience 2014, 265, 245–252. [Google Scholar] [CrossRef]
- Blanchet, P.J.; Konitsiotis, S.; Chase, T.N. Amantadine reduces levodopa-induced dyskinesias in parkinsonian monkeys. Mov. Disord. 1998, 13, 798–802. [Google Scholar] [CrossRef]
- Blanchet, P.J.; Papa, S.M.; Metman, L.V.; Mouradian, M.M.; Chase, T.N. Modulation of levodopa-induced motor response complications by NMDA antagonists in Parkinson’s disease. Neurosci. Biobehav. Rev. 1997, 21, 447–453. [Google Scholar] [CrossRef]
- Liu, C.T.; Kao, L.T.; Shih, J.H.; Chien, W.C.; Chiu, C.H.; Ma, K.H.; Huang, Y.S.; Cheng, C.Y.; Shiue, C.Y.; Li, I.H. The effect of dextromethorphan use in Parkinson’s disease: A 6-hydroxydopamine rat model and population-based study. Eur. J. Pharmacol. 2019, 862, 172639. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Xu, Y.; Chen, G.; Tan, Y.; Zeng, W.; Wang, J.; Cheng, C.; Yang, X.; Nie, S.; Zhang, Z.; et al. Distinct anti-dyskinetic effects of amantadine and group II metabotropic glutamate receptor agonist LY354740 in a rodent model: An electrophysiological perspective. Neurobiol. Dis. 2020, 139, 104807. [Google Scholar] [CrossRef] [PubMed]
- Addy, C.; Assaid, C.; Hreniuk, D.; Stroh, M.; Xu, Y.; Herring, W.J.; Ellenbogen, A.; Jinnah, H.A.; Kirby, L.; Leibowitz, M.T.; et al. Single-dose administration of MK-0657, an NR2B-selective NMDA antagonist, does not result in clinically meaningful improvement in motor function in patients with moderate Parkinson’s disease. J. Clin. Pharmacol. 2009, 49, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Nutt, J.G.; Gunzler, S.A.; Kirchhoff, T.; Hogarth, P.; Weaver, J.L.; Krams, M.; Jamerson, B.; Menniti, F.S.; Landen, J.W. Effects of a NR2B selective NMDA glutamate antagonist, CP-101,606, on dyskinesia and Parkinsonism. Mov. Disord. 2008, 23, 1860–1866. [Google Scholar] [CrossRef] [PubMed]
- Nash, J.E.; Ravenscroft, P.; McGuire, S.; Crossman, A.R.; Menniti, F.S.; Brotchie, J.M. The NR2B-selective NMDA receptor antagonist CP-101,606 exacerbates L-DOPA-induced dyskinesia and provides mild potentiation of anti-parkinsonian effects of L-DOPA in the MPTP-lesioned marmoset model of Parkinson’s disease. Exp. Neurol. 2004, 188, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Wessell, R.H.; Ahmed, S.M.; Menniti, F.S.; Dunbar, G.L.; Chase, T.N.; Oh, J.D. NR2B selective NMDA receptor antagonist CP-101,606 prevents levodopa-induced motor response alterations in hemi-parkinsonian rats. Neuropharmacology 2004, 47, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Lujan, R.; Nusser, Z.; Roberts, J.D.; Shigemoto, R.; Somogyi, P. Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. Eur. J. Neurosci. 1996, 8, 1488–1500. [Google Scholar] [CrossRef] [PubMed]
- Shigemoto, R.; Nomura, S.; Ohishi, H.; Sugihara, H.; Nakanishi, S.; Mizuno, N. Immunohistochemical localization of a metabotropic glutamate receptor, mGluR5, in the rat brain. Neurosci. Lett. 1993, 163, 53–57. [Google Scholar] [CrossRef]
- Pisani, A.; Gubellini, P.; Bonsi, P.; Conquet, F.; Picconi, B.; Centonze, D.; Bernardi, G.; Calabresi, P. Metabotropic glutamate receptor 5 mediates the potentiation of N-methyl-D-aspartate responses in medium spiny striatal neurons. Neuroscience 2001, 106, 579–587. [Google Scholar] [CrossRef]
- Shoulson, I.; Penney, J.; McDermott, M.; Schwid, S.; Kayson, E.; Chase, T.; Fahn, S.; Greenamyre, J.T.; Lang, A.; Siderowf, A.; et al. A randomized, controlled trial of remacemide for motor fluctuations in Parkinson’s disease. Neurology 2001, 56, 455–462. [Google Scholar] [CrossRef]
- Eggert, K.; Squillacote, D.; Barone, P.; Dodel, R.; Katzenschlager, R.; Emre, M.; Lees, A.J.; Rascol, O.; Poewe, W.; Tolosa, E.; et al. Safety and efficacy of perampanel in advanced Parkinson’s disease: A randomized, placebo-controlled study. Mov. Disord. 2010, 25, 896–905. [Google Scholar] [CrossRef] [PubMed]
- Rylander, D.; Recchia, A.; Mela, F.; Dekundy, A.; Danysz, W.; Cenci, M.A. Pharmacological modulation of glutamate transmission in a rat model of L-DOPA-induced dyskinesia: Effects on motor behavior and striatal nuclear signaling. J. Pharmacol. Exp. Ther. 2009, 330, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Morin, N.; Gregoire, L.; Gomez-Mancilla, B.; Gasparini, F.; Di Paolo, T. Effect of the metabotropic glutamate receptor type 5 antagonists MPEP and MTEP in parkinsonian monkeys. Neuropharmacology 2010, 58, 981–986. [Google Scholar] [CrossRef] [PubMed]
- McFarthing, K.; Prakash, N.; Simuni, T. Clinical Trial Highlights—Dyskinesia. J. Parkinsons Dis. 2019, 9, 449–465. [Google Scholar] [CrossRef] [PubMed]
- Charvin, D.; Di Paolo, T.; Bezard, E.; Gregoire, L.; Takano, A.; Duvey, G.; Pioli, E.; Halldin, C.; Medori, R.; Conquet, F. An mGlu4-Positive Allosteric Modulator Alleviates Parkinsonism in Primates. Mov. Disord. 2018, 33, 1619–1631. [Google Scholar] [CrossRef]
- Iderberg, H.; Maslava, N.; Thompson, A.D.; Bubser, M.; Niswender, C.M.; Hopkins, C.R.; Lindsley, C.W.; Conn, P.J.; Jones, C.K.; Cenci, M.A. Pharmacological stimulation of metabotropic glutamate receptor type 4 in a rat model of Parkinson’s disease and L-DOPA-induced dyskinesia: Comparison between a positive allosteric modulator and an orthosteric agonist. Neuropharmacology 2015, 95, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Le Poul, E.; Bolea, C.; Girard, F.; Poli, S.; Charvin, D.; Campo, B.; Bortoli, J.; Bessif, A.; Luo, B.; Koser, A.J.; et al. A potent and selective metabotropic glutamate receptor 4 positive allosteric modulator improves movement in rodent models of Parkinson’s disease. J. Pharmacol. Exp. Ther. 2012, 343, 167–177. [Google Scholar] [CrossRef]
- Rascol, O.; Medori, R.; Baayen, C.; Such, P.; Meulien, D.; Group, A.S. A Randomized, Double-Blind, Controlled Phase II Study of Foliglurax in Parkinson’s Disease. Mov. Disord. 2022, 37, 1088–1093. [Google Scholar] [CrossRef]
- Bezard, E.; Pioli, E.Y.; Li, Q.; Girard, F.; Mutel, V.; Keywood, C.; Tison, F.; Rascol, O.; Poli, S.M. The mGluR5 negative allosteric modulator dipraglurant reduces dyskinesia in the MPTP macaque model. Mov. Disord. 2014, 29, 1074–1079. [Google Scholar] [CrossRef]
- Gregoire, L.; Morin, N.; Ouattara, B.; Gasparini, F.; Bilbe, G.; Johns, D.; Vranesic, I.; Sahasranaman, S.; Gomez-Mancilla, B.; Di Paolo, T. The acute antiparkinsonian and antidyskinetic effect of AFQ056, a novel metabotropic glutamate receptor type 5 antagonist, in L-Dopa-treated parkinsonian monkeys. Parkinsonism Relat. Disord. 2011, 17, 270–276. [Google Scholar] [CrossRef]
- Conn, P.J.; Battaglia, G.; Marino, M.J.; Nicoletti, F. Metabotropic glutamate receptors in the basal ganglia motor circuit. Nat. Rev. Neurosci. 2005, 6, 787–798. [Google Scholar] [CrossRef] [PubMed]
- Pisani, A.; Calabresi, P.; Centonze, D.; Bernardi, G. Enhancement of NMDA responses by group I metabotropic glutamate receptor activation in striatal neurones. Br. J. Pharmacol. 1997, 120, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- Cuomo, D.; Martella, G.; Barabino, E.; Platania, P.; Vita, D.; Madeo, G.; Selvam, C.; Goudet, C.; Oueslati, N.; Pin, J.P.; et al. Metabotropic glutamate receptor subtype 4 selectively modulates both glutamate and GABA transmission in the striatum: Implications for Parkinson’s disease treatment. J. Neurochem. 2009, 109, 1096–1105. [Google Scholar] [CrossRef]
- Jones, C.K.; Bubser, M.; Thompson, A.D.; Dickerson, J.W.; Turle-Lorenzo, N.; Amalric, M.; Blobaum, A.L.; Bridges, T.M.; Morrison, R.D.; Jadhav, S.; et al. The metabotropic glutamate receptor 4-positive allosteric modulator VU0364770 produces efficacy alone and in combination with L-DOPA or an adenosine 2A antagonist in preclinical rodent models of Parkinson’s disease. J. Pharmacol. Exp. Ther. 2012, 340, 404–421. [Google Scholar] [CrossRef]
- Rascol, O.; Fabbri, M.; Poewe, W. Amantadine in the treatment of Parkinson’s disease and other movement disorders. Lancet Neurol. 2021, 20, 1048–1056. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Lee, H.W.; Hwang, J.; Kim, J.; Lee, M.J.; Han, H.S.; Lee, W.H.; Suk, K. Microglia-inhibiting activity of Parkinson’s disease drug amantadine. Neurobiol. Aging 2012, 33, 2145–2159. [Google Scholar] [CrossRef] [PubMed]
- Ocal, O.; Cosar, A.; Naziroglu, M. Amantadine Attenuated Hypoxia-Induced Mitochondrial Oxidative Neurotoxicity, Apoptosis, and Inflammation via the Inhibition of TRPM2 and TRPV4 Channels. Mol. Neurobiol. 2022, 59, 3703–3720. [Google Scholar] [CrossRef]
- Tison, F.; Keywood, C.; Wakefield, M.; Durif, F.; Corvol, J.C.; Eggert, K.; Lew, M.; Isaacson, S.; Bezard, E.; Poli, S.M.; et al. A Phase 2A Trial of the Novel mGluR5-Negative Allosteric Modulator Dipraglurant for Levodopa-Induced Dyskinesia in Parkinson’s Disease. Mov. Disord. 2016, 31, 1373–1380. [Google Scholar] [CrossRef]
- Trenkwalder, C.; Stocchi, F.; Poewe, W.; Dronamraju, N.; Kenney, C.; Shah, A.; von Raison, F.; Graf, A. Mavoglurant in Parkinson’s patients with l-Dopa-induced dyskinesias: Two randomized phase 2 studies. Mov. Disord. 2016, 31, 1054–1058. [Google Scholar] [CrossRef]
- Wang, W.W.; Zhang, X.R.; Zhang, Z.R.; Wang, X.S.; Chen, J.; Chen, S.Y.; Xie, C.L. Effects of mGluR5 Antagonists on Parkinson’s Patients With L-Dopa-Induced Dyskinesia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Aging Neurosci. 2018, 10, 262. [Google Scholar] [CrossRef]
- Bollen, E.; Prickaerts, J. Phosphodiesterases in neurodegenerative disorders. IUBMB Life 2012, 64, 965–970. [Google Scholar] [CrossRef] [PubMed]
- Menniti, F.S.; Faraci, W.S.; Schmidt, C.J. Phosphodiesterases in the CNS: Targets for drug development. Nat. Rev. Drug Discov. 2006, 5, 660–670. [Google Scholar] [CrossRef] [PubMed]
- Lakics, V.; Karran, E.H.; Boess, F.G. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology 2010, 59, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Belmaker, R.H.; Ebstein, R.P.; Biederman, J.; Stern, R.; Berman, M.; van Praag, H.M. The effect of L-dopa and propranolol on human CSF cyclic nucleotides. Psychopharmacology 1978, 58, 307–310. [Google Scholar] [CrossRef]
- Volicer, L.; Beal, M.F.; Direnfeld, L.K.; Marquis, J.K.; Albert, M.L. CSF cyclic nucleotides and somatostatin in Parkinson’s disease. Neurology 1986, 36, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Adamowicz, W.O.; Eldred, W.D.; Jakowski, A.B.; Kleiman, R.J.; Morton, D.G.; Stephenson, D.T.; Strick, C.A.; Williams, R.D.; Menniti, F.S. Cellular and subcellular localization of PDE10A, a striatum-enriched phosphodiesterase. Neuroscience 2006, 139, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Coskran, T.M.; Morton, D.; Menniti, F.S.; Adamowicz, W.O.; Kleiman, R.J.; Ryan, A.M.; Strick, C.A.; Schmidt, C.J.; Stephenson, D.T. Immunohistochemical localization of phosphodiesterase 10A in multiple mammalian species. J. Histochem. Cytochem. 2006, 54, 1205–1213. [Google Scholar] [CrossRef]
- Nishi, A.; Snyder, G.L. Advanced research on dopamine signaling to develop drugs for the treatment of mental disorders: Biochemical and behavioral profiles of phosphodiesterase inhibition in dopaminergic neurotransmission. J. Pharmacol. Sci. 2010, 114, 6–16. [Google Scholar] [CrossRef]
- Giorgi, M.; Melchiorri, G.; Nuccetelli, V.; D’Angelo, V.; Martorana, A.; Sorge, R.; Castelli, V.; Bernardi, G.; Sancesario, G. PDE10A and PDE10A-dependent cAMP catabolism are dysregulated oppositely in striatum and nucleus accumbens after lesion of midbrain dopamine neurons in rat: A key step in parkinsonism physiopathology. Neurobiol. Dis. 2011, 43, 293–303. [Google Scholar] [CrossRef]
- Niccolini, F.; Haider, S.; Reis Marques, T.; Muhlert, N.; Tziortzi, A.C.; Searle, G.E.; Natesan, S.; Piccini, P.; Kapur, S.; Rabiner, E.A.; et al. Altered PDE10A expression detectable early before symptomatic onset in Huntington’s disease. Brain 2015, 138, 3016–3029. [Google Scholar] [CrossRef]
- Arakawa, K.; Yuge, N.; Maehara, S. Ameliorative effects of a phosphodiesterase 10A inhibitor, MR1916 on L-DOPA-induced dyskinesia in parkinsonian rats. Pharmacol. Rep. 2020, 72, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Guimaraes, R.P.; Ribeiro, D.L.; Dos Santos, K.B.; Talarico, C.H.Z.; Godoy, L.D.; Padovan-Neto, F.E. Phosphodiesterase 10A Inhibition Modulates the Corticostriatal Activity and L-DOPA-Induced Dyskinesia. Pharmaceuticals 2022, 1, 947. [Google Scholar] [CrossRef] [PubMed]
- Polito, M.; Guiot, E.; Gangarossa, G.; Longueville, S.; Doulazmi, M.; Valjent, E.; Herve, D.; Girault, J.A.; Paupardin-Tritsch, D.; Castro, L.R.; et al. Selective Effects of PDE10A Inhibitors on Striatopallidal Neurons Require Phosphatase Inhibition by DARPP-32. eNeuro 2015, 2, ENEURO.0060-0015.2015. [Google Scholar] [CrossRef]
- Wilson, J.M.; Ogden, A.M.; Loomis, S.; Gilmour, G.; Baucum, A.J., 2nd; Belecky-Adams, T.L.; Merchant, K.M. Phosphodiesterase 10A inhibitor, MP-10 (PF-2545920), produces greater induction of c-Fos in dopamine D2 neurons than in D1 neurons in the neostriatum. Neuropharmacology 2015, 99, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.J.; Chapin, D.S.; Cianfrogna, J.; Corman, M.L.; Hajos, M.; Harms, J.F.; Hoffman, W.E.; Lebel, L.A.; McCarthy, S.A.; Nelson, F.R.; et al. Preclinical characterization of selective phosphodiesterase 10A inhibitors: A new therapeutic approach to the treatment of schizophrenia. J. Pharmacol. Exp. Ther. 2008, 325, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Uthayathas, S.; Masilamoni, G.J.; Shaffer, C.L.; Schmidt, C.J.; Menniti, F.S.; Papa, S.M. Phosphodiesterase 10A inhibitor MP-10 effects in primates: Comparison with risperidone and mechanistic implications. Neuropharmacology 2014, 77, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Cenci, M.A.; Jorntell, H.; Petersson, P. On the neuronal circuitry mediating L-DOPA-induced dyskinesia. J. Neural Transm. 2018, 125, 1157–1169. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, T.; Nakako, T.; Goda, M.; Wada, E.; Kitamura, A.; Fujii, Y.; Ikeda, K. A novel phosphodiesterase 1 inhibitor reverses L-dopa-induced dyskinesia, but not motivation deficits, in monkeys. Pharmacol. Biochem. Behav. 2021, 205, 173183. [Google Scholar] [CrossRef]
- Kakkar, R.; Raju, R.V.; Rajput, A.H.; Sharma, R.K. Amantadine: An antiparkinsonian agent inhibits bovine brain 60 kDa calmodulin-dependent cyclic nucleotide phosphodiesterase isozyme. Brain Res. 1997, 749, 290–294. [Google Scholar] [CrossRef]
- Kakkar, R.; Raju, R.V.; Rajput, A.H.; Sharma, R.K. Inhibition of bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase isozymes by deprenyl. Life Sci. 1996, 59, PL337–PL341. [Google Scholar] [CrossRef]
- Polli, J.W.; Kincaid, R.L. Expression of a calmodulin-dependent phosphodiesterase isoform (PDE1B1) correlates with brain regions having extensive dopaminergic innervation. J. Neurosci. 1994, 14, 1251–1261. [Google Scholar] [CrossRef] [PubMed]
- Reed, T.M.; Repaske, D.R.; Snyder, G.L.; Greengard, P.; Vorhees, C.V. Phosphodiesterase 1B knock-out mice exhibit exaggerated locomotor hyperactivity and DARPP-32 phosphorylation in response to dopamine agonists and display impaired spatial learning. J. Neurosci. 2002, 22, 5188–5197. [Google Scholar] [CrossRef] [PubMed]
- Doummar, D.; Dentel, C.; Lyautey, R.; Metreau, J.; Keren, B.; Drouot, N.; Malherbe, L.; Bouilleret, V.; Courraud, J.; Valenti-Hirsch, M.P.; et al. Biallelic PDE2A variants: A new cause of syndromic paroxysmal dyskinesia. Eur. J. Hum. Genet. 2020, 28, 1403–1413. [Google Scholar] [CrossRef] [PubMed]
- Heckman, P.R.A.; Blokland, A.; Prickaerts, J. From Age-Related Cognitive Decline to Alzheimer’s Disease: A Translational Overview of the Potential Role for Phosphodiesterases. Adv. Neurobiol. 2017, 17, 135–168. [Google Scholar] [CrossRef] [PubMed]
- Salpietro, V.; Perez-Duenas, B.; Nakashima, K.; San Antonio-Arce, V.; Manole, A.; Efthymiou, S.; Vandrovcova, J.; Bettencourt, C.; Mencacci, N.E.; Klein, C.; et al. A homozygous loss-of-function mutation in PDE2A associated to early-onset hereditary chorea. Mov. Disord. 2018, 33, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Simpson, E.H.; Kellendonk, C.; Kandel, E. A possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia. Neuron 2010, 65, 585–596. [Google Scholar] [CrossRef]
- Stephenson, D.T.; Coskran, T.M.; Wilhelms, M.B.; Adamowicz, W.O.; O’Donnell, M.M.; Muravnick, K.B.; Menniti, F.S.; Kleiman, R.J.; Morton, D. Immunohistochemical localization of phosphodiesterase 2A in multiple mammalian species. J. Histochem. Cytochem. 2009, 57, 933–949. [Google Scholar] [CrossRef] [PubMed]
- Casacchia, M.; Meco, G.; Castellana, F.; Bedini, L.; Cusimano, G.; Agnoli, A. Therapeutic use of a selective cAMP phosphodiesterase inhibitor (Rolipram) in Parkinson’s disease. Pharmacol. Res. Commun. 1983, 15, 329–334. [Google Scholar] [CrossRef]
- Cherry, J.A.; Davis, R.L. Cyclic AMP phosphodiesterases are localized in regions of the mouse brain associated with reinforcement, movement, and affect. J. Comp. Neurol. 1999, 407, 287–301. [Google Scholar] [CrossRef]
- Perez-Torres, S.; Miro, X.; Palacios, J.M.; Cortes, R.; Puigdomenech, P.; Mengod, G. Phosphodiesterase type 4 isozymes expression in human brain examined by in situ hybridization histochemistry and [3H]rolipram binding autoradiography. Comparison with monkey and rat brain. J. Chem. Neuroanat. 2000, 20, 349–374. [Google Scholar] [CrossRef]
- Vignola, A.M. PDE4 inhibitors in COPD—A more selective approach to treatment. Respir. Med. 2004, 98, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Calingasan, N.Y.; Lorenzo, B.J.; Beal, M.F. Attenuation of MPTP neurotoxicity by rolipram, a specific inhibitor of phosphodiesterase IV. Exp. Neurol. 2008, 211, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Ciccocioppo, R.; Guglielmo, G.; Li, H.; Melis, M.; Caffino, L.; Shen, Q.; Domi, A.; Fumagalli, F.; Demopulos, G.A.; Gaitanaris, G.A. Selective inhibition of phosphodiesterase 7 enzymes reduces motivation for nicotine use through modulation of mesolimbic dopaminergic transmission. J. Neurosci. 2021, 41, 6128–6143. [Google Scholar] [CrossRef]
- Morales-Garcia, J.A.; Alonso-Gil, S.; Gil, C.; Martinez, A.; Santos, A.; Perez-Castillo, A. Phosphodiesterase 7 inhibition induces dopaminergic neurogenesis in hemiparkinsonian rats. Stem Cells Transl. Med. 2015, 4, 564–575. [Google Scholar] [CrossRef]
- Morales-Garcia, J.A.; Alonso-Gil, S.; Santos, A.; Perez-Castillo, A. Phosphodiesterase 7 Regulation in Cellular and Rodent Models of Parkinson’s Disease. Mol. Neurobiol. 2020, 57, 806–822. [Google Scholar] [CrossRef] [PubMed]
- Morales-Garcia, J.A.; Redondo, M.; Alonso-Gil, S.; Gil, C.; Perez, C.; Martinez, A.; Santos, A.; Perez-Castillo, A. Phosphodiesterase 7 inhibition preserves dopaminergic neurons in cellular and rodent models of Parkinson disease. PLoS ONE 2011, 6, e17240. [Google Scholar] [CrossRef] [PubMed]
- Golkowski, M.; Shimizu-Albergine, M.; Suh, H.W.; Beavo, J.A.; Ong, S.E. Studying mechanisms of cAMP and cyclic nucleotide phosphodiesterase signaling in Leydig cell function with phosphoproteomics. Cell Signal. 2016, 28, 764–778. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Gamanuma, M.; Sasaki, T.; Yamashita, Y.; Yuasa, K.; Kotera, J.; Omori, K. Molecular comparison of rat cyclic nucleotide phosphodiesterase 8 family: Unique expression of PDE8B in rat brain. Gene 2003, 319, 21–31. [Google Scholar] [CrossRef]
- Wu, X.N.; Zhou, Q.; Huang, Y.D.; Xie, X.; Li, Z.; Wu, Y.; Luo, H.B. Structure-based discovery of orally efficient inhibitors via unique interactions with H-pocket of PDE8 for the treatment of vascular dementia. Acta Pharm. Sin. B 2022, 12, 3103–3112. [Google Scholar] [CrossRef]
- Lenda, T.; Ossowska, K.; Berghauzen-Maciejewska, K.; Matloka, M.; Pieczykolan, J.; Wieczorek, M.; Konieczny, J. Antiparkinsonian-like effects of CPL500036, a novel selective inhibitor of phosphodiesterase 10A, in the unilateral rat model of Parkinson’s disease. Eur. J. Pharmacol. 2021, 910, 174460. [Google Scholar] [CrossRef]
- Cenci, M.A.; Crossman, A.R. Animal models of l-dopa-induced dyskinesia in Parkinson’s disease. Mov. Disord. 2018, 33, 889–899. [Google Scholar] [CrossRef] [PubMed]
- Sonnenburg, W.K.; Mullaney, P.J.; Beavo, J.A. Molecular cloning of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase cDNA. Identification and distribution of isozyme variants. J. Biol. Chem. 1991, 266, 17655–17661. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, A.D.; Smith, S.M. Regulation of dopamine signaling in the striatum by phosphodiesterase inhibitors: Novel therapeutics to treat neurological and psychiatric disorders. Cent. Nerv. Syst. Agents Med. Chem. 2014, 14, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, M.F.; Faucz, F.R.; Bimpaki, E.; Horvath, A.; Levy, I.; de Alexandre, R.B.; Ahmad, F.; Manganiello, V.; Stratakis, C.A. Clinical and molecular genetics of the phosphodiesterases (PDEs). Endocr. Rev. 2014, 35, 195–233. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Irisarri, E.; Markerink-Van Ittersum, M.; Mengod, G.; de Vente, J. Expression of the cGMP-specific phosphodiesterases 2 and 9 in normal and Alzheimer’s disease human brains. Eur. J. Neurosci. 2007, 25, 3332–3338. [Google Scholar] [CrossRef] [PubMed]
- Van Staveren, W.C.; Steinbusch, H.W.; Markerink-Van Ittersum, M.; Repaske, D.R.; Goy, M.F.; Kotera, J.; Omori, K.; Beavo, J.A.; De Vente, J. mRNA expression patterns of the cGMP-hydrolyzing phosphodiesterases types 2, 5, and 9 during development of the rat brain. J. Comp. Neurol. 2003, 467, 566–580. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Myers, S.J.; Wells, G.; Nicholson, K.L.; Swanger, S.A.; Lyuboslavsky, P.; Tahirovic, Y.A.; Menaldino, D.S.; Ganesh, T.; Wilson, L.J.; et al. Context-dependent GluN2B-selective inhibitors of NMDA receptor function are neuroprotective with minimal side effects. Neuron 2015, 85, 1305–1318. [Google Scholar] [CrossRef]
- Kew, J.N.; Trube, G.; Kemp, J.A. State-dependent NMDA receptor antagonism by Ro 8-4304, a novel NR2B selective, non-competitive, voltage-independent antagonist. Br. J. Pharmacol. 1998, 123, 463–472. [Google Scholar] [CrossRef]
- Vicini, S.; Wang, J.F.; Li, J.H.; Zhu, W.J.; Wang, Y.H.; Luo, J.H.; Wolfe, B.B.; Grayson, D.R. Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors. J. Neurophysiol. 1998, 79, 555–566. [Google Scholar] [CrossRef]
- Garcia-Montes, J.R.; Solis, O.; Enriquez-Traba, J.; Ruiz-DeDiego, I.; Drucker-Colin, R.; Moratalla, R. Genetic Knockdown of mGluR5 in Striatal D1R-Containing Neurons Attenuates L-DOPA-Induced Dyskinesia in Aphakia Mice. Mol. Neurobiol. 2019, 56, 4037–4050. [Google Scholar] [CrossRef]
Receptor | Findings | Species | References |
---|---|---|---|
NMDAR | Increased ratio of NMDARs/AMPARs | Rat | Bagetta et al., 2012 [42] |
Overexpression of receptors in the striatum | Rat NHP Human | Chase et al., 2000 [43] | |
Calon et al., 2002 [44] | |||
Calon et al., 2003 [45] | |||
Higher ratio of GluN2A/GluN2B subunits after prolonged exposure to L-DOPA | Rat NHP Human | Gardoni et al., 2006 [46] | |
Hallett et al., 2005 [47] | |||
Mellone et al., 2015 [48] | |||
Elevated NMDAR activation and glutamate release | Rat NHP Human | Nash et al., 2002 [49] | |
Calon et al., 2002 [44] | |||
Ahmed et al., 2011 [50] | |||
NMDAR antagonists reduce basal SPN hyperactivity and “unstable” responses to L-DOPA | Rat NHP | Papa et al., 1995 [51] | |
Singh et al., 2018 [14] | |||
AMPAR | Overexpression of receptors in the striatum | Rat NHP Human | Bagetta et al., 2012 [42] |
Calon et al., 2002 [44] | |||
Calon et al., 2003 [45] | |||
AMPAR antagonists reduce basal SPN hyperactivity and “unstable” responses to L-DOPA | Rat NHP | Fieblinger et al., 2014 [23] | |
Singh et al., 2018 [14] | |||
Group I mGluRs | mGluR5 levels correlate with LID development and severity | Rat NHP Human | Crabbe et al., 2018 [52] |
Morin et al., 2013; Morin et al., 2013 [53,54] | |||
Ouattara et al., 2011 [55] | |||
mGluR5 NAMs attenuate nigrostriatal degeneration | Rat NHP | Armentero et al., 2006 [56] | |
Masilamoni et al., 2011 [57] | |||
mGluR5 levels are elevated in LIDs | Rat NHP Human | Crabbe et al., 2018 [52] | |
Sanchez-Pernaute et al., 2008 [58] | |||
Ouattara et al., 2011 [55] | |||
mGluR5 binding and expression in the striatum increase following L-DOPA | Rat NHP Human | Crabbe et al., 2018 [52] | |
Samadi et al., 2008 [59] | |||
Ouattara et al., 2011 [55] | |||
mGluR5 NAMs reduce mGluR5 expression | Rat NHP | Lea et al., 2006 [60] | |
Morin et al., 2013 [54] | |||
Group II mGluRs | mGluR2/3 reduce excitatory drive on SPNs and LIDs | Rat | Pisani et al., 2000 [61] |
Group III mGluRs | mGluR4 reduces glutamate neurotransmission | Rat NHP | Calabrese et al., 2022 [62] |
Charvin et al., 2018 [62] | |||
mGluR4 PAM decreases spontaneous glutamatergic transmission and restores bidirectional plasticity | Rat | Calabrese et al., 2022 [62] | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kochoian, B.A.; Bure, C.; Papa, S.M. Targeting Striatal Glutamate and Phosphodiesterases to Control L-DOPA-Induced Dyskinesia. Cells 2023, 12, 2754. https://doi.org/10.3390/cells12232754
Kochoian BA, Bure C, Papa SM. Targeting Striatal Glutamate and Phosphodiesterases to Control L-DOPA-Induced Dyskinesia. Cells. 2023; 12(23):2754. https://doi.org/10.3390/cells12232754
Chicago/Turabian StyleKochoian, Brik A., Cassandra Bure, and Stella M. Papa. 2023. "Targeting Striatal Glutamate and Phosphodiesterases to Control L-DOPA-Induced Dyskinesia" Cells 12, no. 23: 2754. https://doi.org/10.3390/cells12232754
APA StyleKochoian, B. A., Bure, C., & Papa, S. M. (2023). Targeting Striatal Glutamate and Phosphodiesterases to Control L-DOPA-Induced Dyskinesia. Cells, 12(23), 2754. https://doi.org/10.3390/cells12232754