Natural Killer T (NKT) Cells in Autoimmune Hepatitis: Current Evidence from Basic and Clinical Research.
Abstract
:1. Introduction
1.1. Natutal Killer T Cells
1.2. Autoimmune Hepatitis
2. NKT Cells in Autoimmune Hepatitis: Evidence from Basic Research
3. NKT Cells in Autoimmune Hepatitis: Evidence from Clinical Research
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Courtney, A.N.; Tian, G.; Metelitsa, L.S. Natural Killer T Cells and Other Innate-like T Lymphocytes as Emerging Platforms for Allogeneic Cancer Cell Therapy. Blood 2023, 141, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Kronenberg, M.; Gapin, L. The Unconventional Lifestyle of NKT Cells. Nat. Rev. Immunol. 2002, 2, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Mieli-Vergani, G.; Vergani, D.; Czaja, A.J.; Manns, M.P.; Krawitt, E.L.; Vierling, J.M.; Lohse, A.W.; Montano-Loza, A.J. Autoimmune Hepatitis. Nat. Rev. Dis. Primers 2018, 4, 18017. [Google Scholar] [CrossRef] [PubMed]
- Smyk, D.S.; Mavropoulos, A.; Mieli-Vergani, G.; Vergani, D.; Lenzi, M.; Bogdanos, D.P. The Role of Invariant NKT in Autoimmune Liver Disease: Can Vitamin D Act as an Immunomodulator? Can. J. Gastroenterol. 2018, 2018, 8197937. [Google Scholar] [CrossRef] [PubMed]
- Santodomingo-Garzon, T.; Swain, M.G. Role of NKT Cells in Autoimmune Liver Disease. Autoimmun. Rev. 2011, 10, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Mattner, J. Natural Killer T (NKT) Cells in Autoimmune Hepatitis. Curr. Opin. Immunol. 2013, 25, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Budd, R.C.; Miescher, G.C.; Howe, R.C.; Lees, R.K.; Bron, C.; MacDonald, H.R. Developmentally Regulated Expression of T Cell Receptor Beta Chain Variable Domains in Immature Thymocytes. J. Exp. Med. 1987, 166, 577–582. [Google Scholar] [CrossRef]
- Fowlkes, B.J.; Kruisbeek, A.M.; Ton-That, H.; Weston, M.A.; Coligan, J.E.; Schwartz, R.H.; Pardoll, D.M. A Novel Population of T-Cell Receptor Aβ-Bearing Thymocytes Which Predominantly Expresses a Single Vβ Gene Family. Nature 1987, 329, 251–254. [Google Scholar] [CrossRef]
- Ceredig, R.; Lynch, F.; Newman, P. Phenotypic Properties, Interleukin 2 Production, and Developmental Origin of a “Mature” Subpopulation of Lyt-2- L3T4- Mouse Thymocytes. Proc. Natl. Acad. Sci. USA 1987, 84, 8578–8582. [Google Scholar] [CrossRef]
- Yankelevich, B.; Knobloch, C.; Nowicki, M.; Dennert, G. A Novel Cell Type Responsible for Marrow Graft Rejection in Mice. T Cells with NK Phenotype Cause Acute Rejection of Marrow Grafts. J. Immunol. 1989, 142, 3423–3430. [Google Scholar] [CrossRef]
- Sykes, M. Unusual T Cell Populations in Adult Murine Bone Marrow. Prevalence of CD3+CD4-CD8- and Alpha Beta TCR+NK1.1+ Cells. J. Immunol. 1990, 145, 3209–3215. [Google Scholar] [CrossRef]
- Dellabona, P.; Padovan, E.; Casorati, G.; Brockhaus, M.; Lanzavecchia, A. An Invariant V Alpha 24-J Alpha Q/V Beta 11 T Cell Receptor Is Expressed in All Individuals by Clonally Expanded CD4-8- T Cells. J. Exp. Med. 1994, 180, 1171–1176. [Google Scholar] [CrossRef] [PubMed]
- Porcelli, S.; Yockey, C.E.; Brenner, M.B.; Balk, S.P. Analysis of T Cell Antigen Receptor (TCR) Expression by Human Peripheral Blood CD4-8- Alpha/Beta T Cells Demonstrates Preferential Use of Several V Beta Genes and an Invariant TCR Alpha Chain. J. Exp. Med. 1993, 178, 1–16. [Google Scholar] [CrossRef]
- Godfrey, D.I.; MacDonald, H.R.; Kronenberg, M.; Smyth, M.J.; Kaer, L.V. NKT Cells: What’s in a Name? Nat. Rev. Immunol. 2004, 4, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Bendelac, A.; Lantz, O.; Quimby, M.E.; Yewdell, J.W.; Bennink, J.R.; Brutkiewicz, R.R. CD1 Recognition by Mouse NK1+ T Lymphocytes. Science 1995, 268, 863–865. [Google Scholar] [CrossRef] [PubMed]
- Lantz, O.; Bendelac, A. An Invariant T Cell Receptor Alpha Chain Is Used by a Unique Subset of Major Histocompatibility Complex Class I-Specific CD4+ and CD4-8- T Cells in Mice and Humans. J. Exp. Med. 1994, 180, 1097–1106. [Google Scholar] [CrossRef] [PubMed]
- Pellicci, D.G.; Koay, H.-F.; Berzins, S.P. Thymic Development of Unconventional T Cells: How NKT Cells, MAIT Cells and Γδ T Cells Emerge. Nat. Rev. Immunol. 2020, 20, 756–770. [Google Scholar] [CrossRef]
- Metelitsa, L.S. Flow Cytometry for Natural Killer T Cells: Multi-Parameter Methods for Multifunctional Cells. Clin. Immunol. 2004, 110, 267–276. [Google Scholar] [CrossRef]
- Exley, M.A.; Wilson, S.B.; Balk, S.P. Isolation and Functional Use of Human NKT Cells. Curr. Protoc. Immunol. 2017, 119, 11–14. [Google Scholar] [CrossRef]
- Yang Zhou, J.; Werner, J.M.; Glehr, G.; Geissler, E.K.; Hutchinson, J.A.; Kronenberg, K. Identification and Isolation of Type II NKT Cell Subsets in Human Blood and Liver. Front. Immunol. 2022, 13, 898473. [Google Scholar] [CrossRef]
- Bennstein, S.B. Unraveling Natural Killer T-Cells Development. Front. Immunol. 2018, 8, 1950. [Google Scholar] [CrossRef]
- Uldrich, A.P.; Crowe, N.Y.; Kyparissoudis, K.; Pellicci, D.G.; Zhan, Y.; Lew, A.M.; Bouillet, P.; Strasser, A.; Smyth, M.J.; Godfrey, D.I. NKT Cell Stimulation with Glycolipid Antigen In Vivo: Costimulation-Dependent Expansion, Bim-Dependent Contraction, and Hyporesponsiveness to Further Antigenic Challenge. J. Immunol. 2005, 175, 3092–3101. [Google Scholar] [CrossRef] [PubMed]
- Parekh, V.V. Glycolipid Antigen Induces Long-Term Natural Killer T Cell Anergy in Mice. J. Clin. Invest. 2005, 115, 2572–2583. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, K.; Miyake, S.; Yamamura, T. A Synthetic Glycolipid Prevents Autoimmune Encephalomyelitis by Inducing TH2 Bias of Natural Killer T Cells. Nature 2001, 413, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Goff, R.D.; Gao, Y.; Mattner, J.; Zhou, D.; Yin, N.; Cantu, C.; Teyton, L.; Bendelac, A.; Savage, P.B. Effects of Lipid Chain Lengths in α-Galactosylceramides on Cytokine Release by Natural Killer T Cells. J. Am. Chem. Soc. 2004, 126, 13602–13603. [Google Scholar] [CrossRef] [PubMed]
- Bendelac, A.; Savage, P.B.; Teyton, L. The Biology of NKT Cells. Annu. Rev. Immunol. 2007, 25, 297–336. [Google Scholar] [CrossRef] [PubMed]
- Islek, A.; Tumgor, G. Seronegative Autoimmune Hepatitis in Childhood. World J. Clin. Pediatr. 2023, 12, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Autoimmune Hepatitis in Pediatrics, a Review by the Working Group of the Latin American Society for Pediatric Gastroenterology, Hepatology, and Nutrition. Arch. Argent Pediatr. 2022, 120, 281–287. [CrossRef]
- Lohse, A.W.; Mieli-Vergani, G. Autoimmune Hepatitis. J. Hepatol. 2011, 55, 171–182. [Google Scholar] [CrossRef]
- Nastasio, S.; Mosca, A.; Alterio, T.; Sciveres, M.; Maggiore, G. Juvenile Autoimmune Hepatitis: Recent Advances in Diagnosis, Management and Long-Term Outcome. Diagnostics 2023, 13, 2753. [Google Scholar] [CrossRef]
- Ma, Y.; Thomas, M.G.; Okamoto, M.; Bogdanos, D.P.; Nagl, S.; Kerkar, N.; Lopes, A.R.; Muratori, L.; Lenzi, M.; Bianchi, F.B.; et al. Key Residues of a Major Cytochrome P4502D6 Epitope Are Located on the Surface of the Molecule. J. Immunol. 2002, 169, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Kerkar, N.; Choudhuri, K.; Ma, Y.; Mahmoud, A.; Bogdanos, D.P.; Muratori, L.; Bianchi, F.; Williams, R.; Mieli-Vergani, G.; Vergani, D. Cytochrome P4502D6193–212: A New Immunodominant Epitope and Target of Virus/Self Cross-Reactivity in Liver Kidney Microsomal Autoantibody Type 1-Positive Liver Disease. J. Immunol. 2003, 170, 1481–1489. [Google Scholar] [CrossRef] [PubMed]
- Hintermann, E.; Holdener, M.; Bayer, M.; Loges, S.; Pfeilschifter, J.M.; Granier, C.; Manns, M.P.; Christen, U. Epitope Spreading of the Anti-CYP2D6 Antibody Response in Patients with Autoimmune Hepatitis and in the CYP2D6 Mouse Model. J. Autoimmun. 2011, 37, 242–253. [Google Scholar] [CrossRef] [PubMed]
- Yuksel, M.; Wang, Y.; Tai, N.; Peng, J.; Guo, J.; Beland, K.; Lapierre, P.; David, C.; Alvarez, F.; Colle, I.; et al. A Novel “Humanized Mouse” Model for Autoimmune Hepatitis and the Association of Gut Microbiota with Liver Inflammation. Hepatology 2015, 62, 1536–1550. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Zhou, L.; Zhang, J.; Wang, B. Abnormal Intestinal Permeability and Microbiota in Patients with Autoimmune Hepatitis. Int. J. Clin. Exp. Pathol. 2015, 8, 5153–5160. [Google Scholar] [PubMed]
- Zhu, S.; Zhang, H.; Bai, L. NKT Cells in Liver Diseases. Front. Med. 2018, 12, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Sun, W.; Xu, H. Pathogenesis of Concanavalin A Induced Autoimmune Hepatitis in Mice. Int. Immunopharmacol. 2022, 102, 108411. [Google Scholar] [CrossRef]
- Liu, Y.; Hao, H.; Hou, T. Concanavalin A-Induced Autoimmune Hepatitis Model in Mice: Mechanisms and Future Outlook. Open Life Sci. 2022, 17, 91–101. [Google Scholar] [CrossRef]
- Covelli, C.; Sacchi, D.; Sarcognato, S.; Cazzagon, N.; Grillo, F.; Baciorri, F.; Fanni, D.; Cacciatore, M.; Maffeis, V.; Guido, M. Pathology of Autoimmune Hepatitis. Pathologica 2021, 113, 185–193. [Google Scholar] [CrossRef]
- Chen, H.; Han, Z.; Fan, Y.; Chen, L.; Peng, F.; Cheng, X.; Wang, Y.; Su, J.; Li, D. CD4+ T-Cell Subsets in Autoimmune Hepatitis: A Review. Hepatol. Commun. 2023, 7, e0269. [Google Scholar] [CrossRef]
- Bandyopadhyay, K.; Marrero, I.; Kumar, V. NKT Cell Subsets as Key Participants in Liver Physiology and Pathology. Cell. Mol. Immunol. 2016, 13, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Toyabe, S.; Seki, S.; Iiai, T.; Takeda, K.; Shirai, K.; Watanabe, H.; Hiraide, H.; Uchiyama, M.; Abo, T. Requirement of IL-4 and Liver NK1+ T Cells for Concanavalin A-Induced Hepatic Injury in Mice. J. Immunol. 1997, 159, 1537–1542. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, Y.; Harada, M.; Kawano, T.; Yamashita, M.; Shibata, Y.; Gejyo, F.; Nakayama, T.; Taniguchi, M. Augmentation of Vα14 NKT Cell-Mediated Cytotoxicity by Interleukin 4 in an Autocrine Mechanism Resulting in the Development of Concanavalin A-Induced Hepatitis. J. Exp. Med. 2000, 191, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Hayakawa, Y.; Van Kaer, L.; Matsuda, H.; Yagita, H.; Okumura, K. Critical Contribution of Liver Natural Killer T Cells to a Murine Model of Hepatitis. Proc. Natl. Acad. Sci. USA 2000, 97, 5498–5503. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, A.; Hamano, S.; Miyazaki, Y.; Ishii, K.; Takeda, A.; Mak, T.W.; Himeno, K.; Yoshimura, A.; Yoshida, H. Hyperproduction of Proinflammatory Cytokines by WSX-1-Deficient NKT Cells in Concanavalin A-Induced Hepatitis. J. Immunol. 2004, 172, 3590–3596. [Google Scholar] [CrossRef] [PubMed]
- Biburger, M.; Tiegs, G. α-Galactosylceramide-Induced Liver Injury in Mice Is Mediated by TNF-α but Independent of Kupffer Cells. J. Immunol. 2005, 175, 1540–1550. [Google Scholar] [CrossRef]
- Kawamura, H.; Aswad, F.; Minagawa, M.; Govindarajan, S.; Dennert, G. P2X7 Receptors Regulate NKT Cells in Autoimmune Hepatitis. J. Immunol. 2006, 176, 2152–2160. [Google Scholar] [CrossRef]
- Li, B.; Sun, R.; Wei, H.; Gao, B.; Tian, Z. Interleukin-15 Prevents Concanavalin A-Induced Liver Injury in Mice via NKT Cell-Dependent Mechanism. Hepatology 2006, 43, 1211–1219. [Google Scholar] [CrossRef]
- Mencarelli, A.; Renga, B.; Migliorati, M.; Cipriani, S.; Distrutti, E.; Santucci, L.; Fiorucci, S. The Bile Acid Sensor Farnesoid X Receptor Is a Modulator of Liver Immunity in a Rodent Model of Acute Hepatitis. J. Immunol. 2009, 183, 6657–6666. [Google Scholar] [CrossRef]
- Fang, X.; Wang, R.; Ma, J.; Ding, Y.; Shang, W.; Sun, Z. Ameliorated ConA-Induced Hepatitis in the Absence of PKC-Theta. PLoS ONE 2012, 7, e31174. [Google Scholar] [CrossRef]
- Jung, K.; Kang, M.; Park, C.; Hyun Choi, Y.; Jeon, Y.; Park, S.-H.; Seo, S.-K.; Jin, D.; Choi, I. Protective Role of V-Set and Immunoglobulin Domain-Containing 4 Expressed on Kupffer Cells during Immune-Mediated Liver Injury by Inducing Tolerance of Liver T- and Natural Killer T-Cells. Hepatology 2012, 56, 1838–1848. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Feng, D.; Wang, H.; Xu, M.-J.; Park, O.; Li, Y.; Gao, B. STAT4 Knockout Mice Are More Susceptible to Concanavalin A–Induced T-Cell Hepatitis. Am. J. Pathol. 2014, 184, 1785–1794. [Google Scholar] [CrossRef] [PubMed]
- Filliol, A.; Piquet-Pellorce, C.; Dion, S.; Genet, V.; Lucas-Clerc, C.; Dantzer, F.; Samson, M. PARP2 Deficiency Affects Invariant-NKT-Cell Maturation and Protects Mice from Concanavalin A-Induced Liver Injury. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 313, G399–G409. [Google Scholar] [CrossRef] [PubMed]
- Hines, I.N.; Kremer, M.; Moore, S.M.; Wheeler, M.D. Impaired T Cell-Mediated Hepatitis in Peroxisome Proliferator Activated Receptor Alpha (PPARα)-Deficient Mice. Biol. Res. 2018, 51, 5. [Google Scholar] [CrossRef] [PubMed]
- Tabet, E.; Gelu-Simeon, M.; Genet, V.; Lamontagne, L.; Piquet-Pellorce, C.; Samson, M. Chlordecone Potentiates Auto-Immune Hepatitis and Promotes Brain Entry of MHV3 during Viral Hepatitis in Mouse Models. Toxicol. Lett. 2018, 299, 129–136. [Google Scholar] [CrossRef]
- Biagioli, M.; Carino, A.; Fiorucci, C.; Marchianò, S.; Di Giorgio, C.; Roselli, R.; Magro, M.; Distrutti, E.; Bereshchenko, O.; Scarpelli, P.; et al. GPBAR1 Functions as Gatekeeper for Liver NKT Cells and Provides Counterregulatory Signals in Mouse Models of Immune-Mediated Hepatitis. Cell. Mol. Gastroenterol. Hepatol. 2019, 8, 447–473. [Google Scholar] [CrossRef]
- Gao, M.; Li, X.; He, L.; Yang, J.; Ye, X.; Xiao, F.; Wei, H. Diammonium Glycyrrhizinate Mitigates Liver Injury Via Inhibiting Proliferation of NKT Cells and Promoting Proliferation of Tregs. Drug Des. Develop. Ther. 2019, 13, 3579–3589. [Google Scholar] [CrossRef]
- Gao, L.; Li, B.; Wang, J.; Shen, D.; Yang, M.; Sun, R.; Tung, H.; Xu, M.; Ren, S.; Zhang, M.; et al. Activation of Liver X Receptor α Sensitizes Mice to T-Cell Mediated Hepatitis. Hepatol. Commun. 2020, 4, 1664–1679. [Google Scholar] [CrossRef]
- Chen, J.; Li, X.; Zeng, P.; Zhang, X.; Bi, K.; Lin, C.; Jiang, J.; Diao, H. Lamina Propria Interleukin 17 A Aggravates Natural Killer T-cell Activation in Autoimmune Hepatitis. FASEB J. 2022, 36, e22346. [Google Scholar] [CrossRef]
- Louis, H.; Le Moine, A.; Flamand, V.; Nagy, N.; Quertinmont, E.; Paulart, F.; Abramowicz, D.; Le Moine, O.; Goldman, M.; Devière, J. Critical Role of Interleukin 5 and Eosinophils in Concanavalin A–Induced Hepatitis in Mice. Gastroenterology 2002, 122, 2001–2010. [Google Scholar] [CrossRef]
- Cepero-Donates, Y.; Rakotoarivelo, V.; Mayhue, M.; Ma, A.; Chen, Y.-G.; Ramanathan, S. Homeostasis of IL-15 Dependent Lymphocyte Subsets in the Liver. Cytokine 2016, 82, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Golden-Mason, L.; Kelly, A.M.; Doherty, D.G.; Traynor, O.; Mcentee, G.; Kelly, J.; Hegarty, J.E.; O’Farrelly, C. Hepatic Interleuklin 15 (IL-15) Expression: Implications for Local NK/NKT Cell Homeostasis and Development. Clin. Exp. Immunol. 2004, 138, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Wondimu, Z.; Santodomingo-Garzon, T.; Le, T.; Swain, M.G. Protective Role of Interleukin-17 in Murine NKT Cell-Driven Acute Experimental Hepatitis. Am. J. Pathol. 2010, 177, 2334–2346. [Google Scholar] [CrossRef] [PubMed]
- Högenauer, K.; Arista, L.; Schmiedeberg, N.; Werner, G.; Jaksche, H.; Bouhelal, R.; Nguyen, D.G.; Bhat, B.G.; Raad, L.; Rauld, C.; et al. G-Protein-Coupled Bile Acid Receptor 1 (GPBAR1, TGR5) Agonists Reduce the Production of Proinflammatory Cytokines and Stabilize the Alternative Macrophage Phenotype. J. Med. Chem. 2014, 57, 10343–10354. [Google Scholar] [CrossRef]
- Kawamata, Y.; Fujii, R.; Hosoya, M.; Harada, M.; Yoshida, H.; Miwa, M.; Fukusumi, S.; Habata, Y.; Itoh, T.; Shintani, Y.; et al. A G Protein-Coupled Receptor Responsive to Bile Acids. J. Biol. Chem. 2003, 278, 9435–9440. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Yang, L.; Chu, H. The Gut Microbiota: A Novel Player in Autoimmune Hepatitis. Front. Cell. Infect. Microbiol. 2022, 12, 947382. [Google Scholar] [CrossRef] [PubMed]
- Fiorucci, S.; Biagioli, M.; Zampella, A.; Distrutti, E. Bile Acids Activated Receptors Regulate Innate Immunity. Front. Immunol. 2018, 9, 1853. [Google Scholar] [CrossRef]
- Matsumoto, H.; Kawamura, T.; Kobayashi, T.; Kanda, Y.; Kawamura, H.; Abo, T. Coincidence of Autoantibody Production with the Activation of Natural Killer T Cells in α-Galactosylceramide-Mediated Hepatic Injury: Autoantibody and NKT Cells. Immunology 2011, 133, 21–28. [Google Scholar] [CrossRef]
- Barbier, L.; Ferhat, M.; Salamé, E.; Robin, A.; Herbelin, A.; Gombert, J.-M.; Silvain, C.; Barbarin, A. Interleukin-1 Family Cytokines: Keystones in Liver Inflammatory Diseases. Front. Immunol. 2019, 10, 2014. [Google Scholar] [CrossRef]
- Vergani, D.; Longhi, M.S.; Bogdanos, D.P.; Ma, Y.; Mieli-Vergani, G. Autoimmune Hepatitis. Semin. Immunopathol. 2009, 31, 421–435. [Google Scholar] [CrossRef]
- Kumar, V. NKT-Cell Subsets: Promoters and Protectors in Inflammatory Liver Disease. J. Hepatol. 2013, 59, 618–620. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Chu, Q.; Ma, X.; Wang, J.; Chen, C.; Guan, J.; Ren, Y.; Wu, S.; Zhu, H. New Insights into iNKT Cells and Their Roles in Liver Diseases. Front. Immunol. 2022, 13, 1035950. [Google Scholar] [CrossRef] [PubMed]
- Cherñavsky, A.C.; Paladino, N.; Rubio, A.E.; De Biasio, M.B.; Periolo, N.; Cuarterolo, M.; Goñi, J.; Galoppo, C.; Cañero-Velasco, M.C.; Muñoz, A.E.; et al. Simultaneous Expression of Th1 Cytokines and IL-4 Confers Severe Characteristics to Type I Autoimmune Hepatitis in Children. Hum. Immunol. 2004, 65, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Ferri, S.; Longhi, M.S.; De Molo, C.; Lalanne, C.; Muratori, P.; Granito, A.; Hussain, M.J.; Ma, Y.; Lenzi, M.; Mieli-Vergani, G.; et al. A Multifaceted Imbalance of T Cells with Regulatory Function Characterizes Type 1 Autoimmune Hepatitis. Hepatology 2010, 52, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Ferreyra Solari, N.E.; Galoppo, C.; Cuarterolo, M.; Goñi, J.; Fernández-Salazar, L.; Arranz, L.E.; Garrote, J.A.; Cherñavsky, A.C. The Simultaneous High Expression of Vα24, IFN-γ and FoxP3 Characterizes the Liver of Children with Type I Autoimmune Hepatitis. Clin. Immunol. 2010, 137, 396–405. [Google Scholar] [CrossRef] [PubMed]
- Weng, X.; He, Y.; Visvabharathy, L.; Liao, C.-M.; Tan, X.; Balakumar, A.; Wang, C.R. Crosstalk between Type II NKT Cells and T Cells Leads to Spontaneous Chronic Inflammatory Liver Disease. J. Hepatol. 2017, 67, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Renand, A.; Habes, S.; Mosnier, J.; Aublé, H.; Judor, J.; Vince, N.; Hulin, P.; Nedellec, S.; Métairie, S.; Archambeaud, I.; et al. Immune Alterations in Patients with Type 1 Autoimmune Hepatitis Persist Upon Standard Immunosuppressive Treatment. Hepatol. Commun. 2018, 2, 972–985. [Google Scholar] [CrossRef]
- Sebode, M.; Wigger, J.; Filpe, P.; Fischer, L.; Weidemann, S.; Krech, T.; Weiler-Normann, C.; Peiseler, M.; Hartl, J.; Tolosa, E.; et al. Inflammatory Phenotype of Intrahepatic Sulfatide-Reactive Type II NKT Cells in Humans with Autoimmune Hepatitis. Front. Immunol. 2019, 10, 1065. [Google Scholar] [CrossRef]
- Terziroli Beretta-Piccoli, T.B.; Mieli-Vergani, G.; Vergani, D. Autoimmmune Hepatitis. Cell Mol. Immunol. 2022, 19, 158–176. [Google Scholar] [CrossRef]
- Balitzer, D.; Shafizadeh, N.; Peters, M.G.; Ferrell, L.D.; Alshak, N.; Kakar, S. Autoimmune Hepatitis: Review of Histologic Features Included in the Simplified Criteria Proposed by the International Autoimmune Hepatitis Group and Proposal for New Histologic Criteria. Mod. Pathol. 2017, 30, 773–783. [Google Scholar] [CrossRef]
- Webb, G.J.; Hirschfield, G.M.; Krawitt, E.L.; Gershwin, M.E. Cellular and Molecular Mechanisms of Autoimmune Hepatitis. Annu. Rev. Pathol. Mech. Dis. 2018, 13, 247–292. [Google Scholar] [CrossRef]
- Vergani, D.; Mieli-Vergani, G.; Mondelli, M.; Portmann, B.; Eddleston, A.L.W.F. Immunoglobulin on the Surface of Isolated Hepatocytes Is Associated with Antibody-dependent Cell-mediated Cytotoxicity and Liver Damage. Liver 1987, 7, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Manns, M.; Zanger, U.; Gerken, G.; Sullivan, K.F.; Zum Büschenfelde, K.-H.M.; Meyer, U.A.; Eichelbaum, M. Patients with Type Ii Autoimmune Hepatitis Express Functionally Intact Cytochrome P-450 Db1 That Is Inhibited by LKM-1 Autoantibodiesin Vitro but Notin Vivo. Hepatology 1990, 12, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Hardtke-Wolenski, M.; Jaeckel, E. Mouse models for experimental autoimmune hepatitis: Limits and chances. Dig. Dis. 2010, 28, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Christen, U.; Hintermann, E. An Update on Animal Models of Autoimmune Hepatitis: Are we There Yet? Curr. Pharm. Des. 2015, 21, 2391–2400. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, C.; La Barbera, L.; Lo Pizzo, M.; Ciccia, F.; Sireci, G.; Guggino, G. Invariant NKT Cells and Rheumatic Disease: Focus on Primary Sjogren Syndrome. Int. J. Mol. Sci. 2019, 20, 5435. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Wang, Y.; Ma, X.; Xiang, X.; Zhou, X.; Li, Y.; Jia, Y.; Hu, F.; Li, Y. Decreased natural killer T-like cells correlated to disease activity in systemic lupus erythematosus. Clin. Rheumatol. 2023, 42, 1435–1442. [Google Scholar] [CrossRef] [PubMed]
- Zahran, A.M.; Abdel-Rahim, M.H.; Elsayh, K.I.; Hassanien, M.M.; Mahran, S.A.; Hetta, H.F. Natural Killer and Natural Killer T Cells in Juvenile Systemic Lupus Erythematosus: Relation to Disease Activity and Progression. Arch. Immunol. Ther. Exp. 2019, 67, 161–169. [Google Scholar] [CrossRef]
- Guggino, G.; Ciccia, F.; Raimondo, S.; Giardina, G.; Alessandro, R.; Dieli, F.; Sireci, G.; Triolo, G. Invariant NKT cells are expanded in peripheral blood but are undetectable in salivary glands of patients with primary Sjögren’s syndrome. Clin. Exp. Rheumatol. 2016, 34, 25–31. [Google Scholar]
Authors, Year, Country | Transgenic Mice | Mouse Background | AIH Model | Analytical Methods (NKT Cells) | NKT Cell Identification | Aim | NKT-Related Findings | Additional Findings | Conclusion |
---|---|---|---|---|---|---|---|---|---|
Toyabe * et al., 1997, Japan [42] | n/a | n/a | ConA | n/a | n/a | To assess the role of lymphocyte subsets and specific inflammatory cytokines. | n/a | n/a | “Although CD4+ cells in the liver and their production of TNF-alpha are the direct effectors of Con A-induced hepatic injury, liver NK1+ T cells also play an important role in this hepatitis model.” |
Kaneko et al., 2000, Japan [43] | gld/gld Vα14−/− RAG−/− IL-4−/− IFNγ−/− Perforin−/− | C57BL/6 | ConA | FACS | TCRβ+ NK1.1+ | To investigate the relevance of NKT cells in the disease development. | Vα14 NKT cells are required for the development of hepatitis and can do it in absence of conventional T cells, B cells, and NK cells. | Vα14 NKT cells from either Fas−/− or gld/gld mutant mice cannot induce hepatitis. IL-4 produced by NKT can upregulate FasL and granzyme B expression on these same cells in an autocrine fashion, which are important for the induction of the hepatitis. | NKT cells and autocrine production of IL-4 are required and sufficient for inducing ConA–induced hepatitis. |
Takeda et al., 2000 Japan [44] | gld/gld Perforin−/− CD1d−/− | C57BL/6 | ConA | FACS | CD3+ NK1.1+ | To investigate the role of liver NKT cells in the disease development. | Hepatitis was markedly reduced in CD1d−/− mice compared to wild type mice. Adoptive transfer of wild-type NKT cells (but not from gld/gld mice) can induce hepatitis in CD1d−/− mice. | The expression of functional FasL on hepatic NKT cells plays a critical role in hepatitis induction. | NKT cells have a critical role in the induction of ConA hepatitis, and functional FasL expression on NKT cells is essential to cause liver injury. |
Yamanaka et al., 2004, Japan [45] | WSX-1−/− | C57BL/6 | ConA | FACS | CD3+ NK1.1+ | To investigate the role of WSX-1 in NKT cells. | WSX-1-deficient NKT cells can produce more IFN-γ and IL-4 than in wild-type NKT both in vitro and in vivo. | WSX-1-deficient mice with hepatitis showed higher production of several inflammatory cytokines, including IL-1, IL-6, and TNF-α. | WSX-1 does not affect the NKT development but has an inhibitory effect on their IFN-γ and IL-4 production. |
Biburger et al., 2005, Germany [46] | — | C57BL/6 BALB/c | ConA (+αGalCer) | FACS | CD3+ NK1.1+ | To investigate and compare the cytokine production in αGalCer- and ConA-induced liver injury. | In αGalCer-induced hepatitis (unlike ConA-induced hepatitis) TNF-α is produced by intrahepatic lymphocytes, especially NKT cells. | Compared to BALB/c strain, C57BL/6 mice are more sensitive to αGalCer-induced liver injury and showed higher TNF-α production and FasL expression on NKT cells. | Unlike in ConA-induced hepatitis, in αGalCer-mediated hepatitis NKT cells can produce TNF-α, which is required to induce liver injury. |
Kawamura et al., 2006, USA [47] | P2X7R−/− ART-2−/− | C57BL/6 | ConA | FACS | CD3+ NK1.1+ | To investigate the effects of NAD on NKT cells. | NAD has an inhibitory action on “naïve” NKT cells via stimulation of P2X7 receptors. However, an opposite effect can be observed on αGalCer-primed NKT cells in the context of ConA-induced hepatitis. | Mice knockout for P2X7 receptors have a reduced liver injury in the experimental model, as well as those lacking ADP-ribosyl-transferase. | Purinergic receptors can regulate NKT cells activation in autoimmune hepatitis. |
Li et al., 2006, China [48] | CD1d−/− | C57BL/6 | ConA | FACS | NK1.1+ CD3+ | To assess the role of IL-15 and KKT cells | the depletion of NKT cells impairs liver injury, which can be restored by adoptive transfer of purified NKT cells. the transfer of NKT cells from wild-type to CD1d−/− mice, induces liver injury. | IL-15 pretreatment can significantly inhibit the NKT Cell-related production of IL-4, IL-5, and TNF-α. | IL-15 has a protective effect in Con A–induced liver injury through an inhibitory effect on the production of IL-4, IL-5, and TNF-α by NKT cells. |
Mencarelli et al., 2009, Italy [49] | FXR−/− | C57BL/6 | ConA | FACS | NK1.1+ CD3+ | To assess the role of the Bile Acid Sensor Farnesoid X Receptor | FXR is expressed by NKT cells, and its absence favors the production of ostepontin by these cells. | FXR−/− mouse shows enhanced susceptibility to ConA-mediated hepatitis, in addition to being prone to spontaneous liver disease. | Bile acid sensor FXR can modulate the activation of liver NKT cells and their osteopontin production. |
Fang et al., 2012, USA [50] | PKC-θ−/− | C57BL/6 | ConA | FACS | CD3+ CD1d/ tetramer+ | To assess the role of PKC-θ in NKT cell-mediated liver injury. | NKT cell development is defective in PKC-θ−/− mice. PKC-θ is required for thymic NKT cell development. | PKC-θ−/− mice show lower levels of inflammatory cytokines. | Deletion of PKC-θ likely impairs liver injury, due to the developmental defect of NKT cells |
Jung et al., 2012, Republic of Korea [51] | VSIG4−/− | C57BL/6 | ConA | FACS | TCRβ+ NK1.1+ | To investigate the role of VSIG4 cells in liver disease | In absence of VSIG4, liver T cells and NKT cells are more responsive to antigen-specific stimulation with tolerance impairment. | VSIG4 expression by Kupffer cells inhibits in vitro the production of cytokines from NKT cells (including IL-4, TNF-α, IFN-γ). | VSIG41 expressed by Kupffer cells is implicated in inducing and maintaining the tolerance of liver T and NKT cells |
Wang et al., 2014, China [52] | Stat4−/− Il12b−/− Il12a−/− | C57BL/6 | ConA | FACS | CD3+ NK1.1 CD1d/ tetramer+ | To investigate STAT4 activation in this pathological context. | NKT Cells from Stat4−/− mice showed higher expression of FasL and greater cytotoxicity against hepatocytes compared to wild-type mice. | STAT4-related IL-12 activation inhibits the expression of FasL on NKT cells. | IL-12 activation via STAT4 in NKT cells (in addition to that in T cells and macrophages) can modulate and ameliorate the hepatic injury. |
Filliol et al., 2017, France [53] | Parp1−/− Parp2−/− | C57BL/6 | ConA | FACS | CD3+ TCRVβ+ NK1.1+ CD1d/ tetramer+ | To define the roles of PARP1 and PARP2 proteins. | Parp2−/− mice showed a significant reduction of liver NKT cells. | PARP2, but not PARP1, deficiency protects mice from liver injury | The systemic reduction of NKT cells in Parp−/− mice attenuates the liver injury. |
Hines et al., 2018, USA [54] | PPARα−/− | C57BL/6 | ConA | FACS | TCRβ+ NK1.1+ | To examine PPARα in the pathogenesis of liver injury. | PPARα is implicated in the recruitment and/or survival of NKT cells: its deficiency is associated to a resistance liver injury along with a reduction of NKT cells. | PPARα deficiency is associated to a reduction of expression of IL15 (not CD1d) in the liver. Moreover, the production of cytokines, especially IFN-γ, in PPARα−/− mice upon αGalCer administration was impaired. | The protective effect of PPARα deficiency is mainly mediated by the impairment of NKT cell number and their activation. |
Tabet et al., 2018, France [55] | — | C57BL/6 | ConA | FACS | CD3+ TCRVβ+ NK1.1+ | To investigate the impact of chlordecone on the progression of liver injury in this experimental model. | Chlordecone significantly amplified the liver damage, which was also associated to an increase of liver NKT cells, without any other remarkable numerical change in other immune cells, including neutrophils, macrophages, and CD4, CD8, NK, B lymphocytes. | — | NKT cells plays a relevant role in the entity of liver injury in this pathological context. |
Biagioli et al., 2019, Italy [56] | GPBAR1−/− IL-10−/− | C57BL/6 | ConA | Microbeads purification | NK1.1+ CD3+ CD1d/ tetramer+ | To explore the role of GPBAR1 in the regulation of liver NKT cells. | The absence of GPBAR1 worsened liver injury and was associated with an NKT phenotype polarization towards type I NKT cells with production of IFN-γ. | NKT cells from GPBAR1−/− mice resulted to be sufficient for causing liver injury when administered to wild-type mice. GPBAR1 agonists can reduce the liver injury and redirect NKT cells toward a regulatory phenotype, producing IL-10. | The NKT cell immune-phenotype and their cytokine profile can modulate the liver injury in this pathological context. |
Gao et al., 2019 China [57] | — | C57BL/6 | ConA | FACS | CD3+ NK1.1+ | To examine the mechanisms of DG protection in this experimental model. | DG pretreatment significantly reduced the number of NKT cells in the liver and, conversely, increased the number of hepatic Tregs. | — | NKT cells reduction is one of the mechanisms by which DG can reduce liver injury in this pathological model. |
Gao et al., 2020, China [58] | CD1d−/− LXRα−/− LXRα KI (FABP)-VP-LXRα−/− | C57BL/6 | ConA | FACS | CD3+ NK1.1+ | To study the role of LXR in the pathogenesis of liver injury. | Hepatic NKT cells are necessary and sufficient to sensitize LXRα-KI mice to ConA-induced hepatitis. | The sensitizing effect of LXRα activation depends on NKT cell activation and production of IFN-γ. | LXRα plays an important role in this pathological context, and NKT cells and their cytokine production have a pathogenic relevance. |
Chen et al., 2011, China [59] | IL-17a/ EGfp KI IL-17a−/− | C57BL/6 | ConA | FACS | NK1.1+ TCβ+ | To assess the role of IL-17A in this hepatitis model upon exposure to Salmonella typhimurium in the gut. | NKT cells were hyper-activated by IL-17A in the liver of mice with hepatitis and exposed to S. typhimurium administration group. | Intra-cellular IFN-γ and IL-4 were increased in NKT cells of these mice, as well as the expression of FasL. | MAIT-produced IL-17 can worsen liver injury by mainly activating NKT cells. |
Authors, Year, Country | Study Design | Study Population (N) | AIH (Gender & Age) | Subgroup (1) | Subgroup (2) | Controls [N; Gender; Age] | NKT Cells Analysis [Tissue] | Results | Conclusion |
---|---|---|---|---|---|---|---|---|---|
Chernavsky et al., 2004, Argentina [73] | Cross- sectional | PAH (N = 25) | M:F = 10:15 Median (range) 10 yrs. (6–15) | — | — | Children with HCV chronic hepatitis N = 6 M:F = n/a Age: n/a Cadaveric donors N = 9 M:F = 10:15 Median (range) 16 yrs. (7–30) | Vα24 mRNA expression analysis [PBMC, liver] Vα24 immuno- histochemical-staining [liver] |
| NKT cells presence is increased in PAH liver and their concomitant decrease in the circulation could reflect the liver recruitment. Along with the immunostaining results, these data suggest that NKT cells can have a role in PAH liver injury. |
Ferri et al., 2010, Italy [74] | Cross- sectional | AIH-1 (N = 47) | M:F = 10:37 Median (range) 48 yrs. (17–79) | Active patients N = 16 | Remission patients N = 31 | “Healthy controls” N = 28 M:F = 9:19 Median (range) 39 yrs. (23–58) | CD3+ CD56+ Cells FACS analysis [PBMC] |
| The number of NKT cells is significantly reduced in active patients and is only partially restored during the disease remission. Circulating NKT cells from AIH patients were reported to produce lower amounts of IL-4, but are more responsive to the antigenic stimulation. Overall, NKT cells from AIH patients show altered homeostasis and responses. |
Solari et al., 2010, Argentina [75] | Cross- sectional | AIH-1 (N = 34) | See subgroups | Active patients N = 12 M:F = 2:10 Median (range) 7.7. yrs. (3–16) | Remission patients N = 22 M:F = 6:16 Median (range) 12.8. yrs. (7–20) | Cadaveric donors N = 14 M:F = n/a Median (range) 16 yrs. (7–30) | Vα24 mRNA expression analysis [liver] |
| An increased NKT presence in the liver has been observed in AIH patients, which suggests their involvement in the inflammatory response in AIH-1 patients. |
Weng et al., 2017, USA [76] * | Cross- sectional | AIH (N = 11) | M:F = 0:11 Mean 51.6 yrs. (38–60) | — | — | “Healthy donors” N = 10 M:F = n/a Age: n/a | CD1d Immuno- Histochemical-staining [liver] FACS? [PBMC] |
| These data could suggest an upregulation of CD1d on T cells and, thus, an increased recruitment and activation of NKT cells in AIH patients. |
Renand et al., 2018, France [77] | Retrospective (biobank) | AIH (N = 25) | See subgroups | Active patients N = 14 M:F = 6:8 Mean (range) 62 yrs. (17–74) | Remission patients N = 11 M:F = 2:9 Mean (range) 57 yrs. (43–79) | “Healthy donors” N = 14 M:F = 6:8 Mean (range) 49 yrs. (22–65) | TCR Vα24Jα18 FACS analysis [PBMC] |
| The altered homeostasis of NKT cells could suggest a role of these cell population in the immune dysregulation observed in AIH patients. |
Sebode et al., 2019, Germany [78] | Cross- sectional | AIH (N = 74) | N = 46 [PBMC] M:F = 11:35 Median (range) 47 yrs. (22–77) N = 28 [liver] M:F = 8:20 Median (range) 53 yrs. (24–78) | Active patients N = 13 [PBMC] N = 16 [liver] | Remission patients N = 38 [PBMC] N = 12 [liver] | DILI N = 10 [PBMC] N = 11 [liver] “Healthy donors” N = 39 [PBMC] N = 17 [liver] | αGalCer-loaded tetramer and sulfatide-loaded tetramers FACS analysis [PBMC, liver] CD1d immuno- histochemical-staining [liver] |
| Type II NKT cells in livers of AIH patients showed a proinflammatory cytokine profile. Moreover, infiltrating T cells observed in the portal space of AIH patients’ livers resulted to overexpress CD1d. Therefore, type II NKT cells are supposed to promote the inflammation in patient with AIH. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poddighe, D.; Maulenkul, T.; Zhubanova, G.; Akhmaldtinova, L.; Dossybayeva, K. Natural Killer T (NKT) Cells in Autoimmune Hepatitis: Current Evidence from Basic and Clinical Research. Cells 2023, 12, 2854. https://doi.org/10.3390/cells12242854
Poddighe D, Maulenkul T, Zhubanova G, Akhmaldtinova L, Dossybayeva K. Natural Killer T (NKT) Cells in Autoimmune Hepatitis: Current Evidence from Basic and Clinical Research. Cells. 2023; 12(24):2854. https://doi.org/10.3390/cells12242854
Chicago/Turabian StylePoddighe, Dimitri, Tilektes Maulenkul, Gulsamal Zhubanova, Lyudmila Akhmaldtinova, and Kuanysh Dossybayeva. 2023. "Natural Killer T (NKT) Cells in Autoimmune Hepatitis: Current Evidence from Basic and Clinical Research." Cells 12, no. 24: 2854. https://doi.org/10.3390/cells12242854
APA StylePoddighe, D., Maulenkul, T., Zhubanova, G., Akhmaldtinova, L., & Dossybayeva, K. (2023). Natural Killer T (NKT) Cells in Autoimmune Hepatitis: Current Evidence from Basic and Clinical Research. Cells, 12(24), 2854. https://doi.org/10.3390/cells12242854