Correction: Balaphas et al. Cell Therapy for Anal Sphincter Incontinence: Where Do We Stand? Cells 2021, 10, 2086
Designation of Model | Time Lapse between Injury and Intervention | Publication Reporting the Model | Species | Procedure | Sphincter | |
---|---|---|---|---|---|---|
Acute Anal Sphincter Injury | Sphincterotomy and repair | 0 | Mazzanti et al., 2016 [27], Lorenzi et al., 2008 [26] | Rat | Sphincterotomy and primary repair of sphincters | IAS and EAS |
Repaired sphincterotomy | 0 | Fitzwater et al., 2015 [28], White et al., 2010 [29], Pathi et al., 2012 [30] | Rat | Full thickness 7 mm incision of sphincters followed by repair | IAS and EAS | |
Anal sphincter injury | 0 | Kuismanen et al., 2018 [31] | Rat | Incision of full thickness sphincter with mucosa followed by mucosa and IAS repair | IAS and EAS | |
Proctoepisiotomy | 0 | Lane et al., 2013 [32], Jacobs et al., 2013 [33] | Rat | Proctoepisiotomy with repair | EAS | |
Sphincterotomy | 0 | Inoue et al., 2018 [34] | Rat | Removal of a left semicircle of sphincter | IAS and EAS | |
Extra-mucosal myotomy | 0 | Trébol et al., 2018 [35] | Rat | 1 cm long incision preserving the mucosa | IAS and EAS | |
Anal sphincter cryoinjury | 0 | Bisson et al., 2013 [36] | Rat | Two cryoinjuries of sphincters at 24 h interval with liquid nitrogen on a 90° sector | IAS and EAS | |
Anal sphincter cryoinjury | 0 | Kang et al., 2008 [37] | Rat | Cryoinjury of right hemi-sphincters | IAS and EAS | |
Sphincterotomy | 0 | Sarveazad et al., 2019 [38] | Rabbit | Left lateral sphincterotomy | IAS and EAS | |
Sphincterotomy | 24 h | Salcedo et al., 2013 [15] | Rat | 2–3-mm thick transection of sphincters | IAS and EAS | |
Pudendal nerve crush | 24 h | Salcedo et al., 2013 [15] | Rat | Posterior incision of sacro-coccygeal area and 30 s crushing of the nerves on both sides | na | |
Unrepaired Anal Sphincter Injury | Partial anal sphincter excision | 24 h and 3 weeks | Salcedo et al., 2014 [39], Li et al., 2020 [40] | Rat | Excision of 1/3 of ventral anal sphincters | IAS and EAS |
Anal sphincter injury | 2 weeks | Ding et al.,2016 [41] | Rat | 0.2 cm long sphincters incision | IAS and EAS | |
Unrepaired sphincterotomy | 2 weeks | Montoya et al., 2015 [42] | Rat | Full thickness 7 mm incision of sphincters | IAS and EAS | |
Chronic large anal sphincter defect | 3 weeks | Sun et al., 2017 [43], Sun et al., 2017 [44], Sun et al., 2016 [45] | Rat | 50% excision of ventral portion of anal sphincters | IAS and EAS | |
Anal sphincter damage | nd | Li et al., 2018 [46] | Rat | 3 mm long incision in the right posterolateral sphincter | IAS and EAS | |
Intersphincteric resection model | na | Yamaguchi et al., 2013 [47] | Rat | 50% excision of IAS and a part of EAS | IAS and EAS | |
Sphincterotomy | 2 weeks | Aghaee-Afshar et al., 2009 [48] | Rabbit | Right lateral sphincterotomy | EAS | |
Excision of external anal sphincter | 3 to 24 weeks | Kajbafzadeh et al., 2016 [49], Elmi et al., 2014 [50], Kajbafzadeh et al., 2010 [51] | Rabbit | Subtotal to total excision of posterior sphincter | EAS | |
Sphincter injury | 4 weeks | Oh et al., 2015 [52], Oh et al., 2015 [53], Kang et al., 2013 [54] | Dog | Resection of 25% of posterior anal sphincters | IAS and EAS | |
Internal sphincter hemi-sphincterectomy | 6–8 weeks | Bohl et al., 2017 [55], Dadhich et al., 2019 [56] | Rabbit, NHP | 50% excision of ventral portion of anal sphincter | IAS |
Designation of Model | Time Lapse between Injury and Intervention | Publication Reporting the Model | Species | Procedure | Sphincter | |
---|---|---|---|---|---|---|
Acute Anal Sphincter Injury | Sphincterotomy and repair | 0 | Mazzanti et al., 2016 [18], Lorenzi et al., 2008 [19] | Rat | Sphincterotomy and primary repair of sphincters | IAS and EAS |
Repaired sphincterotomy | 0 | Fitzwater et al., 2015 [20], White et al 2010 [21], Pathi et al., 2012 [22] | Rat | Full thickness 7 mm incision of sphincters followed by repair | IAS and EAS | |
Anal sphincter injury | 0 | Kuismanen et al., 2018 [23] | Rat | Incision of full thickness sphincter with mucosa followed by mucosa and IAS repair | IAS and EAS | |
Proctoepisiotomy | 0 | Lane et al., 2013 [24], Jacobs et al., 2013 [25] | Rat | Proctoepisiotomy with repair | EAS | |
Sphincterotomy | 0 | Inoue et al., 2018 [26] | Rat | Removal of a left semicircle of sphincter | IAS and EAS | |
Extra-mucosal myotomy | 0 | Trébol et al., 2018 [27] | Rat | 1 cm-long incision preserving the mucosa | IAS and EAS | |
Anal sphincter cryoinjury | 0 | Bisson et al., 2013 [28] | Rat | Two cryoinjuries of sphincters at 24 h interval with liquid nitrogen on a 90° sector | IAS and EAS | |
Anal sphincter cryoinjury | 0 | Kang et al., 2008 [29] | Rat | Cryoinjury of right hemi-sphincters | IAS and EAS | |
Sphincterotomy | 0 | Sarveazad et al., 2019 [30] | Rabbit | Left lateral sphincterotomy | IAS and EAS | |
Sphincterotomy | 24 h | Salcedo et al., 2013 [15] | Rat | 2–3 mm-thick transection of sphincters | IAS and EAS | |
Pudendal nerve crush | 24 h | Salcedo et al., 2013 [15] | Rat | Posterior incision of sacro-coccygeal area and 30 s crushing of the nerves on both sides | na | |
Unrepaired Anal Sphincter Injury | Partial anal sphincter excision | 24 h and 3 weeks | Salcedo et al., 2014 [31], Li et al., 2020 [32] | Rat | Excision of 1/3 of ventral anal sphincters | IAS and EAS |
Anal sphincter injury | 2 weeks | Ding et al.,2016 [33] | Rat | 0.2 cm-long sphincters incision | IAS and EAS | |
Unrepairedsphincterotomy | 2 weeks | Montoya et al., 2015 [34] | Rat | Full thickness 7 mm incision of sphincters | IAS and EAS | |
Chronic large anal sphincter defect | 3 weeks | Sun et al., 2017 [35], Sun et al., 2017 [36], Sun et al., 2016 [37] | Rat | 50% excision of ventral portion of anal sphincters | IAS and EAS | |
Anal sphincter damage | nd | Li et al., 2018 [38] | Rat | 3 mm-long incision in the right posterolateral sphincter | IAS and EAS | |
Intersphincteric resection model | na | Yamaguchi et al., 2013 [39] | Rat | 50% excision of IAS and a part of EAS | IAS and EAS | |
Sphincterotomy | 2 weeks | Aghaee-Afshar et al., 2009 [40] | Rabbit | Right lateral sphincterotomy | EAS | |
Excision of external anal sphincter | 3 to 24 weeks | Kajbafzadeh et al., 2016 [41], Elmi et al., 2014 [42], Kajbafzadeh et al., 2010 [43] | Rabbit | Subtotal to total excision of posterior sphincter | EAS | |
Sphincter injury | 4 weeks | Oh et al., 2015 [44], Oh et al., 2015 [45], Kang et al., 2013 [46] | Dog | Resection of 25% of posterior anal sphincters | IAS and EAS | |
Internal sphincter hemi-sphincterectomy | 6–8 weeks | Bohl et al., 2017 [47], Dadhich et al., 2019 [48] | Rabbit, NHP | 50% excision of ventral portion of anal sphincter | IAS |
Publication | Cells Origin | Species | Surface Antigens Expressed | Surface Antigens Not Expressed | GENE Expression | Intracellular Protein Expressed | Intracellular Protein Not Expressed | Differentiation Test | |
---|---|---|---|---|---|---|---|---|---|
Muscle-Derived Cells | Bisson et al., 2015 [36] | Skeletal muscle | Rat | CD56 | - | DES, MYOD1, MYF5, | - | - | - |
Lane et al. 2013 [32], Jacobs et al., 2013 [33], Craig et al., 2010 [92] | Skeletal muscle | Rat | - | - | - | - | - | - | |
Saihara et al., 2009 [91] | Skeletal muscle | Rat | - | - | - | - | - | Myotubes | |
Kang et al., 2008 [37] | Skeletal muscle | Rat | CD34 | CD45 | - | Desmin | - | - | |
Kajbafzadeh et al., 2016 [49] | Skeletal muscle | Rabbit | - | - | - | Pax7, Desmin | - | Myotubes | |
Elmi et al., 2014 [50] | Skeletal muscle | Rabbit | - | - | - | Desmin, MyoD | - | ||
Oh et al., 2015 [52], Oh et al., 2015 [53] | Skeletal muscle | Dog | - | - | - | Pax7, Sma | MHC, MyoG | Myotubes | |
Kang et al., 2013 [54] | Skeletal muscle | Dog | - | - | - | Pax7 | MHC | α-SMA | |
Boyer et al., 2018 [69] | Skeletal muscle | Human | CD90, HLA-I | CD34, CD45, CD133 | DES, MYOD1, MYF5, PAX7 | - | - | - | |
Frudinger et al., 2015 [66], Frudinger et al., 2018 [68] | Skeletal muscle | Human | SSEA3, SSEA4, CD56, CD90 | - | NANOG1, NACAM1, MYOD1, PAX7, PAX3, MYF5, DES, MYOG | Desmin, UTF1, Pax7, Myf5 | - | Myotubes | |
Romaniszyn et al., 2015 [67] | Skeletal muscle | Human | CD56 | - | DES, MYOD1, MYOG | - | - | Myocyte | |
Romaniszyn et al., 2013 [74] | Skeletal muscle | Human | - | - | - | - | - | - | |
Son et al., 2019 [93] | EAS | Human | CD34, NG2 | - | - | Pax7 | - | MyoG, MyHC | |
Bohl et al., 2017 [102], Rego et al., 2017 [98] | Smooth muscle | Rabbit | |||||||
Raghavan et al., 2010 [99], Hashish et al., 2010 [100], Miyasaka et al., 2011 [101] | IAS | Mouse | - | - | - | - | - | - | |
Zakhem et al., 2015 [97], Rego et al., 2017 [98] | IAS | Rabbit | - | - | - | - | - | - | |
Dadhich et al., 2019 [56] | IAS | NHP | - | - | SMTN | - | Sma, and smoothelin | - | |
Gilmont et al., 2014 [95] | IAS | Human | - | - | - | - | - | - | |
Singh and Rattan 2012 [94] | IAS | Human | - | - | - | - | - | - | |
Raghavan et al., 2014 [96], Somara et al., 2009 [79] | IAS | Human | - | - | - | - | - | - | |
Bone Marrow-Derived Cells | Li et al., 2018 [46] | Bone marrow | Rat | - | CD34, CD45 | - | - | - | - |
Ding et al., 2016 [41] | Bone marrow, transfected with galectin-1 | Rat | CD90 | CD45 | - | - | - | - | |
Sun et al., 2017 [44] | Bone marrow | Rat | - | - | - | - | - | - | |
Mazzanti et al., 2016 [27], Lorenzi et al., 2008 [26] | Bone marrow | Rat | CD44, CD54, CD73, CD90, CD106 | CD11b, CD11c, CD45 | - | - | - | Osteogenic and adipogenic | |
Salcedo et al., 2014 [39], Salcedo et al., 2013 [15] | Bone marrow | Rat | - | CD34, CD45 | - | - | - | - | |
Pathi et al., 2012 [30] | Bone marrow | Rat | - | - | - | - | - | - | |
Aghaee-Afshar et al., 2009 [48] | Bone marrow | Rabbit | - | - | - | - | - | - | |
Adipose Tissue-Derived Cells | Trébol et al., 2018 [35] | Adipose tissue | Rat | CD29, CD90 | CD11n, CD45 | - | - | - | - |
Inoue et al., 2018 [34] | Adipose tissue | Rat | CD90 | CD31, CD45 | - | - | - | Adipogenic and myogenic | |
Sarveazad et al., 2019 [38] | Adipose tissue | Human | CD29, CD73, CD105 | CD34, CD45 | |||||
Sarveazad et al., 2017 [71] | Adipose tissue | Human | CD44, CD73, CD90 | CD31, CD45 | - | - | - | - | |
Kuismanen et al., 2018 [31] | Adipose tissue | Human | CD73, CD90, CD105 | CD14, CD19, CD34, CD45RO, CD54, HLA-DR | - | - | - | - | |
Neural Tissue-Derived Cells | Bohl et al., 2017 [102] | Enteric Neural System | Rabbit | - | - | - | - | - | - |
Zakhem et al., 2015 [97] | Appendix neuronal system | Rabbit | P75(NTR) | - | - | Sox2, Nestin | Neurospheres | ||
Rego et al., 2017 [97] | Enteric neuronal system | Rabbit | - | - | - | - | - | Neurospheres | |
Dadhich et al., 2019 [56] | Enteric neuronal system | NHP | P75(NTR) | smoothelin, oct4 | |||||
Gilmont et al., 2014 [95] | Enteric neuronal system | Human | P75(NTR) | - | - | - | - | Neurospheres | |
Raghavan et al., 2014 [96], Raghavan et al., 2011 [103] | Enteric neuronal system | Human | - | - | - | - | - | - | |
Miscellaneous | Aghaee-Afshar et al., 2009 [48] | Umbilical cord matrix | Human | - | - | - | - | - | - |
Publication | Cells Origin | Species | Surface Antigens Expressed | Surface Antigens Not Expressed | GENE Expression | Intracellular Protein Expressed | Intracellular Protein Not Expressed | Differentiation Test | |
---|---|---|---|---|---|---|---|---|---|
Muscle-Derived Cells | Bisson et al., 2015 [28] | Skeletal muscle | Rat | CD56 | - | DES, MYOD1, MYF5, | - | - | - |
Lane et al., 2013 [24], Jacobs et al., 2013 [25], Craig et al., 2010 [92] | Skeletal muscle | Rat | - | - | - | - | - | - | |
Saihara et al., 2009 [91] | Skeletal muscle | Rat | - | - | - | - | - | Myotubes | |
Kang et al., 2008 [29] | Skeletal muscle | Rat | CD34 | CD45 | - | Desmin | - | - | |
Kajbafzadeh et al., 2016 [41] | Skeletal muscle | Rabbit | - | - | - | Pax7, Desmin | - | Myotubes | |
Elmi et al., 2014 [42] | Skeletal muscle | Rabbit | - | - | - | Desmin, MyoD | - | ||
Oh et al., 2015 [44], Oh et al., 2015 [45] | Skeletal muscle | Dog | - | - | - | Pax7, Sma | MHC, MyoG | Myotubes | |
Kang et al., 2013 [46] | Skeletal muscle | Dog | - | - | - | Pax7 | MHC | α-SMA | |
Boyer et al., 2018 [69] | Skeletal muscle | Human | CD90, HLA-I | CD34, CD45, CD133 | DES, MYOD1, MYF5, PAX7 | - | - | - | |
Frudinger et al., 2015 [66], Frudinger et al., 2018 [68] | Skeletal muscle | Human | SSEA3, SSEA4, CD56, CD90 | - | NANOG1, NACAM1, MYOD1, PAX7, PAX3, MYF5, DES, MYOG | Desmin, UTF1, Pax7, Myf5 | - | Myotubes | |
Romaniszyn et al., 2015 [67] | Skeletal muscle | Human | CD56 | - | DES, MYOD1, MYOG | - | - | Myocyte | |
Romaniszyn et al., 2013 [74] | Skeletal muscle | Human | - | - | - | - | - | - | |
Son et al., 2019 [93] | EAS | Human | CD34, NG2 | - | - | Pax7 | - | MyoG, MyHC | |
Bohl et al., 2017 [102], Rego et al., 2017 [98] | Smooth muscle | Rabbit | |||||||
Raghavan et al., 2010 [99], Hashish et al., 2010 [100], Miyasaka et al., 2011 [101] | IAS | Mouse | - | - | - | - | - | - | |
Zakhem et al., 2015 [97], Rego et al. 2017 [98] | IAS | Rabbit | - | - | - | - | - | - | |
Dadhich et al., 2019 [48] | IAS | NHP | - | - | SMTN | - | Sma, and smoothelin | - | |
Gilmont et al., 2014 [95] | IAS | Human | - | - | - | - | - | - | |
Singh and Rattan 2012 [94] | IAS | Human | - | - | - | - | - | - | |
Raghavan et al., 2014 [96], Somara et al., 2009 [79] | IAS | Human | - | - | - | - | - | - | |
Bone Marrow-Derived Cells | Li et al., 2018 [38] | Bone marrow | Rat | - | CD34, CD45 | - | - | - | - |
Ding et al., 2016 [33] | Bone marrow, transfected with galectin-1 | Rat | CD90 | CD45 | - | - | - | - | |
Sun et al., 2017 [36] | Bone marrow | Rat | - | - | - | - | - | - | |
Mazzanti et al., 2016 [18], Lorenzi et al., 2008 [19] | Bone marrow | Rat | CD44, CD54, CD73, CD90, CD106 | CD11b, CD11c, CD45 | - | - | - | Osteogenic and adipogenic | |
Salcedo et al., 2014 [31], Salcedo et al., 2013 [15] | Bone marrow | Rat | - | CD34, CD45 | - | - | - | - | |
Pathi et al., 2012 [22] | Bone marrow | Rat | - | - | - | - | - | - | |
Aghaee-Afshar et al., 2009 [40] | Bone marrow | Rabbit | - | - | - | - | - | - | |
Adipose Tissue-Derived Cells | Trébol et al., 2018 [27] | Adipose tissue | Rat | CD29, CD90 | CD11n, CD45 | - | - | - | - |
Inoue et al., 2018 [26] | Adipose tissue | Rat | CD90 | CD31, CD45 | - | - | - | Adipogenic and myogenic | |
Sarveazad et al., 2019 [30] | Adipose tissue | Human | CD29, CD73, CD105 | CD34, CD45 | |||||
Sarveazad et al., 2017 [71] | Adipose tissue | Human | CD44, CD73, CD90 | CD31, CD45 | - | - | - | - | |
Kuismanen et al., 2018 [23] | Adipose tissue | Human | CD73, CD90, CD105 | CD14, CD19, CD34, CD45RO, CD54, HLA-DR | - | - | - | - | |
Neural Tissue-Derived Cells | Bohl et al., 2017 [102] | Enteric Neural System | Rabbit | - | - | - | - | - | - |
Zakhem et al., 2015 [97] | Appendix neuronal system | Rabbit | P75(NTR) | - | - | Sox2, Nestin | Neurospheres | ||
Rego et al., 2017 [98] | Enteric neuronal system | Rabbit | - | - | - | - | - | Neurospheres | |
Dadhich et al., 2019 [48] | Enteric neuronal system | NHP | P75(NTR) | smoothelin, oct4 | |||||
Gilmont et al., 2014 [95] | Enteric neuronal system | Human | P75(NTR) | - | - | - | - | Neurospheres | |
Raghavan et al., 2014 [96], Raghavan et al., 2011 [103] | Enteric neuronal system | Human | - | - | - | - | - | - | |
Miscellaneous | Aghaee-Afshar et al., 2009 [40] | Umbilical cord matrix | Human | - | - | - | - | - | - |
- 3.2. Methods for Multipotent Cell Isolation and Processing
- 3.3. Methods for Multipotent Cell Characterization
- 3.2. Methods for Multipotent Cell Isolation and Processing
- 3.3. Methods for Multipotent Cell Characterization
- 4.1. Practical Considerations
- 4.2. Adjuvant Therapy
- 4.3. Measure of Outcomes and Results
- 4.4. Results
- 4.1. Practical Considerations
- 4.2. Adjuvant Therapy
- 4.3. Measure of Outcomes and Results
- 4.4. Results
- Chatoor, D.R.; Taylor, S.J.; Cohen, C.R.G.; Emmanuel, A.V. Faecal Incontinence. Br. J. Surg. 2007, 94, 134–144. https://doi.org/10.1002/bjs.5676.
- Meyer, I.; Richter, H.E. Impact of Fecal Incontinence and Its Treatment on Quality of Life in Women. Womens Health Lond. Engl. 2015, 11, 225–238. https://doi.org/10.2217/whe.14.66.
- Williams, K.S.; Shalom, D.F.; Winkler, H.A. Faecal Incontinence: A Narrative Review of Clinic-Based Management for the General Gynaecologist. J. Obstet. Gynaecol. J. Inst. Obstet. Gynaecol. 2018, 38, 1–9. https://doi.org/10.1080/01443615.2017.1344204.
- Nandivada, P.; Nagle, D. Surgical Therapies for Fecal Incontinence. Curr. Opin. Gastroenterol. 2014, 30, 69–74. https://doi.org/10.1097/MOG.0000000000000029.
- Wexner, S.D.; Bleier, J. Current Surgical Strategies to Treat Fecal Incontinence. Expert Rev. Gastroenterol. Hepatol. 2015, 9, 1577–1589. https://doi.org/10.1586/17474124.2015.1093417.
- Zorcolo, L.; Covotta, L.; Bartolo, D.C.C. Outcome of Anterior Sphincter Repair for Obstetric Injury: Comparison of Early and Late Results. Dis. Colon Rectum 2005, 48, 524–531. https://doi.org/10.1007/s10350-004-0770-1.
- Gronewold, M.; Kroencke, T.; Hagedorn, A.; Tunn, R.; Gauruder-Burmester, A. [External anal sphincter repair using the overlapping technique in patients with anal incontinence and concomitant pudendal nerve damage]. Zentralblatt Für Chir. 2008, 133, 129–134. https://doi.org/10.1055/s-2008-1004734.
- Demirbas, S.; Atay, V.; Sucullu, I.; Filiz, A.I. Overlapping Repair in Patients with Anal Sphincter Injury. Med. Princ. Pract. Int. J. Kuwait Univ. Health Sci. Cent. 2008, 17, 56–60. https://doi.org/10.1159/000109591.
- Brown, S.R.; Wadhawan, H.; Nelson, R.L. Surgery for Faecal Incontinence in Adults. Cochrane Database Syst. Rev. 2013, CD001757. https://doi.org/10.1002/14651858.CD001757.pub4.
- Zutshi, M.; Hull, T.; Gurland, B. Anal Encirclement with Sphincter Repair (AESR Procedure) Using a Biological Graft for Anal Sphincter Damage Involving the Entire Circumference. Colorectal Dis. Off. J. Assoc. Coloproctology G. B. Irel. 2012, 14, 592–595. https://doi.org/10.1111/j.1463-1318.2011.02675.x.
- De la Portilla, F. Internal Anal Sphincter Augmentation and Substitution. Gastroenterol. Rep. 2014, 2, 106–111. https://doi.org/10.1093/gastro/gou004.
- Alam, N.N.; Narang, S.K.; Köckerling, F.; Daniels, I.R.; Smart, N.J. Anal Sphincter Augmentation Using Biological Material. Front. Surg. 2015, 2. https://doi.org/10.3389/fsurg.2015.00060.
- Rao, S.S.C. Pathophysiology of Adult Fecal Incontinence. Gastroenterology 2004, 126, S14–S22.
- LaCross, A.; Groff, M.; Smaldone, A. Obstetric Anal Sphincter Injury and Anal Incontinence Following Vaginal Birth: A Systematic Review and Meta-Analysis. J. Midwifery Womens Health 2015, 60, 37–47. https://doi.org/10.1111/jmwh.12283.
- Salcedo, L.; Mayorga, M.; Damaser, M.; Balog, B.; Butler, R.; Penn, M.; Zutshi, M. Mesenchymal Stem Cells Can Improve Anal Pressures after Anal Sphincter Injury. Stem Cell Res. 2013, 10, 95–102. https://doi.org/10.1016/j.scr.2012.10.002.
- Healy, C.F.; O’Herlihy, C.; O’Brien, C.; O’Connell, P.R.; Jones, J.F.X. Experimental Models of Neuropathic Fecal Incontinence: An Animal Model of Childbirth Injury to the Pudendal Nerve and External Anal Sphincter. Dis. Colon Rectum 2008, 51, 1619–1626; discussion 1626. https://doi.org/10.1007/s10350-008-9283-7.
- Wai, C.Y.; Rahn, D.D.; White, A.B.; Word, R.A. Recovery of External Anal Sphincter Contractile Function after Prolonged Vaginal Distention or Sphincter Transection in an Animal Model. Obstet. Gynecol. 2008, 111, 1426–1434. https://doi.org/10.1097/AOG.0b013e318173f0b8.
- Mazzanti, B.; Lorenzi, B.; Borghini, A.; Boieri, M.; Ballerini, L.; Saccardi, R.; Weber, E.; Pessina, F. Local Injection of Bone Marrow Progenitor Cells for the Treatment of Anal Sphincter Injury: In-Vitro Expanded versus Minimally-Manipulated Cells. Stem Cell Res. Ther. 2016, 7, 85. https://doi.org/10.1186/s13287-016-0344-x.
- Lorenzi, B.; Pessina, F.; Lorenzoni, P.; Urbani, S.; Vernillo, R.; Sgaragli, G.; Gerli, R.; Mazzanti, B.; Bosi, A.; Saccardi, R.; et al. Treatment of Experimental Injury of Anal Sphincters with Primary Surgical Repair and Injection of Bone Marrow-Derived Mesenchymal Stem Cells. Dis. Colon Rectum 2008, 51, 411–420. https://doi.org/10.1007/s10350-007-9153-8.
- Fitzwater, J.L.; Grande, K.B.; Sailors, J.L.; Acevedo, J.F.; Word, R.A.; Wai, C.Y. Effect of Myogenic Stem Cells on the Integrity and Histomorphology of Repaired Transected External Anal Sphincter. Int. Urogynecol. J. 2015, 26, 251–256. https://doi.org/10.1007/s00192-014-2496-5.
- White, A.B.; Keller, P.W.; Acevedo, J.F.; Word, R.A.; Wai, C.Y. Effect of Myogenic Stem Cells on Contractile Properties of the Repaired and Unrepaired Transected External Anal Sphincter in an Animal Model. Obstet. Gynecol. 2010, 115, 815–823. https://doi.org/10.1097/AOG.0b013e3181d56cc5.
- Pathi, S.D.; Acevedo, J.F.; Keller, P.W.; Kishore, A.H.; Miller, R.T.; Wai, C.Y.; Word, R.A. Recovery of the Injured External Anal Sphincter after Injection of Local or Intravenous Mesenchymal Stem Cells. Obstet. Gynecol. 2012, 119, 134–144. https://doi.org/10.1097/AOG.0b013e3182397009.
- Kuismanen, K.; Juntunen, M.; Narra Girish, N.; Tuominen, H.; Huhtala, H.; Nieminen, K.; Hyttinen, J.; Miettinen, S. Functional Outcome of Human Adipose Stem Cell Injections in Rat Anal Sphincter Acute Injury Model. Stem Cells Transl. Med. 2018, 7, 295–304. https://doi.org/10.1002/sctm.17-0208.
- Lane, F.L.; Jacobs, S.A.; Craig, J.B.; Nistor, G.; Markle, D.; Noblett, K.L.; Osann, K.; Keirstead, H. In Vivo Recovery of the Injured Anal Sphincter after Repair and Injection of Myogenic Stem Cells: An Experimental Model. Dis. Colon Rectum 2013, 56, 1290–1297. https://doi.org/10.1097/DCR.0b013e3182a4adfb.
- Jacobs, S.A.; Lane, F.L.; Pham, Q.-A.; Nistor, G.; Robles, R.; Chua, C.; Boubion, B.; Osann, K.; Keirstead, H. Safety Assessment of Myogenic Stem Cell Transplantation and Resulting Tumor Formation. Female Pelvic Med. Reconstr. Surg. 2013, 19, 362–368. https://doi.org/10.1097/SPV.0000000000000035.
- Inoue, Y.; Fujita, F.; Yamaguchi, I.; Kinoe, H.; Kawahara, D.; Sakai, Y.; Kuroki, T.; Eguchi, S. Improvement of Anal Function by Adipose-Derived Stem Cell Sheets. Dig. Surg. 2018, 35, 64–69. https://doi.org/10.1159/000475475.
- Trébol, J.; Georgiev-Hristov, T.; Vega-Clemente, L.; García-Gómez, I.; Carabias-Orgaz, A.; García-Arranz, M.; García-Olmo, D. Rat Model of Anal Sphincter Injury and Two Approaches for Stem Cell Administration. World J. Stem Cells 2018, 10, 1–14. https://doi.org/10.4252/wjsc.v10.i1.1.
- Bisson, A.; Fréret, M.; Drouot, L.; Jean, L.; Le Corre, S.; Gourcerol, G.; Doucet, C.; Michot, F.; Boyer, O.; Lamacz, M. Restoration of Anal Sphincter Function after Myoblast Cell Therapy in Incontinent Rats. Cell Transplant. 2015, 24, 277–286. https://doi.org/10.3727/096368913X674053.
- Kang, S.-B.; Lee, H.N.; Lee, J.Y.; Park, J.-S.; Lee, H.S.; Lee, J.Y. Sphincter Contractility after Muscle-Derived Stem Cells Autograft into the Cryoinjured Anal Sphincters of Rats. Dis. Colon Rectum 2008, 51, 1367–1373. https://doi.org/10.1007/s10350-008-9360-y.
- Sarveazad, A.; Babahajian, A.; Yari, A.; Rayner, C.K.; Mokhtare, M.; Babaei-Ghazani, A.; Agah, S.; Mahjoubi, B.; Shamseddin, J.; Yousefifard, M. Combination of Laser and Human Adipose-Derived Stem Cells in Repair of Rabbit Anal Sphincter Injury: A New Therapeutic Approach. Stem Cell Res. Ther. 2019, 10, 367. https://doi.org/10.1186/s13287-019-1477-5.
- Salcedo, L.; Penn, M.; Damaser, M.; Balog, B.; Zutshi, M. Functional Outcome after Anal Sphincter Injury and Treatment with Mesenchymal Stem Cells. Stem Cells Transl. Med. 2014, 3, 760–767. https://doi.org/10.5966/sctm.2013-0157.
- Li, P.; Ma, X.; Jin, W.; Li, X.; Hu, J.; Jiang, X.; Guo, X. Effects of Local Injection and Intravenous Injection of Allogeneic Bone Marrow Mesenchymal Stem Cells on the Structure and Function of Damaged Anal Sphincter in Rats. J. Tissue Eng. Regen. Med. 2020, 14, 989–1000. https://doi.org/10.1002/term.3079.
- Ding, Z.; Liu, X.; Ren, X.; Zhang, Q.; Zhang, T.; Qian, Q.; Liu, W.; Jiang, C. Galectin-1-Induced Skeletal Muscle Cell Differentiation of Mesenchymal Stem Cells Seeded on an Acellular Dermal Matrix Improves Injured Anal Sphincter. Discov. Med. 2016, 21, 331–340.
- Montoya, T.I.; Acevedo, J.F.; Smith, B.; Keller, P.W.; Sailors, J.L.; Tang, L.; Word, R.A.; Wai, C.Y. Myogenic Stem Cell-Laden Hydrogel Scaffold in Wound Healing of the Disrupted External Anal Sphincter. Int. Urogynecol. J. 2015, 26, 893–904. https://doi.org/10.1007/s00192-014-2620-6.
- Sun, L.; Xie, Z.; Kuang, M.; Penn, M.; Damaser, M.S.; Zutshi, M. Regenerating the Anal Sphincter: Cytokines, Stem Cells, or Both? Dis. Colon Rectum 2017, 60, 416–425. https://doi.org/10.1097/DCR.0000000000000783.
- Sun, L.; Kuang, M.; Penn, M.; Damaser, M.S.; Zutshi, M. Stromal Cell-Derived Factor 1 Plasmid Regenerates Both Smooth and Skeletal Muscle After Anal Sphincter Injury in the Long Term. Dis. Colon Rectum 2017, 60, 1320–1328. https://doi.org/10.1097/DCR.0000000000000940.
- Sun, L.; Yeh, J.; Xie, Z.; Kuang, M.; Damaser, M.S.; Zutshi, M. Electrical Stimulation Followed by Mesenchymal Stem Cells Improves Anal Sphincter Anatomy and Function in a Rat Model at a Time Remote From Injury. Dis. Colon Rectum 2016, 59, 434–442. https://doi.org/10.1097/DCR.0000000000000548.
- Li, X.; Guo, X.; Jin, W.; Lu, J. Effects of Electroacupuncture Combined with Stem Cell Transplantation on Anal Sphincter Injury-Induced Faecal Incontinence in a Rat Model. Acupunct. Med. J. Br. Med. Acupunct. Soc. 2018, 36, 254–260. https://doi.org/10.1136/acupmed-2016-011262.
- Yamaguchi, I.; Fujita, F.; Yamanouchi, K.; Mishima, T.; Kawahara, D.; Sakai, Y.; Ito, S.; Kanetaka, K.; Takatsuki, M.; Kuroki, T.; et al. A Novel Animal Model of Long-Term Sustainable Anal Sphincter Dysfunction. J. Surg. Res. 2013, 184, 813–818. https://doi.org/10.1016/j.jss.2013.04.010.
- Aghaee-Afshar, M.; Rezazadehkermani, M.; Asadi, A.; Malekpour-Afshar, R.; Shahesmaeili, A.; Nematollahi-mahani, S.N. Potential of Human Umbilical Cord Matrix and Rabbit Bone Marrow-Derived Mesenchymal Stem Cells in Repair of Surgically Incised Rabbit External Anal Sphincter. Dis. Colon Rectum 2009, 52, 1753–1761. https://doi.org/10.1007/DCR.0b013e3181b55112.
- Kajbafzadeh, A.-M.; Kajbafzadeh, M.; Sabetkish, S.; Sabetkish, N.; Tavangar, S.M. Tissue-Engineered External Anal Sphincter Using Autologous Myogenic Satellite Cells and Extracellular Matrix: Functional and Histological Studies. Ann. Biomed. Eng. 2016, 44, 1773–1784. https://doi.org/10.1007/s10439-015-1468-3.
- Elmi, A.; Kajbafzadeh, A.-M.; Oghabian, M.A.; Talab, S.S.; Tourchi, A.; Khoei, S.; Rafie, B.; Esfahani, S.A. Anal Sphincter Repair with Muscle Progenitor Cell Transplantation: Serial Assessment with Iron Oxide-Enhanced MRI. AJR Am. J. Roentgenol. 2014, 202, 619–625. https://doi.org/10.2214/AJR.13.11146.
- Kajbafzadeh, A.-M.; Elmi, A.; Talab, S.S.; Esfahani, S.A.; Tourchi, A. Functional External Anal Sphincter Reconstruction for Treatment of Anal Incontinence Using Muscle Progenitor Cell Auto Grafting. Dis. Colon Rectum 2010, 53, 1415–1421. https://doi.org/10.1007/DCR.0b013e3181e53088.
- Oh, H.-K.; Lee, H.S.; Lee, J.H.; Oh, S.H.; Lim, J.-Y.; Ahn, S.; Hwang, J.-Y.; Kang, S.-B. Functional and Histological Evidence for the Targeted Therapy Using Biocompatible Polycaprolactone Beads and Autologous Myoblasts in a Dog Model of Fecal Incontinence. Dis. Colon Rectum 2015, 58, 517–525. https://doi.org/10.1097/DCR.0000000000000346.
- Oh, H.-K.; Lee, H.S.; Lee, J.H.; Oh, S.H.; Lim, J.-Y.; Ahn, S.; Kang, S.-B. Coadministration of Basic Fibroblast Growth Factor-Loaded Polycaprolactone Beads and Autologous Myoblasts in a Dog Model of Fecal Incontinence. Int. J. Colorectal Dis. 2015, 30, 549–557. https://doi.org/10.1007/s00384-015-2121-1.
- Kang, S.-B.; Lee, H.S.; Lim, J.-Y.; Oh, S.H.; Kim, S.J.; Hong, S.-M.; Jang, J.-H.; Cho, J.-E.; Lee, S.-M.; Lee, J.H. Injection of Porous Polycaprolactone Beads Containing Autologous Myoblasts in a Dog Model of Fecal Incontinence. J. Korean Surg. Soc. 2013, 84, 216–224. https://doi.org/10.4174/jkss.2013.84.4.216.
- Bitar, K.N.; Zakhem, E.; Bohl, J.L.; Tamburini, R.; Dadhich, P.; Scott, C.; Knutson, D.T.; Giliam, J.H. Implantation of Autologous Biosphincters in a Non-Human Primate (NHP) Model of Fecal Incontinence. Gastroenterology 2017, 152, S15.
- Dadhich, P.; Bohl, J.L.; Tamburrini, R.; Zakhem, E.; Scott, C.; Kock, N.; Mitchell, E.; Gilliam, J.; Bitar, K.N. BioSphincters to Treat Fecal Incontinence in Nonhuman Primates. Sci. Rep. 2019, 9, 18096. https://doi.org/10.1038/s41598-019-54440-3.
- Meister, M.R.; Rosenbloom, J.I.; Lowder, J.L.; Cahill, A.G. Techniques for Repair of Obstetric Anal Sphincter Injuries. Obstet. Gynecol. Surv. 2018, 73, 33–39. https://doi.org/10.1097/OGX.0000000000000521.
- Mitoyan, L.; Chevrier, V.; Hernandez-Vargas, H.; Ollivier, A.; Homayed, Z.; Pannequin, J.; Poizat, F.; De Biasi-Cador, C.; Charafe-Jauffret, E.; Ginestier, C.; et al. A Stem Cell Population at the Anorectal Junction Maintains Homeostasis and Participates in Tissue Regeneration. Nat. Commun. 2021, 12, 2761. https://doi.org/10.1038/s41467-021-23034-x.
- Plair, A.; Bennington, J.; Williams, J.K.; Parker-Autry, C.; Matthews, C.A.; Badlani, G. Regenerative Medicine for Anal Incontinence: A Review of Regenerative Therapies beyond Cells. Int. Urogynecol. J. 2020. https://doi.org/10.1007/s00192-020-04620-x.
- Sass, F.A.; Fuchs, M.; Pumberger, M.; Geissler, S.; Duda, G.N.; Perka, C.; Schmidt-Bleek, K. Immunology Guides Skeletal Muscle Regeneration. Int. J. Mol. Sci. 2018, 19, 835. https://doi.org/10.3390/ijms19030835.
- Schmidt, M.; Schüler, S.C.; Hüttner, S.S.; von Eyss, B.; von Maltzahn, J. Adult Stem Cells at Work: Regenerating Skeletal Muscle. Cell. Mol. Life Sci. CMLS 2019, 76, 2559–2570. https://doi.org/10.1007/s00018-019-03093-6.
- Yin, H.; Price, F.; Rudnicki, M.A. Satellite Cells and the Muscle Stem Cell Niche. Physiol. Rev. 2013, 93, 23–67. https://doi.org/10.1152/physrev.00043.2011.
- Dumont, N.A.; Wang, Y.X.; Rudnicki, M.A. Intrinsic and Extrinsic Mechanisms Regulating Satellite Cell Function. Dev. Camb. Engl. 2015, 142, 1572–1581. https://doi.org/10.1242/dev.114223.
- Chellini, F.; Tani, A.; Zecchi-Orlandini, S.; Sassoli, C. Influence of Platelet-Rich and Platelet-Poor Plasma on Endogenous Mechanisms of Skeletal Muscle Repair/Regeneration. Int. J. Mol. Sci. 2019, 20. https://doi.org/10.3390/ijms20030683.
- Chatterjee, M.; Huang, Z.; Zhang, W.; Jiang, L.; Hultenby, K.; Zhu, L.; Hu, H.; Nilsson, G.P.; Li, N. Distinct Platelet Packaging, Release, and Surface Expression of Proangiogenic and Antiangiogenic Factors on Different Platelet Stimuli. Blood 2011, 117, 3907–3911. https://doi.org/10.1182/blood-2010-12-327007.
- Brzoska, E.; Kowalewska, M.; Markowska-Zagrajek, A.; Kowalski, K.; Archacka, K.; Zimowska, M.; Grabowska, I.; Czerwińska, A.M.; Czarnecka-Góra, M.; Stremińska, W.; et al. Sdf-1 (CXCL12) Improves Skeletal Muscle Regeneration via the Mobilisation of Cxcr4 and CD34 Expressing Cells. Biol. Cell 2012, 104, 722–737. https://doi.org/10.1111/boc.201200022.
- Salcedo, L.; Sopko, N.; Jiang, H.-H.; Damaser, M.; Penn, M.; Zutshi, M. Chemokine Upregulation in Response to Anal Sphincter and Pudendal Nerve Injury: Potential Signals for Stem Cell Homing. Int. J. Colorectal Dis. 2011, 26, 1577–1581. https://doi.org/10.1007/s00384-011-1269-6.
- Andrews, V.; Sultan, A.H.; Thakar, R.; Jones, P.W. Occult Anal Sphincter Injuries--Myth or Reality? BJOG Int. J. Obstet. Gynaecol. 2006, 113, 195–200. https://doi.org/10.1111/j.1471-0528.2006.00799.x.
- Rajasekaran, M.R.; Sinha, S.; Seo, Y.; Salehi, M.; Bhargava, V.; Mittal, R.K. Myoarchitectural and Functional Alterations in Rabbit External Anal Sphincter Muscle Following Experimental Surgical Trauma. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 307, G445–G451. https://doi.org/10.1152/ajpgi.00450.2013.
- Cherry, D.A.; Rothenberger, D.A. Pelvic Floor Physiology. Surg. Clin. North Am. 1988, 68, 1217–1230. https://doi.org/10.1016/s0039-6109(16)44682-7.
- Browning, G.G.; Motson, R.W. Anal Sphincter Injury. Management and Results of Parks Sphincter Repair. Ann. Surg. 1984, 199, 351–357. https://doi.org/10.1097/00000658-198403000-00017.
- Walraven, M.; Hinz, B. Therapeutic Approaches to Control Tissue Repair and Fibrosis: Extracellular Matrix as a Game Changer. Matrix Biol. J. Int. Soc. Matrix Biol. 2018, 71–72, 205–224. https://doi.org/10.1016/j.matbio.2018.02.020.
- Saldana Ruiz, N.; Kaiser, A.M. Fecal Incontinence—Challenges and Solutions. World J. Gastroenterol. 2017, 23, 11–24. https://doi.org/10.3748/wjg.v23.i1.11.
- Frudinger, A.; Pfeifer, J.; Paede, J.; Kolovetsiou-Kreiner, V.; Marksteiner, R.; Halligan, S. Autologous Skeletal Muscle-Derived Cell Injection for Anal Incontinence Due to Obstetric Trauma: A Five-Year Follow-up of an Initial Study of Ten Patients. Colorectal Dis. Off. J. Assoc. Coloproctology G. B. Irel. 2015. https://doi.org/10.1111/codi.12947.
- Romaniszyn, M.; Rozwadowska, N.; Malcher, A.; Kolanowski, T.; Walega, P.; Kurpisz, M. Implantation of Autologous Muscle-Derived Stem Cells in Treatment of Fecal Incontinence: Results of an Experimental Pilot Study. Tech. Coloproctology 2015, 19, 685–696. https://doi.org/10.1007/s10151-015-1351-0.
- Frudinger, A.; Marksteiner, R.; Pfeifer, J.; Margreiter, E.; Paede, J.; Thurner, M. Skeletal Muscle-Derived Cell Implantation for the Treatment of Sphincter-Related Faecal Incontinence. Stem Cell Res. Ther. 2018, 9, 233. https://doi.org/10.1186/s13287-018-0978-y.
- Boyer, O.; Bridoux, V.; Giverne, C.; Bisson, A.; Koning, E.; Leroi, A.-M.; Chambon, P.; Déhayes, J.; Le Corre, S.; Jacquot, S.; et al. Autologous Myoblasts for the Treatment of Fecal Incontinence: Results of a Phase 2 Randomized Placebo-Controlled Study (MIAS). Ann. Surg. 2018, 267, 443–450. https://doi.org/10.1097/SLA.0000000000002268.
- Araki, J.; Nishizawa, Y.; Fujita, N.; Sato, T.; Iizuka, T.; Kamata, M.; Hatayama, N.; Yakura, T.; Hirai, S.; Tashiro, K.; et al. Anorectal Transplantation: The First Long-Term Success in a Canine Model. Ann. Surg. 2021. https://doi.org/10.1097/SLA.0000000000004141.
- Sarveazad, A.; Newstead, G.L.; Mirzaei, R.; Joghataei, M.T.; Bakhtiari, M.; Babahajian, A.; Mahjoubi, B. A New Method for Treating Fecal Incontinence by Implanting Stem Cells Derived from Human Adipose Tissue: Preliminary Findings of a Randomized Double-Blind Clinical Trial. Stem Cell Res. Ther. 2017, 8, 40. https://doi.org/10.1186/s13287-017-0489-2.
- De la Portilla, F.; Guerrero, J.L.; Maestre, M.V.; Leyva, L.; Mera, S.; García-Olmo, D.; Rodríguez, A.; Mata, R.; Lora, F. Treatment of Fecal Incontinence with Autologous Expanded Mesenchymal Stem Cells: Results of a Pilot Study. Colorectal Dis. Off. J. Assoc. Coloproctology G. B. Irel. 2020. https://doi.org/10.1111/codi.15382.
- Frudinger, A.; Kölle, D.; Schwaiger, W.; Pfeifer, J.; Paede, J.; Halligan, S. Muscle-Derived Cell Injection to Treat Anal Incontinence Due to Obstetric Trauma: Pilot Study with 1 Year Follow-Up. Gut 2010, 59, 55–61. https://doi.org/10.1136/gut.2009.181347.
- Romaniszyn, M.; Michal, R.; Rozwadowska, N.; Natalia, R.; Nowak, M.; Marcin, N.; Malcher, A.; Agnieszka, M.; Kolanowski, T.; Tomasz, K.; et al. Successful Implantation of Autologous Muscle-Derived Stem Cells in Treatment of Faecal Incontinence Due to External Sphincter Rupture. Int. J. Colorectal Dis. 2013, 28, 1035–1036. https://doi.org/10.1007/s00384-013-1692-y.
- Frenckner, B.; Euler, C.V. Influence of Pudendal Block on the Function of the Anal Sphincters. Gut 1975, 16, 482–489. https://doi.org/10.1136/gut.16.6.482.
- Burleigh, D.E.; D’Mello, A. Neural and Pharmacologic Factors Affecting Motility of the Internal Anal Sphincter. Gastroenterology 1983, 84, 409–417.
- Bitar, K.N.; Raghavan, S. Intestinal Tissue Engineering: Current Concepts and Future Vision of Regenerative Medicine in the Gut. Neurogastroenterol. Motil. Off. J. Eur. Gastrointest. Motil. Soc. 2012, 24, 7–19. https://doi.org/10.1111/j.1365-2982.2011.01843.x.
- Szymanski, P.T.; Chacko, T.K.; Rovner, A.S.; Goyal, R.K. Differences in Contractile Protein Content and Isoforms in Phasic and Tonic Smooth Muscles. Am. J. Physiol. 1998, 275, C684-692. https://doi.org/10.1152/ajpcell.1998.275.3.C684.
- Somara, S.; Gilmont, R.R.; Dennis, R.G.; Bitar, K.N. Bioengineered Internal Anal Sphincter Derived from Isolated Human Internal Anal Sphincter Smooth Muscle Cells. Gastroenterology 2009, 137, 53–61. https://doi.org/10.1053/j.gastro.2009.03.036.
- Rattan, S.; Singh, J.; Kumar, S.; Phillips, B. Nature of Extracellular Signal That Triggers RhoA/ROCK Activation for the Basal Internal Anal Sphincter Tone in Humans. Am. J. Physiol.-Gastrointest. Liver Physiol. 2015, 308, G924–G933. https://doi.org/10.1152/ajpgi.00017.2015.
- Rattan, S. The Internal Anal Sphincter: Regulation of Smooth Muscle Tone and Relaxation. Neurogastroenterol. Motil. Off. J. Eur. Gastrointest. Motil. Soc. 2005, 17 Suppl 1, 50–59. https://doi.org/10.1111/j.1365-2982.2005.00659.x.
- Singh, J.; Boopathi, E.; Addya, S.; Phillips, B.; Rigoutsos, I.; Penn, R.B.; Rattan, S. Aging-Associated Changes in MicroRNA Expression Profile of Internal Anal Sphincter Smooth Muscle: Role of MicroRNA-133a. Am. J. Physiol.-Gastrointest. Liver Physiol. 2016, 311, G964–G973. https://doi.org/10.1152/ajpgi.00290.2016.
- Singh, J.; Mohanty, I.; Addya, S.; Phillips, B.; Mee Yong, H.; An, S.S.; Penn, R.B.; Rattan, S. Role of Differentially Expressed MicroRNA-139-5p in the Regulation of Phenotypic Internal Anal Sphincter Smooth Muscle Tone. Sci. Rep. 2017, 7, 1477. https://doi.org/10.1038/s41598-017-01550-5.
- Bitar, K.N. Aging and Gi Smooth Muscle Fecal Incontinence: Is Bioengineering an Option. Exp. Gerontol. 2005, 40, 643–649. https://doi.org/10.1016/j.exger.2005.04.008.
- Townsend, M.K.; Matthews, C.A.; Whitehead, W.E.; Grodstein, F. Risk Factors for Fecal Incontinence in Older Women. Am. J. Gastroenterol. 2013, 108, 113–119. https://doi.org/10.1038/ajg.2012.364.
- Yarandi, S.S.; Srinivasan, S. Diabetic Gastrointestinal Motility Disorders and the Role of Enteric Nervous System: Current Status and Future Directions. Neurogastroenterol. Motil. 2014, 26, 611–624. https://doi.org/https://doi.org/10.1111/nmo.12330.
- Reszczyńska, M.; Kempiński, R. The Prevalence of Enteropathy Symptoms from the Lower Gastrointestinal Tract and the Evaluation of Anorectal Function in Diabetes Mellitus Patients. J. Clin. Med. 2021, 10, 415. https://doi.org/10.3390/jcm10030415.
- Papathanasopoulos, A.; Van Oudenhove, L.; Katsanos, K.; Christodoulou, D.; Tack, J.; Tsianos, E.V. Severity of Fecal Urgency and Incontinence in Inflammatory Bowel Disease: Clinical, Manometric and Sonographic Predictors. Inflamm. Bowel Dis. 2013, 19, 2450–2456. https://doi.org/10.1097/MIB.0b013e3182a2952b.
- Bassotti, G.; Antonelli, E.; Villanacci, V.; Nascimbeni, R.; Dore, M.P.; Pes, G.M.; Maconi, G. Abnormal Gut Motility in Inflammatory Bowel Disease: An Update. Tech. Coloproctology 2020, 24, 275–282. https://doi.org/10.1007/s10151-020-02168-y.
- Hosokawa, T.; Konuma, N.; Ikeda, T.; Hashimoto, M.; Kaneda, H.; Ohashi, K.; Matsumoto, T.; Koshinaga, T. Establishment of a New Anal Sphincter Injury Model in Rats Based on Cardiotoxin. J. Pediatr. Surg. 2015, 50, 1352–1358. https://doi.org/10.1016/j.jpedsurg.2014.12.028.
- Saihara, R.; Komuro, H.; Urita, Y.; Hagiwara, K.; Kaneko, M. Myoblast Transplantation to Defecation Muscles in a Rat Model: A Possible Treatment Strategy for Fecal Incontinence after the Repair of Imperforate Anus. Pediatr. Surg. Int. 2009, 25, 981–986. https://doi.org/10.1007/s00383-009-2454-3.
- Craig, J.B.; Lane, F.L.; Nistor, G.; Motakef, S.; Pham, Q.-A.; Keirstead, H. Allogenic Myoblast Transplantation in the Rat Anal Sphincter. Female Pelvic Med. Reconstr. Surg. 2010, 16, 205–208. https://doi.org/10.1097/SPV.0b013e3181ec1edd.
- Son, I.T.; Lee, H.S.; Ihn, M.H.; Lee, K.H.; Kim, D.-W.; Lee, K.-W.; Kim, J.-S.; Kang, S.-B. Isolation of Internal and External Sphincter Progenitor Cells from the Human Anal Sphincter with or without Radiotherapy. Colorectal Dis. Off. J. Assoc. Coloproctology G. B. Irel. 2019, 21, 38–47. https://doi.org/10.1111/codi.14351.
- Singh, J.; Rattan, S. Bioengineered Human IAS Reconstructs with Functional and Molecular Properties Similar to Intact IAS. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 303, G713-722. https://doi.org/10.1152/ajpgi.00112.2012.
- Gilmont, R.R.; Raghavan, S.; Somara, S.; Bitar, K.N. Bioengineering of Physiologically Functional Intrinsically Innervated Human Internal Anal Sphincter Constructs. Tissue Eng. Part A 2014, 20, 1603–1611. https://doi.org/10.1089/ten.TEA.2013.0422.
- Raghavan, S.; Miyasaka, E.A.; Gilmont, R.R.; Somara, S.; Teitelbaum, D.H.; Bitar, K.N. Perianal Implantation of Bioengineered Human Internal Anal Sphincter Constructs Intrinsically Innervated with Human Neural Progenitor Cells. Surgery 2014, 155, 668–674. https://doi.org/10.1016/j.surg.2013.12.023.
- Zakhem, E.; Rego, S.L.; Raghavan, S.; Bitar, K.N. The Appendix as a Viable Source of Neural Progenitor Cells to Functionally Innervate Bioengineered Gastrointestinal Smooth Muscle Tissues. Stem Cells Transl. Med. 2015, 4, 548–554. https://doi.org/10.5966/sctm.2014-0238.
- Rego, S.L.; Raghavan, S.; Zakhem, E.; Bitar, K.N. Enteric Neural Differentiation in Innervated, Physiologically Functional, Smooth Muscle Constructs Is Modulated by Bone Morphogenic Protein 2 Secreted by Sphincteric Smooth Muscle Cells. J. Tissue Eng. Regen. Med. 2017, 11, 1251–1261. https://doi.org/10.1002/term.2027.
- Raghavan, S.; Miyasaka, E.A.; Hashish, M.; Somara, S.; Gilmont, R.R.; Teitelbaum, D.H.; Bitar, K.N. Successful Implantation of Physiologically Functional Bioengineered Mouse Internal Anal Sphincter. Am. J. Physiol.—Gastrointest. Liver Physiol. 2010, 299, G430–G439. https://doi.org/10.1152/ajpgi.00269.2009.
- Hashish, M.; Raghavan, S.; Somara, S.; Gilmont, R.R.; Miyasaka, E.; Bitar, K.N.; Teitelbaum, D.H. Surgical Implantation of a Bioengineered Internal Anal Sphincter. J. Pediatr. Surg. 2010, 45, 52–58. https://doi.org/10.1016/j.jpedsurg.2009.10.010.
- Miyasaka, E.A.; Raghavan, S.; Gilmont, R.R.; Mittal, K.; Somara, S.; Bitar, K.N.; Teitelbaum, D.H. In Vivo Growth of a Bioengineered Internal Anal Sphincter: Comparison of Growth Factors for Optimization of Growth and Survival. Pediatr. Surg. Int. 2011, 27, 137–143. https://doi.org/10.1007/s00383-010-2786-z.
- Bohl, J.L.; Zakhem, E.; Bitar, K.N. Successful Treatment of Passive Fecal Incontinence in an Animal Model Using Engineered Biosphincters: A 3-Month Follow-Up Study. Stem Cells Transl. Med. 2017, 6, 1795–1802. https://doi.org/10.1002/sctm.16-0458.
- Raghavan, S.; Gilmont, R.R.; Miyasaka, E.A.; Somara, S.; Srinivasan, S.; Teitelbaum, D.H.; Bitar, K.N. Successful Implantation of Bioengineered, Intrinsically Innervated, Human Internal Anal Sphincter. Gastroenterology 2011, 141, 310–319. https://doi.org/10.1053/j.gastro.2011.03.056.
- Tierney, M.T.; Sacco, A. Satellite Cell Heterogeneity in Skeletal Muscle Homeostasis. Trends Cell Biol. 2016, 26, 434–444. https://doi.org/10.1016/j.tcb.2016.02.004.
- Thurner, M.; Deutsch, M.; Janke, K.; Messner, F.; Kreutzer, C.; Beyl, S.; Couillard-Després, S.; Hering, S.; Troppmair, J.; Marksteiner, R. Generation of Myogenic Progenitor Cell-Derived Smooth Muscle Cells for Sphincter Regeneration. Stem Cell Res. Ther. 2020, 11, 233. https://doi.org/10.1186/s13287-020-01749-w.
- Tedesco, F.S.; Moyle, L.A.; Perdiguero, E. Muscle Interstitial Cells: A Brief Field Guide to Non-Satellite Cell Populations in Skeletal Muscle. Methods Mol. Biol. Clifton NJ 2017, 1556, 129–147. https://doi.org/10.1007/978-1-4939-6771-1_7.
- Torrente, Y.; Belicchi, M.; Marchesi, C.; D’Antona, G.; Cogiamanian, F.; Pisati, F.; Gavina, M.; Giordano, R.; Tonlorenzi, R.; Fagiolari, G.; et al. Autologous Transplantation of Muscle-Derived CD133+ Stem Cells in Duchenne Muscle Patients. Cell Transplant. 2007, 16, 563–577.
- Zhang, D.; Wang, L.; Zhang, F.; Li, C.; Zhu, T.; Cao, K.; Ma, W.; Yang, Z. Nine-Year Follow-up of Local Implantation of Autologous Skeletal Myoblasts in a Patient with Coronary Heart Disease. Am. J. Case Rep. 2013, 14, 139–142. https://doi.org/10.12659/AJCR.883903.
- Lecoeur, C.; Swieb, S.; Zini, L.; Rivière, C.; Combrisson, H.; Ghérardi, R.; Abbou, C.; Yiou, R. Intraurethral Transfer of Satellite Cells by Myofiber Implants Results in the Formation of Innervated Myotubes Exerting Tonic Contractions. J. Urol. 2007, 178, 332–337. https://doi.org/10.1016/j.juro.2007.02.044.
- Abbasi-Malati, Z.; Roushandeh, A.M.; Kuwahara, Y.; Roudkenar, M.H. Mesenchymal Stem Cells on Horizon: A New Arsenal of Therapeutic Agents. Stem Cell Rev. 2018, 14, 484–499. https://doi.org/10.1007/s12015-018-9817-x.
- Sanabria-de la Torre, R.; Quiñones-Vico, M.I.; Fernández-González, A.; Sánchez-Díaz, M.; Montero-Vílchez, T.; Sierra-Sánchez, Á.; Arias-Santiago, S. Alloreactive Immune Response Associated to Human Mesenchymal Stromal Cells Treatment: A Systematic Review. J. Clin. Med. 2021, 10, 2991. https://doi.org/10.3390/jcm10132991.
- Meier, R.P.H.; Müller, Y.D.; Morel, P.; Gonelle-Gispert, C.; Bühler, L.H. Transplantation of Mesenchymal Stem Cells for the Treatment of Liver Diseases, Is There Enough Evidence? Stem Cell Res. 2013, 11, 1348–1364. https://doi.org/10.1016/j.scr.2013.08.011.
- Balaphas, A.; Meyer, J.; Sadoul, R.; Morel, P.; Gonelle-Gispert, C.; Bühler, L.H. Extracellular Vesicles: Future Diagnostic and Therapeutic Tools for Liver Disease and Regeneration. Liver Int. Off. J. Int. Assoc. Study Liver 2019. https://doi.org/10.1111/liv.14189.
- Meier, R.P.H.; Mahou, R.; Morel, P.; Meyer, J.; Montanari, E.; Muller, Y.D.; Christofilopoulos, P.; Wandrey, C.; Gonelle-Gispert, C.; Bühler, L.H. Microencapsulated Human Mesenchymal Stem Cells Decrease Liver Fibrosis in Mice. J. Hepatol. 2015, 62, 634–641. https://doi.org/10.1016/j.jhep.2014.10.030.
- Pokrywczynska, M.; Jundzill, A.; Warda, K.; Buchholz, L.; Rasmus, M.; Adamowicz, J.; Bodnar, M.; Marszalek, A.; Helmin-Basa, A.; Michalkiewicz, J.; et al. Does the Mesenchymal Stem Cell Source Influence Smooth Muscle Regeneration in Tissue-Engineered Urinary Bladders? Cell Transplant. 2017, 26, 1780–1791. https://doi.org/10.1177/0963689717722787.
- Zhang, N.; Qin, X.; Zhang, J.; Zhang, Z.; Li, Y.; Xie, Y.; Kong, D.; Du, R.; Huang, X.; Xu, Y. Bone Marrow Mesenchymal Stem Cells Accelerate the Morphological and Functional Recovery of Neovaginas. Artif. Organs 2018, 42, 1206–1215. https://doi.org/10.1111/aor.13297.
- Nakamura, Y.; Miyaki, S.; Ishitobi, H.; Matsuyama, S.; Nakasa, T.; Kamei, N.; Akimoto, T.; Higashi, Y.; Ochi, M. Mesenchymal-Stem-Cell-Derived Exosomes Accelerate Skeletal Muscle Regeneration. FEBS Lett. 2015, 589, 1257–1265. https://doi.org/10.1016/j.febslet.2015.03.031.
- Linard, C.; Brachet, M.; L’homme, B.; Strup-Perrot, C.; Busson, E.; Bonneau, M.; Lataillade, J.-J.; Bey, E.; Benderitter, M. Long-Term Effectiveness of Local BM-MSCs for Skeletal Muscle Regeneration: A Proof of Concept Obtained on a Pig Model of Severe Radiation Burn. Stem Cell Res. Ther. 2018, 9, 299. https://doi.org/10.1186/s13287-018-1051-6.
- Hecker, L.; Baar, K.; Dennis, R.G.; Bitar, K.N. Development of a Three-Dimensional Physiological Model of the Internal Anal Sphincter Bioengineered in Vitro from Isolated Smooth Muscle Cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2005, 289, G188-196. https://doi.org/10.1152/ajpgi.00335.2004.
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy 2006, 8, 315–317. https://doi.org/10.1080/14653240600855905.
- Gräs, S.; Tolstrup, C.K.; Lose, G. Regenerative Medicine Provides Alternative Strategies for the Treatment of Anal Incontinence. Int. Urogynecol. J. 2017, 28, 341–350. https://doi.org/10.1007/s00192-016-3064-y.
- Baldari, S.; Di Rocco, G.; Piccoli, M.; Pozzobon, M.; Muraca, M.; Toietta, G. Challenges and Strategies for Improving the Regenerative Effects of Mesenchymal Stromal Cell-Based Therapies. Int. J. Mol. Sci. 2017, 18. https://doi.org/10.3390/ijms18102087.
- Balaphas, A.; Schiltz, B.; Liot, E.; Robert-Yap, J.; Ris, F. What Is the Role of Stem Cell Therapy in the Treatment of Anal Incontinence? Colorectal Dis. Off. J. Assoc. Coloproctology G. B. Irel. 2021, 23, 551–552. https://doi.org/10.1111/codi.15433.
- Bols, E.M.J.; Hendriks, H.J.M.; Berghmans, L.C.M.; Baeten, C.G.M.I.; de Bie, R.A. Responsiveness and Interpretability of Incontinence Severity Scores and FIQL in Patients with Fecal Incontinence: A Secondary Analysis from a Randomized Controlled Trial. Int. Urogynecol. J. 2013, 24, 469–478. https://doi.org/10.1007/s00192-012-1886-9.
- Voorham-van der Zalm, P.J.; Voorham, J.C.; van den Bos, T.W.L.; Ouwerkerk, T.J.; Putter, H.; Wasser, M.N.J.M.; Webb, A.; DeRuiter, M.C.; Pelger, R.C.M. Reliability and Differentiation of Pelvic Floor Muscle Electromyography Measurements in Healthy Volunteers Using a New Device: The Multiple Array Probe Leiden (MAPLe). Neurourol. Urodyn. 2013, 32, 341–348. https://doi.org/10.1002/nau.22311.
- Johnson, E.; Carlsen, E.; Steen, T.B.; Backer Hjorthaug, J.O.; Eriksen, M.T.; Johannessen, H.-O. Short- and Long-Term Results of Secondary Anterior Sphincteroplasty in 33 Patients with Obstetric Injury. Acta Obstet. Gynecol. Scand. 2010, 89, 1466–1472. https://doi.org/10.3109/00016349.2010.519019.
- Lamblin, G.; Bouvier, P.; Damon, H.; Chabert, P.; Moret, S.; Chene, G.; Mellier, G. Long-Term Outcome after Overlapping Anterior Anal Sphincter Repair for Fecal Incontinence. Int. J. Colorectal Dis. 2014, 29, 1377–1383. https://doi.org/10.1007/s00384-014-2005-9.
- Garcia, S.; Bernad, A.; Martín, M.C.; Cigudosa, J.C.; Garcia-Castro, J.; de la Fuente, R. Pitfalls in Spontaneous in Vitro Transformation of Human Mesenchymal Stem Cells. Exp. Cell Res. 2010, 316, 1648–1650. https://doi.org/10.1016/j.yexcr.2010.02.016.
- Torsvik, A.; Røsland, G.V.; Svendsen, A.; Molven, A.; Immervoll, H.; McCormack, E.; Lønning, P.E.; Primon, M.; Sobala, E.; Tonn, J.-C.; et al. Spontaneous Malignant Transformation of Human Mesenchymal Stem Cells Reflects Cross-Contamination: Putting the Research Field on Track - Letter. Cancer Res. 2010, 70, 6393–6396. https://doi.org/10.1158/0008-5472.CAN-10-1305.
- Trébol, J.; Carabias-Orgaz, A.; García-Arranz, M.; García-Olmo, D. Stem Cell Therapy for Faecal Incontinence: Current State and Future Perspectives. World J. Stem Cells 2018, 10, 82–105. https://doi.org/10.4252/wjsc.v10.i7.82.
- Lipsitz, Y.Y.; Milligan, W.D.; Fitzpatrick, I.; Stalmeijer, E.; Farid, S.S.; Tan, K.Y.; Smith, D.; Perry, R.; Carmen, J.; Chen, A.; et al. A Roadmap for Cost-of-Goods Planning to Guide Economic Production of Cell Therapy Products. Cytotherapy 2017, 19, 1383–1391. https://doi.org/10.1016/j.jcyt.2017.06.009.
- De la Portilla, F. Reply to Balaphas et Al. Colorectal Dis. Off. J. Assoc. Coloproctology G. B. Irel. 2021, 23, 1002–1003. https://doi.org/10.1111/codi.15527.
Reference
- Balaphas, A.; Meyer, J.; Meier, R.P.H.; Liot, E.; Buchs, N.C.; Roche, B.; Toso, C.; Bühler, L.H.; Gonelle-Gispert, C.; Ris, F. Cell Therapy for Anal Sphincter Incontinence: Where Do We Stand? Cells 2021, 10, 2086. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balaphas, A.; Meyer, J.; Meier, R.P.H.; Liot, E.; Buchs, N.C.; Roche, B.; Toso, C.; Bühler, L.H.; Gonelle-Gispert, C.; Ris, F. Correction: Balaphas et al. Cell Therapy for Anal Sphincter Incontinence: Where Do We Stand? Cells 2021, 10, 2086. Cells 2023, 12, 2857. https://doi.org/10.3390/cells12242857
Balaphas A, Meyer J, Meier RPH, Liot E, Buchs NC, Roche B, Toso C, Bühler LH, Gonelle-Gispert C, Ris F. Correction: Balaphas et al. Cell Therapy for Anal Sphincter Incontinence: Where Do We Stand? Cells 2021, 10, 2086. Cells. 2023; 12(24):2857. https://doi.org/10.3390/cells12242857
Chicago/Turabian StyleBalaphas, Alexandre, Jeremy Meyer, Raphael P. H. Meier, Emilie Liot, Nicolas C. Buchs, Bruno Roche, Christian Toso, Leo H. Bühler, Carmen Gonelle-Gispert, and Frédéric Ris. 2023. "Correction: Balaphas et al. Cell Therapy for Anal Sphincter Incontinence: Where Do We Stand? Cells 2021, 10, 2086" Cells 12, no. 24: 2857. https://doi.org/10.3390/cells12242857
APA StyleBalaphas, A., Meyer, J., Meier, R. P. H., Liot, E., Buchs, N. C., Roche, B., Toso, C., Bühler, L. H., Gonelle-Gispert, C., & Ris, F. (2023). Correction: Balaphas et al. Cell Therapy for Anal Sphincter Incontinence: Where Do We Stand? Cells 2021, 10, 2086. Cells, 12(24), 2857. https://doi.org/10.3390/cells12242857