Grapevine-Associated Lipid Signalling Is Specifically Activated in an Rpv3 Background in Response to an Aggressive P. viticola Pathovar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grapevine PLC and PLD Gene Family Characterization
2.1.1. Grapevine PLC and PLD Gene Identification
2.1.2. Phylogenetic and Domain Analysis
2.1.3. Cis-Element Analysis
2.1.4. Putative Functions and Subcellular Targeting Prediction
2.2. Plant Material, RNA Extraction and cDNA Synthesis
2.3. Quantitative Real-Time PCR
2.4. Lipids
2.5. Statistical Analysis
3. Results
3.1. Grapevine PLC and PLD Gene Families Identification
3.1.1. Grapevine PLC
3.1.2. Grapevine PLD
3.1.3. Phylogenetic Analysis and Putative Functions
3.1.4. Identification of Cis-Elements of Grapevine PLC and PLD Genes
3.1.5. Protein structure and Domain Analysis
3.1.6. Subcellular Targeting Prediction
3.2. Expression Analysis
3.3. Fatty Acid Composition of Total Lipids–Gas Chromatography Analysis
4. Discussion
4.1. Grapevine Phospholipases C and D
4.2. Is Lipid Signalling Specifically Linked to Host Genetic Background?
4.2.1. Lipid Signalling and Accumulation of JA Precursors may Be a Specific Feature of Regent’s Defence
4.2.2. Both Susceptible and Rpv3.1/Rpv12 Pyramid Genotypes Present Similar Responses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gessler, C.; Pertot, I.; Perazzolli, M. Plasmopara viticola: A Review of Knowledge on Downy Mildew of Grapevine and Effective Disease Management. Phytopathol. Mediterr. 2011, 50, 3–44. [Google Scholar]
- The Use of Plant Protection Products in the European Union. Available online: https://ec.europa.eu/eurostat/web/products-statistical-books/-/KS-76-06-669 (accessed on 10 October 2022).
- Massi, F.; Torriani, S.F.F.; Borghi, L.; Toffolatti, S.L. Fungicide Resistance Evolution and Detection in Plant Pathogens: Plasmopara viticola as a Case Study. Microorganisms 2021, 9, 119. [Google Scholar] [CrossRef]
- Zini, E.; Dolzani, C.; Stefanini, M.; Gratl, V.; Bettinelli, P.; Nicolini, D.; Betta, G.; Dorigatti, C.; Velasco, R.; Letschka, T.; et al. R-Loci Arrangement Versus Downy and Powdery Mildew Resistance Level: A Vitis Hybrid Survey. Int. J. Mol. Sci. 2019, 20, 3526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adaptation of a Plant Pathogen to Partial Host Resistance: Selection for Greater Aggressiveness in Grapevine Downy Mildew—Delmas—2016—Evolutionary Applications—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1111/eva.12368 (accessed on 15 December 2022).
- Nascimento, R.; Maia, M.; Ferreira, A.E.N.; Silva, A.B.; Freire, A.P.; Cordeiro, C.; Silva, M.S.; Figueiredo, A. Early Stage Metabolic Events Associated with the Establishment of Vitis vinifera—Plasmopara viticola Compatible Interaction. Plant Physiol. Biochem. 2019, 137, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Cesco, S.; Tolotti, A.; Nadalini, S.; Rizzi, S.; Valentinuzzi, F.; Mimmo, T.; Porfido, C.; Allegretta, I.; Giovannini, O.; Perazzolli, M.; et al. Plasmopara viticola Infection Affects Mineral Elements Allocation and Distribution in Vitis vinifera Leaves. Sci. Rep. 2020, 10, 18759. [Google Scholar] [CrossRef]
- Milli, A.; Cecconi, D.; Bortesi, L.; Persi, A.; Rinalducci, S.; Zamboni, A.; Zoccatelli, G.; Lovato, A.; Zolla, L.; Polverari, A. Proteomic Analysis of the Compatible Interaction between Vitis vinifera and Plasmopara viticola. J. Proteom. 2012, 75, 1284–1302. [Google Scholar] [CrossRef]
- Nascimento-Gavioli, M.C.A.; Agapito-Tenfen, S.Z.; Nodari, R.O.; Welter, L.J.; Sanchez Mora, F.D.; Saifert, L.; Da Silva, A.L.; Guerra, M.P. Proteome of Plasmopara viticola-Infected Vitis vinifera Provides Insights into Grapevine Rpv1/Rpv3 Pyramided Resistance to Downy Mildew. J. Proteom. 2017, 151, 264–274. [Google Scholar] [CrossRef]
- Polesani, M.; Desario, F.; Ferrarini, A.; Zamboni, A.; Pezzotti, M.; Kortekamp, A.; Polverari, A. Cdna-Aflp Analysis of Plant and Pathogen Genes Expressed in Grapevine Infected with Plasmopara viticola. BMC Genom. 2008, 9, 142. [Google Scholar] [CrossRef] [Green Version]
- Polesani, M.; Bortesi, L.; Ferrarini, A.; Zamboni, A.; Fasoli, M.; Zadra, C.; Lovato, A.; Pezzotti, M.; Delledonne, M.; Polverari, A. General And Species-Specific Transcriptional Responses to Downy Mildew Infection in a Susceptible (Vitis vinifera) and a Resistant (V. riparia) Grapevine Species. BMC Genom. 2010, 11, 117. [Google Scholar] [CrossRef] [Green Version]
- Laureano, G.; Figueiredo, J.; Cavaco, A.R.; Duarte, B.; Caçador, I.; Malhó, R.; Sousa Silva, M.; Matos, A.R.; Figueiredo, A. The Interplay between Membrane Lipids and Phospholipase a Family Members in Grapevine Resistance against Plasmopara viticola. Sci. Rep. 2018, 8, 14538. [Google Scholar] [CrossRef] [Green Version]
- Laureano, G.; Cavaco, A.R.; Matos, A.R.; Figueiredo, A. Fatty Acid Desaturases: Uncovering Their Involvement in Grapevine Defence Against Downy Mildew. Int. J. Mol. Sci. 2021, 22, 5473. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, A.; Figueiredo, J.; Sousa Silva, M.; Figueiredo, A. Linking Jasmonic Acid To Grapevine Resistance against the Biotrophic Oomycete Plasmopara viticola. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueiredo, A.; Martins, J.; Sebastiana, M.; Guerreiro, A.; Silva, A.; Matos, A.R.; Monteiro, F.; Pais, M.S.; Roepstorff, P.; Coelho, A.V. Specific Adjustments in Grapevine Leaf Proteome Discriminating Resistant and Susceptible Grapevine Genotypes to Plasmopara viticola. J. Proteom. 2017, 152, 48–57. [Google Scholar] [CrossRef]
- Cavaco, A.R.; Matos, A.R.; Figueiredo, A. Speaking The Language of Lipids: The Cross-Talk between Plants and Pathogens in Defence and Disease. Cell. Mol. Life Sci. CMLS 2021, 78, 4399–4415. [Google Scholar] [CrossRef]
- Michaelson, L.V.; Napier, J.A.; Molino, D.; Faure, J.-D. Plant Sphingolipids: Their Importance in Cellular Organization and Adaption. Biochim. Biophys. Acta BBA-Mol. Cell Biol. Lipids 2016, 1861, 1329–1335. [Google Scholar] [CrossRef]
- Matos, A.R.; Pham-Thi, A.-T. Lipid Deacylating Enzymes in Plants: Old Activities, New Genes. Plant Physiol. Biochem. 2009, 47, 491–503. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-F.; Ru, J.-N.; Sun, G.-Z.; Du, Y.; Chen, J.; Zhou, Y.-B.; Chen, M.; Ma, Y.-Z.; Xu, Z.-S.; Zhang, X.-H. Genomic-Wide Analysis of the PLC Family and Detection of GMPI-PLC7 Responses to Drought and Salt Stresses in Soybean. Front. Plant Sci. 2021, 12, 325. [Google Scholar] [CrossRef]
- Zhao, J.; Zhou, D.; Zhang, Q.; Zhang, W. Genomic Analysis of Phospholipase D Family and Characterization of GmPLDαs in Soybean (Glycine max). J. Plant Res. 2012, 125, 569–578. [Google Scholar] [CrossRef]
- Poole, R.L. The TAIR Database. In Plant Bioinformatics: Methods and Protocols; Edwards, D., Ed.; Methods in Molecular BiologyTM; Humana Press: Totowa, NJ, USA, 2007; pp. 179–212. ISBN 978-1-59745-535-0. [Google Scholar]
- Phytozome: A Comparative Platform for Green Plant Genomics|Nucleic Acids Research|Oxford Academic. Available online: https://academic.oup.com/nar/article/40/D1/D1178/2903577?login=true (accessed on 14 February 2022).
- Wilkins, M.R.; Gasteiger, E.; Bairoch, A.; Sanchez, J.C.; Williams, K.L.; Appel, R.D.; Hochstrasser, D.F. Protein Identification and Analysis Tools in the ExPASy Server. Methods Mol. Biol. 1999, 112, 531–552. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D. Katoh K, Standley DM.. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Laxalt, A.M.; Munnik, T. Phospholipid Signalling in Plant Defence. Curr. Opin. Plant Biol. 2002, 5, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a Database of Plant Cis-Acting Regulatory Elements and a Portal to Tools for In Silico Analysis of Promoter Sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef] [PubMed]
- Conesa, A.; Götz, S.; García-Gómez, J.M.; Terol, J.; Talón, M.; Robles, M. Blast2GO: A Universal Tool for Annotation, Visualization and Analysis in Functional Genomics Research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanderson, T.; Bileschi, M.L.; Belanger, D.; Colwell, L.J. ProteInfer: Deep Networks for Protein Functional Inference. Biorxiv 2021. [Google Scholar] [CrossRef]
- JJAlmagro TargetP-2.0: Detecting Sequence Signals in Targeting Peptides Using Deep Learning 2021. Available online: https://services.healthtech.dtu.dk/service.php?TargetP-2 (accessed on 1 November 2022).
- Small, I.; Peeters, N.; Legeai, F.; Lurin, C.; Small, I.F.; Peeters, N.F.; Legeai, F.F.; Lurin, C. Predotar: A Tool for Rapidly Screening Proteomes for N-Terminal Targeting Sequences. PROTEOMICS 4: 1581-1590. Proteomics 2004, 4, 1581–1590. [Google Scholar] [CrossRef] [PubMed]
- Petsalaki, E.I.; Bagos, P.G.; Litou, Z.I.; Hamodrakas, S.J. PredSL: A Tool for the N-Terminal Sequence-Based Prediction of Protein Subcellular Localization. Genom. Proteom. Bioinform. 2006, 4, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Sperschneider, J.; Catanzariti, A.-M.; DeBoer, K.; Petre, B.; Gardiner, D.M.; Singh, K.B.; Dodds, P.N.; Taylor, J.M. LOCALIZER: Subcellular Localization Prediction of Both Plant and Effector Proteins in the Plant Cell. Sci. Rep. 2017, 7, 44598. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Brugger, A.; Lamotte, O.; Vandelle, E.; Bourque, S.; Lecourieux, D.; Poinssot, B.; Wendehenne, D.; Pugin, A. Early Signaling Events Induced by Elicitors of Plant Defenses. Mol. Plant-Microbe Interact. 2006, 19, 711–724. [Google Scholar] [CrossRef] [Green Version]
- Gouveia, C.; Zukic, S.; Manthey, T.; Malhó, R.; Buchholz, G.; Figueiredo, A. Subtilisin like Proteins in the War between Grapevine and Plasmopara viticola Isolates with Contrasting Aggressiveness. Eur. J. Plant Pathol. 2021, 159, 433–439. [Google Scholar] [CrossRef]
- Hellemans, J.; Mortier, G.; De Paepe, A.; Speleman, F.; Vandesompele, J. QBase Relative Quantification Framework and Software for Management and Automated Analysis of Real-Time Quantitative PCR Data. Genome Biol. 2007, 8, R19. [Google Scholar] [CrossRef] [Green Version]
- Ali, U.; Lu, S.; Fadlalla, T.; Iqbal, S.; Yue, H.; Yang, B.; Hong, Y.; Wang, X.; Guo, L. The Functions of Phospholipases and Their Hydrolysis Products in Plant Growth, Development and Stress Responses. Prog. Lipid Res. 2022, 86, 101158. [Google Scholar] [CrossRef] [PubMed]
- Abd-El-Haliem, A.M.; Joosten, M.H.A.J. Plant Phosphatidylinositol-Specific Phospholipase C at the Center of Plant Innate Immunity. J. Integr. Plant Biol. 2017, 59, 164–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarus 590 120v-N6519590|PerkinElmer. Available online: https://www.perkinelmer.com/product/clarus-590-120v-n6519590 (accessed on 28 September 2022).
- Wang, X.; Devaiah, S.P.; Zhang, W.; Welti, R. Signaling Functions of Phosphatidic Acid. Prog. Lipid Res. 2006, 45, 250–278. [Google Scholar] [CrossRef] [PubMed]
- Dowd, P.E.; Gilroy, S. The Emerging Roles of Phospholipase C in Plant Growth and Development. In Lipid Signaling in Plants; Munnik, T., Ed.; Plant Cell Monographs; Springer: Berlin/Heidelberg, Germany, 2010; pp. 23–37. ISBN 978-3-642-03873-0. [Google Scholar]
- Nakamura, Y.; Awai, K.; Masuda, T.; Yoshioka, Y.; Takamiya, K.; Ohta, H. A Novel Phosphatidylcholine-Hydrolyzing Phospholipase C Induced by Phosphate Starvation in Arabidopsis. J. Biol. Chem. 2005, 280, 7469–7476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.; Bhatnagar, N.; Pandey, A.; Pandey, G. Plant Phospholipase C Family: Regulation and Functional Role in Lipid Signaling. Cell Calcium 2015, 58, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Zhao, J.; Guo, L.; Kim, S.-C.; Deng, X.; Wang, G.; Zhang, G.; Li, M.; Wang, X. Plant Phospholipases D and C and Their Diverse Functions in Stress Responses. Prog. Lipid Res. 2016, 62, 55–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, C.; Wang, X. The Arabidopsis Phospholipase D Family. Characterization of a Calcium-Independent and Phosphatidylcholine-Selective PLDζ1 with Distinct Regulatory Domains. Plant Physiol. 2002, 128, 1057. [Google Scholar] [CrossRef] [Green Version]
- Wang, X. Multiple Forms of Phospholipase D in Plants: The Gene Family, Catalytic and Regulatory Properties, and Cellular Functions. Prog. Lipid Res. 2000, 39, 109–149. [Google Scholar] [CrossRef]
- Zheng, L.; Krishnamoorthi, R.; Zolkiewski, M.; Wang, X. Distinct Ca2+ Binding Properties of Novel C2 Domains of Plant Phospholipase Dalpha and Beta. J. Biol. Chem. 2000, 275, 19700–19706. [Google Scholar] [CrossRef] [Green Version]
- Pappan, K.; Austin-Brown, S.; Chapman, K.D.; Wang, X. Substrate Selectivities and Lipid Modulation of Plant Phospholipase Dα, -β, and -γ. Arch. Biochem. Biophys. 1998, 353, 131–140. [Google Scholar] [CrossRef]
- Lemmon, M.A.; Ferguson, K.M. Signal-Dependent Membrane Targeting by Pleckstrin Homology (PH) Domains. Biochem. J. 2000, 350, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Lin, F.; Xue, H.-W. Genome-Wide Analysis of the Phospholipase D Family in Oryza sativa and Functional Characterization of PLDβ1 in Seed Germination. Cell Res. 2007, 17, 881–894. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, C.; Yang, Y.; Hu, X. Genome-Wide and Molecular Evolution Analyses of the Phospholipase D Gene Family in Poplar and Grape. BMC Plant Biol. 2010, 10, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimplet, J.; Adam-Blondon, A.-F.; Bert, P.-F.; Bitz, O.; Cantu, D.; Davies, C.; Delrot, S.; Pezzotti, M.; Rombauts, S.; Cramer, G.R. The Grapevine Gene Nomenclature System. BMC Genom. 2014, 15, 1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuckey, J.A.; Dixon, J.E. Crystal Structure of a Phospholipase D Family Member. Nat. Struct. Biol. 1999, 6, 278–284. [Google Scholar] [CrossRef]
- Lipid Signalling in Plant Responses to Abiotic Stress—Hou—2016—Plant, Cell & Environment—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/10.1111/pce.12666 (accessed on 15 December 2022).
- Metz, J.G.; Kuner, J.; Rosenzweig, B.; Lippmeier, J.C.; Roessler, P.; Zirkle, R. Biochemical Characterization of Polyunsaturated Fatty Acid Synthesis in Schizochytrium: Release of the Products as Free Fatty Acids. Plant Physiol. Biochem. PPB 2009, 47, 472–478. [Google Scholar] [CrossRef]
- Tasma, I.M.; Brendel, V.; Whitham, S.A.; Bhattacharyya, M.K. Expression and Evolution of the Phosphoinositide-Specific Phospholipase C Gene Family in Arabidopsis thaliana. Plant Physiol. Biochem. 2008, 46, 627–637. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Y.; Liu, J.-Y. Genome-Wide Identification and Characterization of Phospholipase C Gene Family in Cotton (Gossypium Spp.). Sci. China Life Sci. 2018, 61, 88–99. [Google Scholar] [CrossRef]
- Wang, X. Plant Phospholipases. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 211–231. [Google Scholar] [CrossRef]
- Otterhag, L.; Sommarin, M.; Pical, C. N-Terminal EF-Hand-like Domain Is Required for Phosphoinositide-Specific Phospholipase C Activity in Arabidopsis thaliana. FEBS Lett. 2001, 497, 165–170. [Google Scholar] [CrossRef] [Green Version]
- Vossen, J.H.; Abd-El-Haliem, A.; Fradin, E.F.; van den Berg, G.C.M.; Ekengren, S.K.; Meijer, H.J.G.; Abdolabad, A.R.S.; Bai, Y.; ten Have, A.; Munnik, T.; et al. Identification of Tomato Phosphatidylinositol-Specific Phospholipase-C (PI-PLC) Family Members and the Role of PLC4 and PLC6 in HR and Disease Resistance. Plant J. 2010, 62, 224–239. [Google Scholar] [CrossRef]
- Dowd, P.E.; Coursol, S.; Skirpan, A.L.; Kao, T.; Gilroy, S. Petunia Phospholipase C1 Is Involved in Pollen Tube Growth. Plant Cell 2006, 18, 1438–1453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helling, D.; Possart, A.; Cottier, S.; Klahre, U.; Kost, B. Pollen Tube Tip Growth Depends on Plasma Membrane Polarization Mediated by Tobacco PLC3 Activity and Endocytic Membrane Recycling. Plant Cell 2006, 18, 3519–3534. [Google Scholar] [CrossRef] [Green Version]
- Ellis, M.V.; James, S.R.; Perisic, O.; Downes, C.P.; Williams, R.L.; Katan, M. Catalytic Domain of Phosphoinositide-Specific Phospholipase C (PLC): Mutational analysis of residues within the active site and hydrophobic ridge of plcδ1 *. J. Biol. Chem. 1998, 273, 11650–11659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nalefski, E.A.; Falke, J.J. The C2 Domain Calcium-Binding Motif: Structural and Functional Diversity. Protein Sci. Publ. Protein Soc. 1996, 5, 2375–2390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizo, J.; Südhof, T. Rizo J, Sudhof TC.. C2-Domains, Structure and Function of a Universal Ca2+-Binding Domain. J. Biol. Chem. 1998, 273, 15879–15882. [Google Scholar] [CrossRef] [Green Version]
- Pokotylo, I.; Pejchar, P.; Potocký, M.; Kocourková, D.; Krčková, Z.; Ruelland, E.; Kravets, V.; Martinec, J. The Plant Non-Specific Phospholipase C Gene Family. Novel Competitors in Lipid Signalling. Prog. Lipid Res. 2013, 52, 62–79. [Google Scholar] [CrossRef]
- Zhu, J.; Zhou, Y.; Li, J.; Li, H. Genome-Wide Investigation of the Phospholipase C Gene Family in Zea mays. Front. Genet. 2021, 11, 611414. [Google Scholar] [CrossRef] [PubMed]
- McDermott, M.; Wakelam, M.; Morris, A. Phospholipase D. Biochem. Cell Biol. Biochim. Biol. Cell. 2004, 82, 225–253. [Google Scholar] [CrossRef]
- Sung, T.C.; Roper, R.L.; Zhang, Y.; Rudge, S.A.; Temel, R.; Hammond, S.M.; Morris, A.J.; Moss, B.; Engebrecht, J.; Frohman, M.A. Mutagenesis of Phospholipase D Defines a Superfamily Including a Trans-Golgi Viral Protein Required for Poxvirus Pathogenicity. EMBO J. 1997, 16, 4519–4530. [Google Scholar] [CrossRef]
- Athenstaedt, K. Phosphatidic Acid Biosynthesis in the Model Organism Yeast Saccharomyces cerevisiae—A Survey. Biochim. Biophys. Acta BBA-Mol. Cell Biol. Lipids 2021, 1866, 158907. [Google Scholar] [CrossRef]
- Canonne, J.; Froidure-Nicolas, S.; Rivas, S. Phospholipases in Action during Plant Defense Signaling. Plant Signal. Behav. 2011, 6, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhu, H.; Zhang, Q.; Li, M.; Yan, M.; Wang, R.; Wang, L.; Welti, R.; Zhang, W.; Wang, X. Phospholipase Dα1 and Phosphatidic Acid Regulate NADPH Oxidase Activity and Production of Reactive Oxygen Species in ABA-Mediated Stomatal Closure in Arabidopsis. Plant Cell 2009, 21, 2357–2377. [Google Scholar] [CrossRef] [Green Version]
- Torres, M.A.; Dangl, J.L.; Jones, J.D.G. Arabidopsis Gp91phox Homologues AtrbohD and AtrbohF Are Required for Accumulation of Reactive Oxygen Intermediates in the Plant Defense Response. Proc. Natl. Acad. Sci. USA 2002, 99, 517–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Devaiah, S.P.; Wang, C.; Li, M.; Welti, R.; Wang, X. Arabidopsis Phospholipase Dβ1 Modulates Defense Responses to Bacterial and Fungal Pathogens. New Phytol. 2013, 199, 228–240. [Google Scholar] [CrossRef] [Green Version]
- Legendre, L.; Yueh, Y.G.; Crain, R.; Haddock, N.; Heinstein, P.F.; Low, P.S. Phospholipase C Activation during Elicitation of the Oxidative Burst in Cultured Plant Cells. J. Biol. Chem. 1993, 268, 24559–24563. [Google Scholar] [CrossRef] [PubMed]
- Song, F.; Goodman, R.M. Molecular Cloning and Characterization of a Rice Phosphoinositide-Specific Phospholipase C Gene, OsPI-PLC1, That Is Activated in Systemic Acquired Resistance. Physiol. Mol. Plant Pathol. 2002, 61, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Gonorazky, G.; Ramirez, L.; Abd-El-Haliem, A.; Vossen, J.H.; Lamattina, L.; ten Have, A.; Joosten, M.H.A.J.; Laxalt, A.M. The Tomato Phosphatidylinositol-Phospholipase C2 (SlPLC2) Is Required for Defense Gene Induction by the Fungal Elicitor Xylanase. J. Plant Physiol. 2014, 171, 959–965. [Google Scholar] [CrossRef] [Green Version]
- Raho, N.; Ramirez, L.; Lanteri, M.L.; Gonorazky, G.; Lamattina, L.; ten Have, A.; Laxalt, A.M. Phosphatidic Acid Production in Chitosan-Elicited Tomato Cells, via Both Phospholipase D and Phospholipase C/Diacylglycerol Kinase, Requires Nitric Oxide. J. Plant Physiol. 2011, 168, 534–539. [Google Scholar] [CrossRef]
- Berestovoy, M.A.; Pavlenko, O.S.; Goldenkova-Pavlova, I.V. Plant Fatty Acid Desaturases: Role in the Life of Plants and Biotechnological Potential. Biol. Bull. Rev. 2020, 10, 127–139. [Google Scholar] [CrossRef]
- Ryu, S.B. Phospholipid-Derived Signaling Mediated by Phospholipase A in Plants. Trends Plant Sci. 2004, 9, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.; Lee, H.Y.; Choi, H.; Choi, Y.; Lee, Y.; Kim, Y.-W.; Ryu, S.B.; Lee, Y. Phospholipase A2β Mediates Light-Induced Stomatal Opening in Arabidopsis. J. Exp. Bot. 2008, 59, 3587–3594. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laureano, G.; Santos, C.; Gouveia, C.; Matos, A.R.; Figueiredo, A. Grapevine-Associated Lipid Signalling Is Specifically Activated in an Rpv3 Background in Response to an Aggressive P. viticola Pathovar. Cells 2023, 12, 394. https://doi.org/10.3390/cells12030394
Laureano G, Santos C, Gouveia C, Matos AR, Figueiredo A. Grapevine-Associated Lipid Signalling Is Specifically Activated in an Rpv3 Background in Response to an Aggressive P. viticola Pathovar. Cells. 2023; 12(3):394. https://doi.org/10.3390/cells12030394
Chicago/Turabian StyleLaureano, Gonçalo, Catarina Santos, Catarina Gouveia, Ana Rita Matos, and Andreia Figueiredo. 2023. "Grapevine-Associated Lipid Signalling Is Specifically Activated in an Rpv3 Background in Response to an Aggressive P. viticola Pathovar" Cells 12, no. 3: 394. https://doi.org/10.3390/cells12030394
APA StyleLaureano, G., Santos, C., Gouveia, C., Matos, A. R., & Figueiredo, A. (2023). Grapevine-Associated Lipid Signalling Is Specifically Activated in an Rpv3 Background in Response to an Aggressive P. viticola Pathovar. Cells, 12(3), 394. https://doi.org/10.3390/cells12030394