Calcium/Calmodulin-Stimulated Protein Kinase II (CaMKII): Different Functional Outcomes from Activation, Depending on the Cellular Microenvironment
Abstract
:1. Introduction
2. CaMKII Structure
3. Regulation of CaMKII
3.1. Autophosphorylation
3.1.1. Thr286
- A 1000-fold increase in the affinity for calcium/calmodulin is induced, thereby prolonging the calcium/calmodulin-stimulated activity of CaMKII due to calmodulin ‘trapping’, which results in calmodulin dissociating more slowly once free calcium returns to basal levels [50].
- Induction of autonomous activity, which allows the enzyme to remain active even following calmodulin dissociation. Calcium/calmodulin binding disrupts the interaction between the autoinhibitory domain and the ATP and substrate binding sites, thereby activating CaMKII (reviewed in [36,51,52]). Autophosphorylation of Thr286 requires calcium/calmodulin binding to adjacent subunits, which results in the trans-autophosphorylation of Thr286 [50]. Due to the combined effects of calmodulin ‘trapping’, autonomous activity and the requirement for activation of adjacent subunits, CaMKII can decode the duration, frequency and amplitude of calcium spikes and translate them into graded responses of kinase activity [53].
- Change the affinity of CaMKII binding to specific proteins that are located in specific subcellular sites (Table 1). This allows the translocation and targeting of CaMKII to specific cellular and molecular sites, which can vary between different cells depending on the CaMKII binding proteins they express, thereby selectively regulating downstream functions following CaMKII activation.
3.1.2. Thr305/306
3.1.3. Thr253
3.2. Targeting
3.2.1. Splice Isoforms
3.2.2. Translocation
3.2.3. Binding Proteins
Binding Partner | Effect of CaMKII Phosphorylation/Phospho-Mimic Mutation on Binding | Ref | |
---|---|---|---|
Protein | Cellular Function | ||
Brain and acute leukaemia (BAALC) 1-6-8 | Haematopoietic cell proliferation, survival, and differentiation | Non-phosphorylated and 286 phospho-mimic mutants bind, 253 phospho-mimic mutation significantly increases binding | [93,96] |
Calcium channel α-subunit isoforms (L-type) | Calcium influx | Non-phosphorylated CaMKII binds α1, α2a, α3 and α4 subunits; pThr286 binds only α1 and α2a subunits | [97] |
Camguk/CASK | Synaptic targeting and synaptic plasticity | Non-phosphorylated CaMKII binds, pThr305/306 decreases binding | [95] |
Densin-180 (LRRC7) | Dendritic scaffolding protein | pThr286 enhances binding compared to non-phosphorylated CaMKII | [98,99] |
Desmin | Muscle intermediate filament | Non-phosphorylated CaMKII binds, 286 and 253 phospho-mimic mutations increase binding | [91,92,93] |
Diacylglycerol lipase α (DGLα) | Key enzyme in biosynthesis of the endocannabinoid 2-arachidonoylglycerol | Non-phosphorylated CaMKII does not bind, pT286 directly interacts | [100] |
Metabotropic glutamate receptor 5 (mGluR5) | Metabotropic glutamate receptor involved in various brain functions, including motor behaviour, memory and cognition | pT286 decreases binding compared to non-phosphorylated CaMKII | [101] |
Microtubule-associated protein 2 (MAP-2) | Microtubule assembly | Non-phosphorylated CaMKII binds, 286 phospho-mimic mutation increases binding | [91,92,93] |
Myelin Basic Protein (MBP) | Major component of the myelin sheath | Non-phosphorylated CaMKII binds, 286 phospho-mimic mutation slightly decreases binding, 253 phospho-mimic mutation abrogates binding | [93] |
GRIN2A/2B (GluN2A/2B) | Subunit of voltage-sensitive ionotropic glutamate receptor involved in synaptic plasticity | pThr286 enhances binding compared to non-phosphorylated CaMKII | [85,86,87,88] |
Projectin | Integral protein of insect flight muscle | pThr286 decreases binding compared to non-phosphorylated CaMKII | [102] |
Syntaxin 1A | Component of exocytotic molecular machinery | Non-phosphorylated CaMKII did not bind, pT286 directly interacts | [103] |
Tau | Microtubule assembly | Non-phosphorylated and 253 phospho-mimic mutation bind, 286 phospho-mimic mutation increases binding | [92,93,104] |
Tyrosine hydroxylase isoform 2 (human) | Catecholamine biosynthesis | Non-phosphorylated and 286 phospho-mimic mutants bind, 253 phospho-mimic mutation increases binding | [93] |
Tyrosine hydroxylase isoform 2 (human), phosphorylated at Ser19 and Ser40 | Catecholamine biosynthesis | Binding is enhanced for non-phosphorylated, 286 and 253 phospho-mimic mutation when compared to non-phosphorylated tyrosine hydroxylase | [93] |
3.2.4. Phosphatases
4. Molecular and Cellular Micro-Environment
5. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miller, S.G.; Kennedy, M.B. Distinct forebrain and cerebellar isozymes of type II Ca2+/calmodulin-dependent protein kinase associate differently with the postsynaptic density fraction. J. Biol. Chem. 1985, 260, 9039–9046. [Google Scholar] [CrossRef] [PubMed]
- Giese, K.P.; Fedorov, N.B.; Filipkowski, R.K.; Silva, A.J. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science 1998, 279, 870–873. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.; Yasuda, M.; Coats, J.K.; Jones, Y.; Martone, M.E.; Mayford, M. Disruption of dendritic translation of CaMKIIalpha impairs stabilization of synaptic plasticity and memory consolidation. Neuron 2002, 36, 507–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soderling, T.R.; Derkach, V.A. Postsynaptic protein phosphorylation and LTP. Trends Neurosci. 2000, 23, 75–80. [Google Scholar] [CrossRef]
- Taha, S.; Hanover, J.L.; Silva, A.J.; Stryker, M.P. Autophosphorylation of alphaCaMKII is required for ocular dominance plasticity. Neuron 2002, 36, 483–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, X.; Wang, H.; Mei, B.; An, S.; Yin, L.; Wang, L.P.; Tsien, J.Z. Inducible and selective erasure of memories in the mouse brain via chemical-genetic manipulation. Neuron 2008, 60, 353–366. [Google Scholar] [CrossRef] [Green Version]
- von Hertzen, L.S.; Giese, K.P. Alpha-isoform of Ca2+/calmodulin-dependent kinase II autophosphorylation is required for memory consolidation-specific transcription. Neuroreport 2005, 16, 1411–1414. [Google Scholar] [CrossRef] [PubMed]
- Hell, J.W. CaMKII: Claiming center stage in postsynaptic function and organization. Neuron 2014, 81, 249–265. [Google Scholar] [CrossRef] [Green Version]
- Amada, N.; Aihara, K.; Ravid, R.; Horie, M. Reduction of NR1 and phosphorylated Ca2+/calmodulin-dependent protein kinase II levels in Alzheimer’s disease. Neuroreport 2005, 16, 1809–1813. [Google Scholar] [CrossRef]
- Elgersma, Y.; Sweatt, J.D.; Giese, K.P. Mouse genetic approaches to investigating calcium/calmodulin-dependent protein kinase II function in plasticity and cognition. J. Neurosci. 2004, 24, 8410–8415. [Google Scholar] [CrossRef] [Green Version]
- Gurd, J.W.; Rawof, S.; Zhen Huo, J.; Dykstra, C.; Bissoon, N.; Teves, L.; Wallace, M.C.; Rostas, J.A. Ischemia and status epilepitcus result in enhanced phosphorylation of calcium and calmodulin-stimulated protein kinase II on threonine 253. Brain Res. 2008, 1218, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.R.; Kamme, F.; Wieloch, T. Alterations of Ca2+/calmodulin-dependent protein kinase II and its messenger RNA in the rat hippocampus following normo- and hypothermic ischemia. Neuroscience 1995, 68, 1003–1016. [Google Scholar] [CrossRef] [PubMed]
- McNamara, J.O.; Huang, Y.Z.; Leonard, A.S. Molecular signaling mechanisms underlying epileptogenesis. Sci. STKE 2006, 2006, re12. [Google Scholar] [CrossRef] [PubMed]
- Mengesdorf, T.; Althausen, S.; Mies, G.; Olah, L.; Paschen, W. Phosphorylation state, solubility, and activity of calcium/calmodulin-dependent protein kinase II alpha in transient focal ischemia in mouse brain. Neurochem. Res. 2002, 27, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Picconi, B.; Gardoni, F.; Centonze, D.; Mauceri, D.; Cenci, M.A.; Bernardi, G.; Calabresi, P.; Di Luca, M. Abnormal Ca2+-calmodulin-dependent protein kinase II function mediates synaptic and motor deficits in experimental parkinsonism. J. Neurosci. 2004, 24, 5283–5291. [Google Scholar] [CrossRef]
- Rostas, J.A.; Hoffman, A.; Murtha, L.A.; Pepperall, D.; McLeod, D.D.; Dickson, P.W.; Spratt, N.J.; Skelding, K.A. Ischaemia- and excitotoxicity-induced CaMKII-Mediated neuronal cell death: The relative roles of CaMKII autophosphorylation at T286 and T253. Neurochem. Int. 2017, 104, 6–10. [Google Scholar] [CrossRef]
- Rostas, J.A.P.; Spratt, N.J.; Dickson, P.W.; Skelding, K.A. The role of Ca(2+)-calmodulin stimulated protein kinase II in ischaemic stroke—A potential target for neuroprotective therapies. Neurochem. Int. 2017, 107, 33–42. [Google Scholar] [CrossRef]
- Wang, J.Z.; Grundke-Iqbal, I.; Iqbal, K. Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur. J. Neurosci. 2007, 25, 59–68. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Perry, G.; Troncoso, J.; Monteiro, M.J. alpha-calcium-calmodulin-dependent kinase II is associated with paired helical filaments of Alzheimer’s disease. J. Neuropathol. Exp. Neurol. 1996, 55, 954–963. [Google Scholar] [CrossRef] [Green Version]
- Zeitz, K.P.; Giese, K.P.; Silva, A.J.; Basbaum, A.I. The contribution of autophosphorylated alpha-calcium-calmodulin kinase II to injury-induced persistent pain. Neuroscience 2004, 128, 889–898. [Google Scholar] [CrossRef]
- Brzozowski, J.S.; Skelding, K.A. The Multi-Functional Calcium/Calmodulin Stimulated Protein Kinase (CaMK) Family: Emerging Targets for Anti-Cancer Therapeutic Intervention. Pharmaceuticals 2019, 12, 8. [Google Scholar] [CrossRef] [Green Version]
- Chi, M.; Evans, H.; Gilchrist, J.; Mayhew, J.; Hoffman, A.; Pearsall, E.A.; Jankowski, H.; Brzozowski, J.S.; Skelding, K.A. Phosphorylation of calcium/calmodulin-stimulated protein kinase II at T286 enhances invasion and migration of human breast cancer cells. Sci. Rep. 2016, 6, 33132. [Google Scholar] [CrossRef]
- Hoffman, A.; Carpenter, H.; Kahl, R.; Watt, L.F.; Dickson, P.W.; Rostas, J.A.; Verrills, N.M.; Skelding, K.A. Dephosphorylation of CaMKII at T253 controls the metaphase-anaphase transition. Cell. Signal. 2014, 26, 748–756. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.T. Intracellular calcium in the fertilization and development of mammalian eggs. Clin. Exp. Pharmacol. Physiol. 2007, 34, 1084–1089. [Google Scholar] [CrossRef] [PubMed]
- Munevar, S.; Gangopadhyay, S.S.; Gallant, C.; Colombo, B.; Sellke, F.W.; Morgan, K.G. CaMKIIT287 and T305 regulate history-dependent increases in alpha agonist-induced vascular tone. J. Cell. Mol. Med. 2008, 12, 219–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, M.K.; Kim, M.K.; Bae, Y.S.; Jo, I.; Lee, S.J.; Chung, C.P.; Park, Y.J.; Min do, S. A novel collagen-binding peptide promotes osteogenic differentiation via Ca2+/calmodulin-dependent protein kinase II/ERK/AP-1 signaling pathway in human bone marrow-derived mesenchymal stem cells. Cell. Signal. 2008, 20, 613–624. [Google Scholar] [CrossRef]
- Skelding, K.A.; Rostas, J.A.; Verrills, N.M. Controlling the cell cycle: The role of calcium/calmodulin-stimulated protein kinases I and II. Cell Cycle 2011, 10, 631–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, J.B.; Val-Blasco, A.; Davoodi, M.; Gomez, S.; Yaniv, Y.; Benitah, J.P.; Gomez, A.M. Heart failure in mice induces a dysfunction of the sinus node associated with reduced CaMKII signaling. J. Gen. Physiol. 2022, 154. [Google Scholar] [CrossRef]
- Witczak, C.A.; Jessen, N.; Warro, D.M.; Toyoda, T.; Fujii, N.; Anderson, M.E.; Hirshman, M.F.; Goodyear, L.J. CaMKII regulates contraction- but not insulin-induced glucose uptake in mouse skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2010, 298, E1150–E1160. [Google Scholar] [CrossRef] [Green Version]
- Santos, G.J.; Ferreira, S.M.; Ortis, F.; Rezende, L.F.; Li, C.; Naji, A.; Carneiro, E.M.; Kaestner, K.H.; Boschero, A.C. Metabolic memory of ss-cells controls insulin secretion and is mediated by CaMKII. Mol. Metab. 2014, 3, 484–489. [Google Scholar] [CrossRef]
- Lin, M.Y.; Zal, T.; Ch’en, I.L.; Gascoigne, N.R.; Hedrick, S.M. A pivotal role for the multifunctional calcium/calmodulin-dependent protein kinase II in T cells: From activation to unresponsiveness. J. Immunol. 2005, 174, 5583–5592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, N.; Luo, J.; Uray, K.; Qian, A.; Yin, S.; Wang, G.; Wang, X.; Xia, Y.; Wood, J.D.; Hu, H. CaMKII is essential for the function of the enteric nervous system. PLoS ONE 2012, 7, e44426. [Google Scholar] [CrossRef]
- Colbran, R.J.; Smith, M.K.; Schworer, C.M.; Fong, Y.L.; Soderling, T.R. Regulatory domain of calcium/calmodulin-dependent protein kinase II: Mechanism of inhibition and regulation by phosphorylation. J. Biol. Chem. 1989, 264, 4800–4804. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.K.; Colbran, R.J.; Brickey, D.A.; Soderling, T.R. Functional determinants in the autoinhibitory domain of calcium/calmodulin-dependent protein kinase II. Role of His282 and multiple basic residues. J. Biol. Chem. 1992, 267, 1761–1768. [Google Scholar] [CrossRef] [PubMed]
- Payne, M.E.; Fong, Y.L.; Ono, T.; Colbran, R.J.; Kemp, B.E.; Soderling, T.R.; Means, A.R. Calcium/calmodulin-dependent protein kinase II. Characterization of distinct calmodulin binding and inhibitory domains. J. Biol. Chem. 1988, 263, 7190–7195. [Google Scholar] [CrossRef] [PubMed]
- Braun, A.P.; Schulman, H. The multifunctional calcium/calmodulin-dependent protein kinase: From form to function. Annu. Rev. Physiol. 1995, 57, 417–445. [Google Scholar] [CrossRef]
- Tobimatsu, T.; Fujisawa, H. Tissue-specific expression of four types of rat calmodulin-dependent protein kinase II mRNAs. J. Biol. Chem. 1989, 264, 17907–17912. [Google Scholar] [CrossRef]
- Kolb, S.J.; Hudmon, A.; Ginsberg, T.R.; Waxham, M.N. Identification of domains essential for the assembly of calcium/calmodulin-dependent protein kinase II holoenzymes. J. Biol. Chem. 1998, 273, 31555–31564. [Google Scholar] [CrossRef] [Green Version]
- Bennett, M.K.; Erondu, N.E.; Kennedy, M.B. Purification and Characterization of a Calmodulin-Dependent Protein-Kinase That Is Highly Concentrated in Brain. J. Biol. Chem. 1983, 258, 2735–2744. [Google Scholar] [CrossRef]
- Brocke, L.; Chiang, L.W.; Wagner, P.D.; Schulman, H. Functional implications of the subunit composition of neuronal CaM kinase II. J. Biol. Chem. 1999, 274, 22713–22722. [Google Scholar] [CrossRef] [Green Version]
- Kanaseki, T.; Ikeuchi, Y.; Sugiura, H.; Yamauchi, T. Structural features of Ca2+/calmodulin-dependent protein kinase II revealed by electron microscopy. J. Cell Biol. 1991, 115, 1049–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, M.; Edman, C.F.; Schulman, H. Alternative splicing introduces a nuclear localization signal that targets multifunctional CaM kinase to the nucleus. J. Cell Biol. 1994, 126, 839–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaertner, T.R.; Kolodziej, S.J.; Wang, D.; Kobayashi, R.; Koomen, J.M.; Stoops, J.K.; Waxham, M.N. Comparative analyses of the three-dimensional structures and enzymatic properties of alpha, beta, gamma and delta isoforms of Ca2+-calmodulin-dependent protein kinase II. J. Biol. Chem. 2004, 279, 12484–12494. [Google Scholar] [CrossRef] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, O.S.; Deindl, S.; Sung, R.J.; Nairn, A.C.; Kuriyan, J. Structure of the autoinhibited kinase domain of CaMKII and SAXS analysis of the holoenzyme. Cell 2005, 123, 849–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenberg, O.S.; Deindl, S.; Comolli, L.R.; Hoelz, A.; Downing, K.H.; Nairn, A.C.; Kuriyan, J. Oligomerization states of the association domain and the holoenyzme of Ca2+/CaM kinase II. FEBS J. 2006, 273, 682–694. [Google Scholar] [CrossRef]
- Myers, J.B.; Zaegel, V.; Coultrap, S.J.; Miller, A.P.; Bayer, K.U.; Reichow, S.L. The CaMKII holoenzyme structure in activation-competent conformations. Nat. Commun. 2017, 8, 15742. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, M.; Stratton, M.M.; Going, C.C.; McSpadden, E.D.; Huang, Y.; Susa, A.C.; Elleman, A.; Cao, Y.M.; Pappireddi, N.; Burkhardt, P.; et al. Molecular mechanism of activation-triggered subunit exchange in Ca(2+)/calmodulin-dependent protein kinase II. eLife 2016, 5, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Stratton, M.; Lee, I.H.; Bhattacharyya, M.; Christensen, S.M.; Chao, L.H.; Schulman, H.; Groves, J.T.; Kuriyan, J. Activation-triggered subunit exchange between CaMKII holoenzymes facilitates the spread of kinase activity. eLife 2014, 3, e01610. [Google Scholar] [CrossRef] [PubMed]
- Meyer, T.; Hanson, P.I.; Stryer, L.; Schulman, H. Calmodulin trapping by calcium-calmodulin-dependent protein kinase. Science 1992, 256, 1199–1202. [Google Scholar] [CrossRef] [PubMed]
- Hudmon, A.; Schulman, H. Neuronal CA2+/calmodulin-dependent protein kinase II: The role of structure and autoregulation in cellular function. Annu. Rev. Biochem. 2002, 71, 473–510. [Google Scholar] [CrossRef]
- Colbran, R.J.; Schworer, C.M.; Hashimoto, Y.; Fong, Y.-L.; Rich, D.P.; Smith, M.K.; Soderling, T.R. Calcium/calmodulin-dependent protein kinase II. Biochem. J. 1989, 258, 313–325. [Google Scholar]
- De Koninck, P.; Schulman, H. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 1998, 279, 227–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erickson, J.R.; Joiner, M.L.; Guan, X.; Kutschke, W.; Yang, J.; Oddis, C.V.; Bartlett, R.K.; Lowe, J.S.; O’Donnell, S.E.; Aykin-Burns, N.; et al. A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 2008, 133, 462–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karandur, D.; Bhattacharyya, M.; Xia, Z.; Lee, Y.K.; Muratcioglu, S.; McAffee, D.; McSpadden, E.D.; Qiu, B.; Groves, J.T.; Williams, E.R.; et al. Breakage of the oligomeric CaMKII hub by the regulatory segment of the kinase. eLife 2020, 9, e57784. [Google Scholar] [CrossRef]
- Lee, J.; Chen, X.; Nicoll, R.A. Synaptic memory survives molecular turnover. Proc. Natl. Acad. Sci. USA 2022, 119, e2211572119. [Google Scholar] [CrossRef] [PubMed]
- Hanson, P.I.; Schulman, H. Inhibitory autophosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase analyzed by site-directed mutagenesis. J. Biol. Chem. 1992, 267, 17216–17224. [Google Scholar] [CrossRef] [PubMed]
- Patton, B.L.; Miller, S.G.; Kennedy, M.B. Activation of type II calcium/calmodulin-dependent protein kinase by Ca2+/calmodulin is inhibited by autophosphorylation of threonine within the calmodulin-binding domain. J. Biol. Chem. 1990, 265, 11204–11212. [Google Scholar] [CrossRef] [PubMed]
- Meador, W.E.; Means, A.R.; Quiocho, F.A. Modulation of calmodulin plasticity in molecular recognition on the basis of x-ray structures. Science 1993, 262, 1718–1721. [Google Scholar] [CrossRef]
- Colbran, R.J.; Soderling, T.R. Calcium/calmodulin-independent autophosphorylation sites of calcium/calmodulin-dependent protein kinase II. Studies on the effect of phosphorylation of threonine 305/306 and serine 314 on calmodulin binding using synthetic peptides. J. Biol. Chem. 1990, 265, 11213–11219. [Google Scholar] [CrossRef]
- Hanson, P.I.; Kapiloff, M.S.; Lou, L.L.; Rosenfeld, M.G.; Schulman, H. Expression of a multifunctional Ca2+/calmodulin-dependent protein kinase and mutational analysis of its autoregulation. Neuron 1989, 3, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Lengyel, I.; Fieuw-Makaroff, S.; Hall, A.L.; Sim, A.T.; Rostas, J.A.; Dunkley, P.R. Modulation of the phosphorylation and activity of calcium/calmodulin-dependent protein kinase II by zinc. J. Neurochem. 2000, 75, 594–605. [Google Scholar] [CrossRef] [PubMed]
- Jaffe, H.; Vinade, L.; Dosemeci, A. Identification of novel phosphorylation sites on postsynaptic density proteins. Biochem. Biophys. Res. Commun. 2004, 321, 210–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molloy, S.S.; Kennedy, M.B. Autophosphorylation of type II Ca2+/calmodulin-dependent protein kinase in cultures of postnatal rat hippocampal slices. Proc. Natl. Acad. Sci. USA 1991, 88, 4756–4760. [Google Scholar] [CrossRef] [Green Version]
- Collins, M.O.; Yu, L.; Coba, M.P.; Husi, H.; Campuzano, I.; Blackstock, W.P.; Choudhary, J.S.; Grant, S.G. Proteomic analysis of in vivo phosphorylated synaptic proteins. J. Biol. Chem. 2005, 280, 5972–5982. [Google Scholar] [CrossRef] [Green Version]
- Bayer, K.U.; De Koninck, P.; Schulman, H. Alternative splicing modulates the frequency-dependent response of CaMKII to Ca(2+) oscillations. EMBO J. 2002, 21, 3590–3597. [Google Scholar] [CrossRef] [Green Version]
- Sugai, R.; Takeuchi, M.; Okuno, S.; Fujisawa, H. Molecular cloning of a novel protein containing the association domain of calmodulin-dependent protein kinase II. J. Biochem. 1996, 120, 773–779. [Google Scholar] [CrossRef]
- Bayer, K.U.; Harbers, K.; Schulman, H. alphaKAP is an anchoring protein for a novel CaM kinase II isoform in skeletal muscle. EMBO J. 1998, 17, 5598–5605. [Google Scholar] [CrossRef]
- Laabich, A.; Li, G.; Cooper, N.G. Calcium/calmodulin-dependent protein kinase II containing a nuclear localizing signal is altered in retinal neurons exposed to N-methyl-D-aspartate. Brain Res. Mol. Brain Res. 2000, 76, 253–265. [Google Scholar] [CrossRef]
- O’Leary, H.; Lasda, E.; Bayer, K.U. CaMKIIbeta association with the actin cytoskeleton is regulated by alternative splicing. Mol. Biol. Cell 2006, 17, 4656–4665. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, K.; Narayanan, R.; Lee, S.H.; Murata, K.; Hayashi, Y. The role of CaMKII as an F-actin-bundling protein crucial for maintenance of dendritic spine structure. Proc. Natl. Acad. Sci. USA 2007, 104, 6418–6423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gangopadhyay, S.S.; Gallant, C.; Sundberg, E.J.; Lane, W.S.; Morgan, K.G. Regulation of Ca2+/calmodulin kinase II by a small C-terminal domain phosphatase. Biochem. J. 2008, 412, 507–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- House, S.J.; Ginnan, R.G.; Armstrong, S.E.; Singer, H.A. Calcium/calmodulin-dependent protein kinase II-delta isoform regulation of vascular smooth muscle cell proliferation. Am. J. Physiol. Cell Physiol. 2007, 292, C2276–C2287. [Google Scholar] [CrossRef] [Green Version]
- An, P.; Zhu, J.Y.; Yang, Y.; Lv, P.; Tian, Y.H.; Chen, M.K.; Luo, H.S. KN-93, a specific inhibitor of CaMKII inhibits human hepatic stellate cell proliferation in vitro. World J. Gastroenterol. 2007, 13, 1445–1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, T.A.; DeLorenzo, R.J.; Tombes, R.M. CaMK-II inhibition reduces cyclin D1 levels and enhances the association of p27kip1 with Cdk2 to cause G1 arrest in NIH 3T3 cells. Exp. Cell Res. 1998, 240, 218–227. [Google Scholar] [CrossRef] [Green Version]
- Planas-Silva, M.D.; Means, A.R. Expression of a constitutive form of calcium/calmodulin dependent protein kinase II leads to arrest of the cell cycle in G2. EMBO J. 1992, 11, 507–517. [Google Scholar] [CrossRef]
- Schulman, H. Activity-dependent regulation of calcium/calmodulin-dependent protein kinase II localization. J. Neurosci. 2004, 24, 8399–8403. [Google Scholar] [CrossRef] [Green Version]
- Colbran, R.J. Targeting of calcium/calmodulin-dependent protein kinase II. Biochem. J. 2004, 378, 1–16. [Google Scholar] [CrossRef]
- Kolb, S.J.; Hudmon, A.; Waxham, M.N. Ca2+/calmodulin kinase II translocates in a hippocampal slice model of ischemia. J. Neurochem. 1995, 64, 2147–2156. [Google Scholar] [CrossRef]
- Strack, S.; Choi, S.; Lovinger, D.M.; Colbran, R.J. Translocation of autophosphorylated calcium/calmodulin-dependent protein kinase II to the postsynaptic density. J. Biol. Chem. 1997, 272, 13467–13470. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T.; Okumura-Noji, K.; Tanaka, R.; Tada, T. Rapid translocation of cytosolic Ca2+/calmodulin-dependent protein kinase II into postsynaptic density after decapitation. J. Neurochem. 1994, 63, 1529–1537. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Rostas, J.A. Effect of hypothyroidism on the subcellular distribution of Ca2+/calmodulin-stimulated protein kinase II in chicken brain during posthatch development. J. Neurochem. 1996, 66, 1625–1632. [Google Scholar] [CrossRef] [PubMed]
- Elgersma, Y.; Fedorov, N.B.; Ikonen, S.; Choi, E.S.; Elgersma, M.; Carvalho, O.M.; Giese, K.P.; Silva, A.J. Inhibitory autophosphorylation of CaMKII controls PSD association, plasticity, and learning. Neuron 2002, 36, 493–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Migues, P.V.; Lehmann, I.T.; Fluechter, L.; Cammarota, M.; Gurd, J.W.; Sim, A.T.; Dickson, P.W.; Rostas, J.A. Phosphorylation of CaMKII at Thr253 occurs in vivo and enhances binding to isolated postsynaptic densities. J. Neurochem. 2006, 98, 289–299. [Google Scholar] [CrossRef]
- Bayer, K.U.; De Koninck, P.; Leonard, A.S.; Hell, J.W.; Schulman, H. Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature 2001, 411, 801–805. [Google Scholar] [CrossRef]
- Gardoni, F.; Caputi, A.; Cimino, M.; Pastorino, L.; Cattabeni, F.; Di Luca, M. Calcium/calmodulin-dependent protein kinase II is associated with NR2A/B subunits of NMDA receptor in postsynaptic densities. J. Neurochem. 1998, 71, 1733–1741. [Google Scholar] [CrossRef] [Green Version]
- Gardoni, F.; Schrama, L.H.; van Dalen, J.J.; Gispen, W.H.; Cattabeni, F.; Di Luca, M. AlphaCaMKII binding to the C-terminal tail of NMDA receptor subunit NR2A and its modulation by autophosphorylation. FEBS Lett. 1999, 456, 394–398. [Google Scholar] [CrossRef] [Green Version]
- Strack, S.; Colbran, R.J. Autophosphorylation-dependent targeting of calcium/ calmodulin-dependent protein kinase II by the NR2B subunit of the N-methyl- D-aspartate receptor. J. Biol. Chem. 1998, 273, 20689–20692. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.C.; Redmond, L. CaMKIIbeta binding to stable F-actin in vivo regulates F-actin filament stability. Proc. Natl. Acad. Sci. USA 2008, 105, 15791–15796. [Google Scholar] [CrossRef] [Green Version]
- Shen, K.; Teruel, M.N.; Subramanian, K.; Meyer, T. CaMKIIbeta functions as an F-actin targeting module that localizes CaMKIIalpha/beta heterooligomers to dendritic spines. Neuron 1998, 21, 593–606. [Google Scholar] [CrossRef] [Green Version]
- Jefferson, A.B.; Schulman, H. Phosphorylation of microtubule-associated protein-2 in GH3 cells. Regulation by cAMP and by calcium. J. Biol. Chem. 1991, 266, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Fukunaga, K.; Goto, S.; Tanaka, E.; Miyamoto, E. Ca2+, calmodulin-dependent regulation of microtubule formation via phosphorylation of microtubule-associated protein 2, tau factor, and tubulin, and comparison with the cyclic AMP-dependent phosphorylation. J. Neurochem. 1985, 44, 759–768. [Google Scholar] [CrossRef] [PubMed]
- Skelding, K.A.; Suzuki, T.; Gordon, S.; Xue, J.; Verrills, N.M.; Dickson, P.W.; Rostas, J.A. Regulation of CaMKII by phospho-Thr253 or phospho-Thr286 sensitive targeting alters cellular function. Cell. Signal. 2010, 22, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Bayer, K.U.; LeBel, E.; McDonald, G.L.; O’Leary, H.; Schulman, H.; De Koninck, P. Transition from reversible to persistent binding of CaMKII to postsynaptic sites and NR2B. J. Neurosci. 2006, 26, 1164–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, C.S.; Hodge, J.J.; Mehren, J.; Sun, X.X.; Griffith, L.C. Regulation of the Ca2+/CaM-responsive pool of CaMKII by scaffold-dependent autophosphorylation. Neuron 2003, 40, 1185–1197. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Tian, Q.B.; Okano, A.; Sakagami, H.; Moon, I.S.; Kondo, H.; Endo, S.; Suzuki, T. BAALC 1-6-8 protein is targeted to postsynaptic lipid rafts by its N-terminal myristoylation and palmitoylation, and interacts with alpha, but not beta, subunit of Ca/calmodulin-dependent protein kinase II. J. Neurochem. 2005, 92, 647–659. [Google Scholar] [CrossRef] [PubMed]
- Grueter, C.E.; Abiria, S.A.; Wu, Y.; Anderson, M.E.; Colbran, R.J. Differential regulated interactions of calcium/calmodulin-dependent protein kinase II with isoforms of voltage-gated calcium channel beta subunits. Biochemistry 2008, 47, 1760–1767. [Google Scholar] [CrossRef] [Green Version]
- McNeill, R.B.; Colbran, R.J. Interaction of autophosphorylated Ca2+/calmodulin-dependent protein kinase II with neuronal cytoskeletal proteins. Characterization of binding to a 190-kDa postsynaptic density protein. J. Biol. Chem. 1995, 270, 10043–10049. [Google Scholar] [CrossRef] [Green Version]
- Robison, A.J.; Bass, M.A.; Jiao, Y.; MacMillan, L.B.; Carmody, L.C.; Bartlett, R.K.; Colbran, R.J. Multivalent interactions of calcium/calmodulin-dependent protein kinase II with the postsynaptic density proteins NR2B, densin-180, and alpha-actinin-2. J. Biol. Chem. 2005, 280, 35329–35336. [Google Scholar] [CrossRef] [Green Version]
- Shonesy, B.C.; Wang, X.; Rose, K.L.; Ramikie, T.S.; Cavener, V.S.; Rentz, T.; Baucum, A.J., 2nd; Jalan-Sakrikar, N.; Mackie, K.; Winder, D.G.; et al. CaMKII regulates diacylglycerol lipase-alpha and striatal endocannabinoid signaling. Nat. Neurosci. 2013, 16, 456–463. [Google Scholar] [CrossRef]
- Jin, D.Z.; Guo, M.L.; Xue, B.; Mao, L.M.; Wang, J.Q. Differential regulation of CaMKIIalpha interactions with mGluR5 and NMDA receptors by Ca(2+) in neurons. J. Neurochem. 2013, 127, 620–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fahrmann, M.; Erfmann, M.; Beinbrech, G. Binding of CaMKII to the giant muscle protein projectin: Stimulation of CaMKII activity by projectin. Biochim. Biophys. Acta 2002, 1569, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Ohyama, A.; Hosaka, K.; Komiya, Y.; Akagawa, K.; Yamauchi, E.; Taniguchi, H.; Sasagawa, N.; Kumakura, K.; Mochida, S.; Yamauchi, T.; et al. Regulation of exocytosis through Ca2+/ATP-dependent binding of autophosphorylated Ca2+/calmodulin-activated protein kinase II to syntaxin 1A. J. Neurosci. 2002, 22, 3342–3351. [Google Scholar] [CrossRef] [Green Version]
- Bennecib, M.; Gong, C.X.; Grundke-Iqbal, I.; Iqbal, K. Inhibition of PP-2A upregulates CaMKII in rat forebrain and induces hyperphosphorylation of tau at Ser 262/356. FEBS Lett. 2001, 490, 15–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skelding, K.A.; Rostas, J.A.P. Regulation of Multifunctional Calcium/Calmodulin Stimulated Protein Kinases by Molecular Targeting. Adv. Exp. Med. Biol. 2020, 1131, 649–679. [Google Scholar] [CrossRef] [PubMed]
- Shields, S.M.; Ingebritsen, T.S.; Kelly, P.T. Identification of protein phosphatase 1 in synaptic junctions: Dephosphorylation of endogenous calmodulin-dependent kinase II and synapse-enriched phosphoproteins. J. Neurosci. 1985, 5, 3414–3422. [Google Scholar] [CrossRef] [Green Version]
- Strack, S.; Barban, M.A.; Wadzinski, B.E.; Colbran, R.J. Differential inactivation of postsynaptic density-associated and soluble Ca2+/calmodulin-dependent protein kinase II by protein phosphatases 1 and 2A. J. Neurochem. 1997, 68, 2119–2128. [Google Scholar] [CrossRef] [Green Version]
- Fukunaga, K.; Kobayashi, T.; Tamura, S.; Miyamoto, E. Dephosphorylation of autophosphorylated Ca2+/calmodulin-dependent protein kinase II by protein phosphatase 2C. J. Biol. Chem. 1993, 268, 133–137. [Google Scholar] [CrossRef]
- Dosemeci, A.; Reese, T.S. Inhibition of endogenous phosphatase in a postsynaptic density fraction allows extensive phosphorylation of the major postsynaptic density protein. J. Neurochem. 1993, 61, 550–555. [Google Scholar] [CrossRef]
- Mullasseril, P.; Dosemeci, A.; Lisman, J.E.; Griffith, L.C. A structural mechanism for maintaining the ‘on-state’ of the CaMKII memory switch in the post-synaptic density. J. Neurochem. 2007, 103, 357–364. [Google Scholar] [CrossRef] [Green Version]
- Chang, B.H.; Mukherji, S.; Soderling, T.R. Calcium/calmodulin-dependent protein kinase II inhibitor protein: Localization of isoforms in rat brain. Neuroscience 2001, 102, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Kielland, A.; Bochorishvili, G.; Corson, J.; Zhang, L.; Rosin, D.L.; Heggelund, P.; Zhu, J.J. Activity patterns govern synapse-specific AMPA receptor trafficking between deliverable and synaptic pools. Neuron 2009, 62, 84–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodell, D.J.; Zaegel, V.; Coultrap, S.J.; Hell, J.W.; Bayer, K.U. DAPK1 Mediates LTD by Making CaMKII/GluN2B Binding LTP Specific. Cell Rep. 2017, 19, 2231–2243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Site of Autophosphorylation | Effect on CaMKII In Vitro | Effect on Targeting to: | |||
---|---|---|---|---|---|
Ca2+/CaM Binding | Ca2+/CaM Dependent Activity | Ca2+/CaM Independent Activity | Translocation to PSD # In Vivo # | Binding to Specific Proteins | |
Thr286 | ↑ | Prolonged | ↑ | ↑ | Multiple |
Thr305/306 | ↓ | ↓ | - | ↓ | N/E |
Thr253 | - | - | - | ↑ | Multiple |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rostas, J.A.P.; Skelding, K.A. Calcium/Calmodulin-Stimulated Protein Kinase II (CaMKII): Different Functional Outcomes from Activation, Depending on the Cellular Microenvironment. Cells 2023, 12, 401. https://doi.org/10.3390/cells12030401
Rostas JAP, Skelding KA. Calcium/Calmodulin-Stimulated Protein Kinase II (CaMKII): Different Functional Outcomes from Activation, Depending on the Cellular Microenvironment. Cells. 2023; 12(3):401. https://doi.org/10.3390/cells12030401
Chicago/Turabian StyleRostas, John A. P., and Kathryn A. Skelding. 2023. "Calcium/Calmodulin-Stimulated Protein Kinase II (CaMKII): Different Functional Outcomes from Activation, Depending on the Cellular Microenvironment" Cells 12, no. 3: 401. https://doi.org/10.3390/cells12030401
APA StyleRostas, J. A. P., & Skelding, K. A. (2023). Calcium/Calmodulin-Stimulated Protein Kinase II (CaMKII): Different Functional Outcomes from Activation, Depending on the Cellular Microenvironment. Cells, 12(3), 401. https://doi.org/10.3390/cells12030401