Overexpression of KMT9α Is Associated with Aggressive Basal-like Muscle-Invasive Bladder Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cohort
2.2. Immunohistochemical (IHC) Analysis
2.3. RNA-Isolation and Molecular Subtype Calling
2.4. Statistical Analysis
3. Results
3.1. KMT9α Expression in Normal Urothelium and Urothelial Cancer
3.2. Patient Characteristics
3.3. Survival Analysis
3.4. KMT9α Expression Is Associated with Urothelial Basal Cell Characteristics
3.5. Molecular Subtyping and Differential Gene Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Witjes, J.A.; Bruins, H.M.; Cathomas, R.; Comperat, E.M.; Cowan, N.C.; Gakis, G.; Hernandez, V.; Linares Espinos, E.; Lorch, A.; Neuzillet, Y.; et al. European Association of Urology Guidelines on Muscle-invasive and Metastatic Bladder Cancer: Summary of the 2020 Guidelines. Eur. Urol. 2021, 79, 82–104. [Google Scholar] [CrossRef]
- Powles, T.; Loriot, Y.; Ravaud, A.; Vogelzang, N.J.; Duran, I.; Retz, M.; De Giorgi, U.; Oudard, S.; Bamias, A.; Koeppen, H.; et al. Atezolizumab (atezo) vs. chemotherapy (chemo) in platinum-treated locally advanced or metastatic urothelial carcinoma (mUC): Immune biomarkers, tumor mutational burden (TMB), and clinical outcomes from the phase III IMvigor211 study. J. Clin. Oncol. 2018, 36 (Suppl. 6), 409. [Google Scholar] [CrossRef]
- Rosenberg, J.E.; Hoffman-Censits, J.; Powles, T.; van der Heijden, M.S.; Balar, A.V.; Necchi, A.; Dawson, N.; O’Donnell, P.H.; Balmanoukian, A.; Loriot, Y.; et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: A single-arm, multicentre, phase 2 trial. Lancet 2016, 387, 1909–1920. [Google Scholar] [CrossRef]
- Sharma, P.; Retz, M.; Siefker-Radtke, A.; Baron, A.; Necchi, A.; Bedke, J.; Plimack, E.R.; Vaena, D.; Grimm, M.O.; Bracarda, S.; et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): A multicentre, single-arm, phase 2 trial. Lancet Oncol. 2017, 18, 312–322. [Google Scholar] [CrossRef]
- Bellmunt, J.; de Wit, R.; Vaughn, D.J.; Fradet, Y.; Lee, J.L.; Fong, L.; Vogelzang, N.J.; Climent, M.A.; Petrylak, D.P.; Choueiri, T.K.; et al. Pembrolizumab as Second-Line Therapy for Advanced Urothelial Carcinoma. N. Engl. J. Med. 2017, 376, 1015–1026. [Google Scholar] [CrossRef]
- Bajorin, D.F.; Witjes, J.A.; Gschwend, J.E.; Schenker, M.; Valderrama, B.P.; Tomita, Y.; Bamias, A.; Lebret, T.; Shariat, S.F.; Park, S.H.; et al. Adjuvant Nivolumab versus Placebo in Muscle-Invasive Urothelial Carcinoma. N. Engl. J. Med. 2021, 384, 2102–2114. [Google Scholar] [CrossRef]
- Bellmunt, J.; Hussain, M.; Gschwend, J.E.; Albers, P.; Oudard, S.; Castellano, D.; Daneshmand, S.; Nishiyama, H.; Majchrowicz, M.; Degaonkar, V.; et al. Adjuvant atezolizumab versus observation in muscle-invasive urothelial carcinoma (IMvigor010): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2021, 22, 525–537. [Google Scholar] [CrossRef]
- Strahl, B.D.; Allis, C.D. The language of covalent histone modifications. Nature 2000, 403, 41–45. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [Green Version]
- Martinez, V.G.; Munera-Maravilla, E.; Bernardini, A.; Rubio, C.; Suarez-Cabrera, C.; Segovia, C.; Lodewijk, I.; Duenas, M.; Martinez-Fernandez, M.; Paramio, J.M. Epigenetics of Bladder Cancer: Where Biomarkers and Therapeutic Targets Meet. Front. Genet. 2019, 10, 1125. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.G.; Kim, J.; Al-Ahmadie, H.; Bellmunt, J.; Guo, G.; Cherniack, A.D.; Hinoue, T.; Laird, P.W.; Hoadley, K.A.; Akbani, R.; et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell 2017, 171, 540–556.e25. [Google Scholar] [CrossRef]
- Chen, Y.; Ren, B.; Yang, J.; Wang, H.; Yang, G.; Xu, R.; You, L.; Zhao, Y. The role of histone methylation in the development of digestive cancers: A potential direction for cancer management. Signal Transduct. Target. Ther. 2020, 5, 143. [Google Scholar] [CrossRef]
- Rothbart, S.B.; Strahl, B.D. Interpreting the language of histone and DNA modifications. Biochim. Et Biophys. Acta 2014, 1839, 627–643. [Google Scholar] [CrossRef]
- Meghani, K.; Folgosa Cooley, L.; Piunti, A.; Meeks, J.J. Role of Chromatin Modifying Complexes and Therapeutic Opportunities in Bladder Cancer. Bladder Cancer 2022, 8, 101–112. [Google Scholar] [CrossRef]
- Metzger, E.; Wang, S.; Urban, S.; Willmann, D.; Schmidt, A.; Offermann, A.; Allen, A.; Sum, M.; Obier, N.; Cottard, F.; et al. KMT9 monomethylates histone H4 lysine 12 and controls proliferation of prostate cancer cells. Nat. Struct. Mol. Biol. 2019, 26, 361–371. [Google Scholar] [CrossRef]
- Baumert, H.M.; Metzger, E.; Fahrner, M.; George, J.; Thomas, R.K.; Schilling, O.; Schule, R. Depletion of histone methyltransferase KMT9 inhibits lung cancer cell proliferation by inducing non-apoptotic cell death. Cancer Cell Int. 2020, 20, 52. [Google Scholar] [CrossRef]
- Berlin, C.; Cottard, F.; Willmann, D.; Urban, S.; Tirier, S.M.; Marx, L.; Rippe, K.; Schmitt, M.; Petrocelli, V.; Greten, F.R.; et al. KMT9 Controls Stemness and Growth of Colorectal Cancer. Cancer Res. 2022, 82, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Board WCoTE. Urinary and Male Genital Tumours–WHO Classification of Tumours, 5th ed.; IARC Publications: Lyon, France, 2022; Volume 8. [Google Scholar]
- Koll, F.J.; Schwarz, A.; Kollermann, J.; Banek, S.; Kluth, L.; Wittler, C.; Bankov, K.; Doring, C.; Becker, N.; Chun, F.K.H.; et al. CK5/6 and GATA3 Defined Phenotypes of Muscle-Invasive Bladder Cancer: Impact in Adjuvant Chemotherapy and Molecular Subtyping of Negative Cases. Front. Med. 2022, 9, 875142. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, A.; Xu, B.; Downes, M.R. p53 immunohistochemistry in high-grade urothelial carcinoma of the bladder is prognostically significant. Histopathology 2017, 71, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Rechsteiner, M.; Zimmermann, A.K.; Wild, P.J.; Caduff, R.; von Teichman, A.; Fink, D.; Moch, H.; Noske, A. TP53 mutations are common in all subtypes of epithelial ovarian cancer and occur concomitantly with KRAS mutations in the mucinous type. Exp. Mol. Pathol. 2013, 95, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Wild, P.J.; Ikenberg, K.; Fuchs, T.J.; Rechsteiner, M.; Georgiev, S.; Fankhauser, N.; Noske, A.; Roessle, M.; Caduff, R.; Dellas, A.; et al. p53 suppresses type II endometrial carcinomas in mice and governs endometrial tumour aggressiveness in humans. EMBO Mol. Med. 2012, 4, 808–824. [Google Scholar] [CrossRef] [PubMed]
- Kamoun, A.; de Reynies, A.; Allory, Y.; Sjodahl, G.; Robertson, A.G.; Seiler, R.; Hoadley, K.A.; Groeneveld, C.S.; Al-Ahmadie, H.; Choi, W.; et al. A Consensus Molecular Classification of Muscle-invasive Bladder Cancer. Eur. Urol. 2019, 77, 420–433. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Malats, N.; Bustos, A.; Nascimento, C.M.; Fernandez, F.; Rivas, M.; Puente, D.; Kogevinas, M.; Real, F.X. P53 as a prognostic marker for bladder cancer: A meta-analysis and review. Lancet Oncol. 2005, 6, 678–686. [Google Scholar] [CrossRef]
- Papafotiou, G.; Paraskevopoulou, V.; Vasilaki, E.; Kanaki, Z.; Paschalidis, N.; Klinakis, A. KRT14 marks a subpopulation of bladder basal cells with pivotal role in regeneration and tumorigenesis. Nat. Commun. 2016, 7, 11914. [Google Scholar] [CrossRef]
- Volkmer, J.P.; Sahoo, D.; Chin, R.K.; Ho, P.L.; Tang, C.; Kurtova, A.V.; Willingham, S.B.; Pazhanisamy, S.K.; Contreras-Trujillo, H.; Storm, T.A.; et al. Three differentiation states risk-stratify bladder cancer into distinct subtypes. Proc. Natl. Acad. Sci. USA 2012, 109, 2078–2083. [Google Scholar] [CrossRef]
- Paraskevopoulou, V.; Papafotiou, G.; Klinakis, A. KRT14 marks bladder progenitors. Cell Cycle 2016, 15, 3161–3162. [Google Scholar] [CrossRef]
- Al-Ahmadie, H.; Iyer, G. Updates on the Genetics and Molecular Subtypes of Urothelial Carcinoma and Select Variants. Surg. Pathol. Clin. 2018, 11, 713–723. [Google Scholar] [CrossRef]
- Sjodahl, G.; Eriksson, P.; Patschan, O.; Marzouka, N.A.; Jakobsson, L.; Bernardo, C.; Lovgren, K.; Chebil, G.; Zwarthoff, E.; Liedberg, F.; et al. Molecular changes during progression from nonmuscle invasive to advanced urothelial carcinoma. Int. J. Cancer J. Int. Du Cancer 2020, 146, 2636–2647. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Bondaruk, J.; Cogdell, D.; Wang, Z.; Lee, S.; Lee, J.G.; Zhang, S.; Choi, W.; Wang, Y.; Liang, Y.; et al. Urothelial-to-Neural Plasticity Drives Progression to Small Cell Bladder Cancer. iScience 2020, 23, 101201. [Google Scholar] [CrossRef]
- Miliani de Marval, P.L.; Zhang, Y. The RP-Mdm2-p53 pathway and tumorigenesis. Oncotarget 2011, 2, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Quin, J.E.; Devlin, J.R.; Cameron, D.; Hannan, K.M.; Pearson, R.B.; Hannan, R.D. Targeting the nucleolus for cancer intervention. Biochim. Et Biophys. Acta 2014, 1842, 802–816. [Google Scholar] [CrossRef] [PubMed]
- Knowles, M.A.; Hurst, C.D. Molecular biology of bladder cancer: New insights into pathogenesis and clinical diversity. Nat. Rev. Cancer 2015, 15, 25–41. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Ochoa, A.; McConkey, D.J.; Aine, M.; Hoglund, M.; Kim, W.Y.; Real, F.X.; Kiltie, A.E.; Milsom, I.; Dyrskjot, L.; et al. Genetic Alterations in the Molecular Subtypes of Bladder Cancer: Illustration in the Cancer Genome Atlas Dataset. Eur. Urol. 2017, 72, 354–365. [Google Scholar] [CrossRef] [PubMed]
- Seiler, R.; Ashab, H.A.D.; Erho, N.; van Rhijn, B.W.G.; Winters, B.; Douglas, J.; Van Kessel, K.E.; Fransen van de Putte, E.E.; Sommerlad, M.; Wang, N.Q.; et al. Impact of Molecular Subtypes in Muscle-invasive Bladder Cancer on Predicting Response and Survival after Neoadjuvant Chemotherapy. Eur. Urol. 2017, 72, 544–554. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.; Porten, S.; Kim, S.; Willis, D.; Plimack, E.R.; Hoffman-Censits, J.; Roth, B.; Cheng, T.; Tran, M.; Lee, I.L.; et al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 2014, 25, 152–165. [Google Scholar] [CrossRef] [PubMed]
- Sjodahl, G.; Abrahamsson, J.; Bernardo, C.; Eriksson, P.; Hoglund, M.; Liedberg, F. Molecular Subtypes as a Basis for Stratified Use of Neoadjuvant Chemotherapy for Muscle-Invasive Bladder Cancer-A Narrative Review. Cancers 2022, 14, 1692. [Google Scholar] [CrossRef]
- Taber, A.; Christensen, E.; Lamy, P.; Nordentoft, I.; Prip, F.; Lindskrog, S.V.; Birkenkamp-Demtroder, K.; Okholm, T.L.H.; Knudsen, M.; Pedersen, J.S.; et al. Molecular correlates of cisplatin-based chemotherapy response in muscle invasive bladder cancer by integrated multi-omics analysis. Nat. Commun. 2020, 11, 4858. [Google Scholar] [CrossRef]
- Kim, K.H.; Roberts, C.W. Targeting EZH2 in cancer. Nat. Med. 2016, 22, 128–134. [Google Scholar] [CrossRef] [Green Version]
No KMT9α in Nucleolus (n = 112) | KMT9α in Nucleolus (n = 23) | p | ||
---|---|---|---|---|
Nuclear KMT9α expression | 0–5% | 22 (19%) | 2 (9%) | 0.02 |
5–15% | 68 (61%) | 10 (44%) | ||
≥15% | 22 (20%) | 11 (48%) | ||
Median age (IQR) | 69 (59–77) | 71 (57–76) | n.s. | |
Gender | Male | 87 (78%) | 18 (78%) | n.s. |
Female | 25 (22%) | 5 (22%) | ||
Max. tumor stage | pT2 | 32 (29%) | 3 (12.5%) | n.s. |
pT3 | 56 (50%) | 18 (75%) | ||
pT4 | 24 (22%) | 3 (12.5%) | ||
pN stage | pN0 | 55 49%) | 9 (39%) | n.s. |
pN+ (n = 59)/pNx (n = 12) | 57 (51%) | 14 (61%) | ||
Histological subtype | NOS | 77 (69%) | 14 (61%) | 0.05 |
Squamous | 9 (8%) | 7 (30%) | ||
Micropapillary | 9 (8%) | 1 (4%) | ||
Neuroendocine | 4 (4%) | 0 | ||
Sarcomatoid | 3 (3%) | 0 | ||
Plasmacytoid | 4 (4%) | 0 | ||
Other (3 Lymphoepithelial, 1 Nested, 1 Glandular, 1 Giant cell) | 5 (4%) | 1 (4%) | ||
TCGA molecular subtype | Basal squamous | 29 (43%) | 16 (94%) | <0.01 |
Luminal | 3 (4%) | 0 | ||
Luminal infiltrated | 26 (38%) | 1 (6%) | ||
Luminal papillary | 5 (7%) | 0 | ||
Neuronal | 5 (7%) | 0 |
Nuclear KMT9α < 5% (n = 24) | Nuclear KMT9α 5–15% (n = 78) | Nuclear KMT9α ≥ 15% (n = 33) | p | ||
---|---|---|---|---|---|
Nucleolar KMT9α | no | 22 (92%) | 68 (87%) | 22 (67%) | 0.02 |
yes | 2 (8%) | 10 (13%) | 11 (33%) | ||
Median age (IQR) | 67 (56–73) | 70 (59–78) | 71 (62–75) | n.s. | |
Gender | Male | 18 (75%) | 61 (78%) | 26 (79%) | n.s. |
Female | 6 (25%) | 17 (22%) | 7 (21%) | ||
Max. tumor stage | pT2 | 7 (29%) | 21 (27%) | 7 (21%) | n.s. |
pT3 | 11 (46%) | 40 (51%) | 22 (67%) | ||
pT4 | 6 (25%) | 17 (22%) | 4 (12%) | ||
pN stage | pN0 | 14 (58%) | 33 (42%) | 17 (52%) | n.s. |
pN+ (n = 59)/pNx (n = 12) | 10 (42%) | 45 (58%) | 16 (48%) | ||
Histological subtype | NOS | 15 (65%) | 49 (63%) | 27 (82%) | <0.01 |
Squamous | 0 | 13 (17%) | 3 (9%) | ||
Micropapillary | 4 (17%) | 6 (8%) | 0 | ||
Neuroendocine | 0 | 2 (3%) | 2 (6%) | ||
Sarcomatoid | 0 | 3 (4%) | 0 | ||
Plasmacytoid | 3 (13%) | 1 (1%) | 0 | ||
Other (3 Lymphoepithelial, 1 Nested, 1 Glandular, 1 Giant cell) | 1 (4%) | 4 (4%) | 1 (3%) | ||
TCGA molecular subtype | Basal squamous | 4 (29%) | 24 (52%) | 17 (68%) | n.s. |
Luminal | 0 | 2 (4%) | 1 (4%) | ||
Luminal infiltrated | 8 (57%) | 15 (33%) | 4 (16%) | ||
Luminal papillary | 1 (7%) | 4 (9%) | 0 | ||
Neuronal | 1 (7%) | 1 (2%) | 3 (12%) |
Variable | Hazard Ratio | p | |
---|---|---|---|
Gender | Female vs. male | 1.36 (0.82–2.28) | 0.2 |
Tumor stage | pT3 vs. pT2 | 2.32 (1.31–4.13) | 0.004 |
pT4 vs. pT2 | 4.78 (2.49–9.15) | <0.0001 | |
Lymphnode stage | pN+/pNx vs. pN0 | 2.35 (1.51–3.65) | 0.0001 |
Adjuvant chemotherapy | Yes vs. no | 0.43 (0.26–0.73) | 0.002 |
Nuclear KMT9α | High vs. low | 0.88 (0.57–1.35) | 0.6 |
Nucleolar KMT9α | Yes vs. no | 2.09 (1.21–3.61) | 0.009 |
Nucleoli present | Yes vs. no | 1.16 (0.71–1.91) | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koll, F.J.; Metzger, E.; Hamann, J.; Ramos-Triguero, A.; Bankov, K.; Köllermann, J.; Döring, C.; Chun, F.K.H.; Schüle, R.; Wild, P.J.; et al. Overexpression of KMT9α Is Associated with Aggressive Basal-like Muscle-Invasive Bladder Cancer. Cells 2023, 12, 589. https://doi.org/10.3390/cells12040589
Koll FJ, Metzger E, Hamann J, Ramos-Triguero A, Bankov K, Köllermann J, Döring C, Chun FKH, Schüle R, Wild PJ, et al. Overexpression of KMT9α Is Associated with Aggressive Basal-like Muscle-Invasive Bladder Cancer. Cells. 2023; 12(4):589. https://doi.org/10.3390/cells12040589
Chicago/Turabian StyleKoll, Florestan J., Eric Metzger, Jana Hamann, Anna Ramos-Triguero, Katrin Bankov, Jens Köllermann, Claudia Döring, Felix K. H. Chun, Roland Schüle, Peter J. Wild, and et al. 2023. "Overexpression of KMT9α Is Associated with Aggressive Basal-like Muscle-Invasive Bladder Cancer" Cells 12, no. 4: 589. https://doi.org/10.3390/cells12040589
APA StyleKoll, F. J., Metzger, E., Hamann, J., Ramos-Triguero, A., Bankov, K., Köllermann, J., Döring, C., Chun, F. K. H., Schüle, R., Wild, P. J., & Reis, H. (2023). Overexpression of KMT9α Is Associated with Aggressive Basal-like Muscle-Invasive Bladder Cancer. Cells, 12(4), 589. https://doi.org/10.3390/cells12040589