The Two Faces of Immune-Related lncRNAs in Head and Neck Squamous Cell Carcinoma
Abstract
:1. Introduction
Tumor Microenvironment
2. Long Non-Coding RNAs
3. LncRNAs in HNSCC Tumor Microenvironment
3.1. Tumor Cells
3.2. CAFs
3.3. Immune-Related lncRNAs
3.4. LncRNAs: Therapeutic Targets and Clinical Relevance in HNSCC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Johnson, D.E.; Burtness, B.; Leemans, C.R.; Lui VW, Y.; Bauman, J.E.; Grandis, J.R. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers 2020, 6, 92. [Google Scholar] [CrossRef]
- Peña-Flores, J.A.; Bermúdez, M.; Ramos-Payán, R.; Villegas-Mercado, C.E.; Soto-Barreras, U.; Muela-Campos, D.; Álvarez-Ramírez, A.; Pérez-Aguirre, B.; Larrinua-Pacheco, A.D.; López-Camarillo, C.; et al. Emerging role of lncRNAs in drug resistance mechanisms in head and neck squamous cell carcinoma. Front. Oncol. 2022, 12, 3750. [Google Scholar] [CrossRef]
- Contreras, W.; Venegas, B. Virus papiloma humano en cáncer oral y orofaríngeo: Revisión de la literatura. Int. J. Odontostomatol. 2015, 9, 427–435. [Google Scholar] [CrossRef]
- Chow, L.Q.M. Head and Neck Cancer. N. Engl. J. Med. 2020, 382, 60–72. [Google Scholar] [CrossRef]
- Di Credico, G.; Polesel, J.; Maso, L.D.; Pauli, F.; Torelli, N.; Luce, D.; Radoï, L.; Matsuo, K.; Serraino, D.; Brennan, P.; et al. Alcohol drinking and head and neck cancer risk: The joint effect of intensity and duration. Br. J. Cancer 2020, 123, 1456–1463. [Google Scholar] [CrossRef]
- Dhull, A.K.; Atri, R.; Dhankhar, R.; Chauhan, A.K.; Kaushal, V. Major Risk Factors in Head and Neck Cancer: A Retrospective Analysis of 12-Year Experiences. World J. Oncol. 2018, 9, 80–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granados-García, M. Oropharyngeal cancer: An emergent disease? Salud Publica México 2016, 58, 285–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dok, R.; Nuyts, S. HPV Positive Head and Neck Cancers: Molecular Pathogenesis and Evolving Treatment Strategies. Cancers 2016, 8, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.; Xiao, Y.; Liu, S.; Deng, R.; Li, Z.; Zhu, X. Predicting the Immune Microenvironment and Prognosis with a NETosis-Related lncRNA Signature in Head and Neck Squamous Cell Carcinoma. BioMed Res. Int. 2022, 2022, 3191474. [Google Scholar] [CrossRef] [PubMed]
- Leemans, C.R.; Braakhuis, B.J.M.; Brakenhoff, R.H. The molecular biology of head and neck cancer. Nat. Rev. Cancer 2011, 11, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Coussens, L.M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell 2012, 21, 309–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavrielatou, N.; Doumas, S.; Economopoulou, P.; Foukas, P.G.; Psyrri, A. Biomarkers for immunotherapy response in head and neck cancer. Cancer Treat. Rev. 2020, 84, 101977. [Google Scholar] [CrossRef]
- Allen, C.T.; Judd, N.P.; Bui, J.D.; Uppaluri, R. The clinical implications of antitumor immunity in head and neck cancer. Laryngoscope 2012, 122, 144–157. [Google Scholar] [CrossRef] [PubMed]
- Dunn, G.P.; Bruce, A.T.; Ikeda, H.; Old, L.J.; Schreiber, R.D. Cancer immunoediting: From immunosurveillance to tumor escape. Nat. Immunol. 2002, 3, 991–998. [Google Scholar] [CrossRef]
- Dunn, G.P.; Old, L.J.; Schreiber, R.D. The Immunobiology of Cancer Immunosurveillance and Immunoediting. Immunity 2004, 21, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Yan, B.; Lou, H.; Shen, Z.; Tong, F.; Zhai, A.; Wei, L.; Zhang, F. Immunological network analysis in HPV associated head and neck squamous cancer and implications for disease prognosis. Mol. Immunol. 2018, 96, 28–36. [Google Scholar] [CrossRef]
- Sun, Q.; Li, Y.; Yang, X.; Wu, X.; Liu, Z.; Mou, Y.; Song, X. Identification and Validation of 17-lncRNA Related to Regulatory T Cell Heterogeneity as a Prognostic Signature for Head and Neck Squamous Cell Carcinoma. Front. Immunol. 2021, 12, 782216. [Google Scholar] [CrossRef]
- Tampa, M.; Mitran, M.I.; Mitran, C.I.; Sarbu, M.I.; Matei, C.; Nicolae, I.; Caruntu, A.; Tocut, S.M.; Popa, M.I.; Caruntu, C.; et al. Mediators of Inflammation—A Potential Source of Biomarkers in Oral Squamous Cell Carcinoma. J. Immunol. Res. 2018, 2018, 1061780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Zhang, M.; Cheng, M.; Wang, X.; Li, K.; Chen, J.; Chen, Z.; Chen, S.; Chen, J.; Xiong, G.; et al. Tumor microenvironment in head and neck squamous cell carcinoma: Functions and regulatory mechanisms. Cancer Lett. 2021, 507, 55–69. [Google Scholar] [CrossRef] [PubMed]
- Bozgeyik, E.; Bozgeyik, I. Non-coding RNA variations in oral cancers: A comprehensive review. Gene 2023, 851, 147012. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Ji, Z.; Liao, J.; Liu, H.; Peng, H. Identification of Molecular Subtypes in Head and Neck Squamous Cell Carcinoma Based on Dysregulated Immune LncRNAs. J. Oncol. 2022, 2022, 9702789. [Google Scholar] [CrossRef]
- Taft, R.J.; Pang, K.C.; Mercer, T.R.; Dinger, M.; Mattick, J.S. Non-coding RNAs: Regulators of disease. J. Pathol. 2010, 220, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Whiteside, T.L. The tumor microenvironment and its role in promoting tumor growth. Oncogene 2008, 27, 5904–5912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bermúdez, M.; Aguilar-Medina, M.; Lizárraga-Verdugo, E.; Avendaño-Félix, M.; Silva-Benítez, E.; López-Camarillo, C.; Ramos-Payán, R. LncRNAs as Regulators of Autophagy and Drug Resistance in Colorectal Cancer. Front. Oncol. 2019, 9, 1008. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; You, Q.; Zhu, N.; Wu, Z.; Xiang, Z.; Wu, K.; Ren, J.; Gui, Y. Prognostic prediction of head and neck squamous cell carcinoma: Construction of cuproptosis-related long non-coding RNA signature. J. Clin. Lab. Anal. 2022, 36, e24723. [Google Scholar] [CrossRef] [PubMed]
- Guglas, K.; Bogaczyńska, M.; Kolenda, T.; Ryś, M.; Teresiak, A.; Bliźniak, R.; Łasińska, I.; Mackiewicz, J.; Lamperska, K. lncRNA in HNSCC: Challenges and potential. Contemp. Oncol. 2017, 21, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Hombach, S.; Kretz, M. Non-coding RNAs: Classification, Biology and Functioning. Adv. Exp. Med. Biol. 2016, 937, 3–17. [Google Scholar] [PubMed]
- Wapinski, O.; Chang, H.Y. Long noncoding RNAs and human disease. Trends Cell Biol. 2011, 21, 354–361. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Cui, L.; Zhang, J.; Ren, X.; Bin Cheng, B.; Xia, J. Immune-related lncRNA classification of head and neck squamous cell carcinoma. Cancer Cell Int. 2022, 22, 25. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yang, G.; Liu, G.; Pan, Y. Identification of lncRNA Signature of Tumor-Infiltrating T Lymphocytes With Potential Implications for Prognosis and Chemotherapy of Head and Neck Squamous Cell Carcinoma. Front. Pharmacol. 2021, 12, 795205. [Google Scholar] [CrossRef] [PubMed]
- Wilusz, J.E.; Sunwoo, H.; Spector, D.L. Long noncoding RNAs: Functional surprises from the RNA world. Genes Dev. 2009, 23, 1494–1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Ma, Z.; Feng, L.; Yang, Y.; Tan, C.; Shi, Q.; Lian, M.; He, S.; Ma, H.; Fang, J. LncRNA MIR31HG targets HIF1A and P21 to facilitate head and neck cancer cell proliferation and tumorigenesis by promoting cell-cycle progression. Mol. Cancer 2018, 17, 162. [Google Scholar] [CrossRef]
- Tang, J.; Wu, Z.; Wang, X.; Hou, Y.; Bai, Y.; Tian, Y. Hypoxia-Regulated lncRNA USP2-AS1 Drives Head and Neck Squamous Cell Carcinoma Progression. Cells 2022, 11, 3407. [Google Scholar] [CrossRef]
- Jiang, P.; He, S.; Li, Y.; Xu, Z. Identification of Therapeutic and Prognostic Biomarkers of Lamin C (LAMC) Family Members in Head and Neck Squamous Cell Carcinoma. Experiment 2020, 26, e925735. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, X.; Niu, K.; Sun, L.; Li, D. LncRNA TM4SF19-AS1 exacerbates cell proliferation, migration, invasion, and EMT in head and neck squamous cell carcinoma via enhancing LAMC1 expression. Cancer Biol. Ther. 2022, 23, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Cao, W.; Wang, J.; Liu, J.; Liu, J.; Wu, H.; Li, S.; Zhang, C. A prognostic long non-coding RNA-associated competing endogenous RNA network in head and neck squamous cell carcinoma. PeerJ 2020, 8, e9701. [Google Scholar] [CrossRef]
- Jiang, Y.; Cao, W.; Wu, K.; Qin, X.; Wang, X.; Li, Y.; Yu, B.; Zhang, Z.; Wang, X.; Yan, M.; et al. LncRNA LINC00460 promotes EMT in head and neck squamous cell carcinoma by facilitating peroxiredoxin-1 into the nucleus. J. Exp. Clin. Cancer Res. 2019, 38, 365. [Google Scholar] [CrossRef] [Green Version]
- Mao, B.; Wang, F.; Zhang, J.; Li, Q.; Ying, K. Long non-coding RNA human leucocyte antigen complex group-18 HCG18 (HCG18) promoted cell proliferation and migration in head and neck squamous cell carcinoma through cyclin D1-WNT pathway. Bioengineered 2022, 13, 9425–9434. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Ge, P. Long non-coding RNA HCG18 facilitates the progression of laryngeal and hypopharyngeal squamous cell carcinoma by upregulating FGFR1 via miR-133b. Mol. Med. Rep. 2022, 25, 46. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Huang, X.; Zhang, Z.; Li, H.; Zan, T. The Long Noncoding Transcript HNSCAT1 Activates KRT80 and Triggers Therapeutic Efficacy in Head and Neck Squamous Cell Carcinoma. Oxidative Med. Cell. Longev. 2022, 2022, 4156966. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Li, L.; Wu, J.; Lin, K.; He, Y.; Bian, L. PDGF-BB regulates the transformation of fibroblasts into cancer-associated fibroblasts via the lncRNA LURAP1L-AS1/LURAP1L/IKK/IκB/NF-κB signaling pathway. Oncol. Lett. 2021, 22, 537. [Google Scholar] [CrossRef]
- Ding, L.; Ren, J.; Zhang, D.; Li, Y.; Huang, X.; Hu, Q.; Wang, H.; Song, Y.; Ni, Y.; Hou, Y. A novel stromal lncRNA signature reprograms fibroblasts to promote the growth of oral squamous cell carcinoma via LncRNA-CAF/interleukin-33. Carcinogenesis 2018, 39, 397–406. [Google Scholar] [CrossRef]
- Zhang, D.; Song, Y.; Li, D.; Liu, X.; Pan, Y.; Ding, L.; Shi, G.; Wang, Y.; Ni, Y.; Hou, Y. Cancer-associated fibroblasts promote tumor progression by lncRNA-mediated RUNX2/GDF10 signaling in oral squamous cell carcinoma. Mol. Oncol. 2022, 16, 780–794. [Google Scholar] [CrossRef]
- Fan, C.; Tang, Y.; Wang, J.; Xiong, F.; Guo, C.; Wang, Y.; Zhang, S.; Gong, Z.; Wei, X.; Zhaoyang, Z.; et al. Role of long non-coding RNAs in glucose metabolism in cancer. Mol. Cancer 2017, 16, 130. [Google Scholar] [CrossRef]
- Yang, J.; Shi, X.; Yang, M.; Luo, J.; Gao, Q.; Wang, X.; Wu, Y.; Tian, Y.; Wu, F.; Zhou, H. Glycolysis reprogramming in cancer-associated fibroblasts promotes the growth of oral cancer through the lncRNA H19/miR-675-5p/PFKFB3 signaling pathway. Int. J. Oral Sci. 2021, 13, 12. [Google Scholar] [CrossRef]
- Jin, N.; Jin, N.; Bu, W.; Li, X.; Liu, L.; Wang, Z.; Tong, J.; Li, D. Long non-coding RNA TIRY promotes tumor metastasis by enhancing epithelial-to-mesenchymal transition in oral cancer. Exp. Biol. Med. 2020, 245, 585–596. [Google Scholar] [CrossRef] [Green Version]
- Aguilo, F.; Zhou, M.M.; Walsh, M.J. Long noncoding RNA, polycomb, and the ghosts haunting INK4b-ARF-INK4a expression. Cancer Res. 2011, 71, 5365–5369. [Google Scholar] [CrossRef] [Green Version]
- Ding, L.; Ren, J.; Zhang, D.; Li, Y.; Huang, X.; Ji, J.; Hu, Q.; Wang, H.; Ni, Y.; Hou, Y. The TLR3 Agonist Inhibit Drug Efflux and Sequentially Consolidates Low-Dose Cisplatin-Based Chemoimmunotherapy while Reducing Side Effects. Mol. Cancer Ther. 2017, 16, 1068–1079. [Google Scholar] [CrossRef] [Green Version]
- Kopczyńska, M.; Kolenda, T.; Guglas, K.; Sobocińska, J.; Teresiak, A.; Bliźniak, R.; Mackiewicz, A.; Mackiewicz, J.; Lamperska, K. PRINS lncRNA Is a New Biomarker Candidate for HPV Infection and Prognosis of Head and Neck Squamous Cell Carcinomas. Diagnostics 2020, 10, 762. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Lu, J.; Sun, Y.; Xiao, H.; Liu, M.; Tian, L. Combined detection of serum exosomal miR-21 and HOTAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma. Med. Oncol. 2014, 31, 148. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, N.; Zheng, Z.; Che, Y.; Suzuki, M.; Kano, S.; Lu, J.; Wang, P.; Sun, Y.; Homma, A. Exosomal lncRNA HOTAIR induce macrophages to M2 polarization via PI3K/ p-AKT /AKT pathway and promote EMT and metastasis in laryngeal squamous cell carcinoma. BMC Cancer 2022, 22, 1208. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Bao, M.; Chen, J.; Bin, X.; Xu, X.; Fang, X.; Tang, Z. Long-Noncoding RNA MANCR is Associated With Head and Neck Squamous Cell Carcinoma Malignant Development and Immune Infiltration. Front. Genet. 2022, 13, 911733. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Pan, Y.; Ou, Y.; Duan, T.; Zou, Y.; Zhou, X. Construction and validation of immune-related LncRNAs classifier to predict prognosis and immunotherapy response in laryngeal squamous cell carcinoma. World J. Surg. Oncol. 2022, 20, 164. [Google Scholar] [CrossRef]
- Gong, S.; Xu, M.; Zhang, Y.; Shan, Y.; Zhang, H. The Prognostic Signature and Potential Target Genes of Six Long Non-coding RNA in Laryngeal Squamous Cell Carcinoma. Front. Genet. 2020, 11, 413. [Google Scholar] [CrossRef]
- Li, H.; Xiong, H.-G.; Xiao, Y.; Yang, Q.-C.; Yang, S.-C.; Tang, H.-C.; Zhang, W.-F.; Sun, Z.-J. Long Non-coding RNA LINC02195 as a Regulator of MHC I Molecules and Favorable Prognostic Marker for Head and Neck Squamous Cell Carcinoma. Front. Oncol. 2020, 10, 615. [Google Scholar] [CrossRef]
- Shi, L.; Yang, Y.; Li, M.; Li, C.; Zhou, Z.; Tang, G.; Wu, L.; Yao, Y.; Shen, X.; Hou, Z.; et al. LncRNA IFITM4P promotes immune escape by up-regulating PD-L1 via dual mechanism in oral carcinogenesis. Mol. Ther. 2022, 30, 1564–1577. [Google Scholar] [CrossRef]
- Li, H.; Yang, Z.; Yang, X.; Zhang, F.; Wang, J.; Wu, Z.; Wanyan, C.; Meng, Q.; Gao, W.; Yang, X.; et al. LINC01123 promotes immune escape by sponging miR-214-3p to regulate B7–H3 in head and neck squamous-cell carcinoma. Cell Death Dis. 2022, 13, 109. [Google Scholar] [CrossRef]
- Zou, C.; Wu, S.; Wei, H.; Luo, H.; Tang, Z.; Li, X.; Lv, X.; Ai, Y. LINC01355 Contributes to Malignant Phenotype of Oral Squamous Cell Carcinoma and Cytotoxic T Cell Infiltration via Activating Notch Signaling Pathway. J. Immunol. Res. 2021, 2021, 1830790. [Google Scholar] [CrossRef]
- Ai, Y.; Liu, S.; Luo, H.; Wu, S.; Wei, H.; Tang, Z.; Li, X.; Zou, C. lncRNA DCST1-AS1 Facilitates Oral Squamous Cell Carcinoma by Promoting M2 Macrophage Polarization through Activating NF-κB Signaling. J. Immunol. Res. 2021, 2021, 5524231. [Google Scholar] [CrossRef] [PubMed]
- Ai, Y.; Wu, S.; Gao, H.; Wei, H.; Tang, Z.; Li, X.; Zou, C. Repression of CRNDE enhances the anti-tumour activity of CD8 + T cells against oral squamous cell carcinoma through regulating miR-545-5p and TIM-3. J. Cell Mol. Med. 2021, 25, 10857–10868. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Yang, W.; Xie, J.; Wei, Z.; Tang, C.; Song, C.; Wang, Y.; Cai, Y.; Xu, W.; Han, W. HOTTIP Functions as a Key Candidate Biomarker in Head and Neck Squamous Cell Carcinoma by Integrated Bioinformatic Analysis. BioMed Res. Int. 2019, 2019, 5450617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, H.; Zhou, L.; Shen, N.; Ning, X.; Wu, D.; Jiang, K.; Huang, X. M1 macrophage-derived exosomes and their key molecule lncRNA HOTTIP suppress head and neck squamous cell carcinoma progression by upregulating the TLR5/NF-κB pathway. Cell Death Dis. 2022, 13, 183. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Jiang, E.; Shao, Z.; Shang, Z. LncRNA FENDRR in Carcinoma-Associated Fibroblasts Regulates the Angiogenesis of Oral Squamous Cell Carcinoma Through the PI3K/AKT Pathway. Front. Oncol. 2021, 11, 616576. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, Y.; Shi, Z.; Liu, J.; Sun, P.; Hou, X.; Zhang, J.; Zhao, S.; Zhou, B.P.; Mi, J. Metabolic reprogramming of cancer-associated fibroblasts by IDH3α downregulation. Cell Rep. 2015, 10, 1335–1348. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Ding, L.; Li, Y.; Ren, J.; Shi, G.; Wang, Y.; Zhao, S.; Ni, Y.; Hou, Y. Midkine derived from cancer-associated fibroblasts promotes cisplatin-resistance via up-regulation of the expression of lncRNA ANRIL in tumour cells. Sci. Rep. 2017, 7, 16231. [Google Scholar] [CrossRef] [Green Version]
- Mowel, W.; Kotzin, J.J.; McCright, S.; Neal, V.D.; Henao-Mejia, J. Control of Immune Cell Homeostasis and Function by lncRNAs. Trends Immunol. 2018, 39, 55–69. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, T.Q.; Xu, S.S.; Chen, C.Y.; Sun, Y.; Lin, L.; Mao, Y.P. An immune-related seven-lncRNA signature for head and neck squamous cell carcinoma. Cancer Med. 2021, 10, 2268–2285. [Google Scholar] [CrossRef]
- Liang, Y.-L.; Zhang, Y.; Tan, X.-R.; Qiao, H.; Liu, S.-R.; Tang, L.-L.; Mao, Y.-P.; Chen, L.; Li, W.-F.; Zhou, G.-Q.; et al. A lncRNA signature associated with tumor immune heterogeneity predicts distant metastasis in locoregionally advanced nasopharyngeal carcinoma. Nat. Commun. 2022, 13, 2996. [Google Scholar] [CrossRef] [PubMed]
- Qiu, L.; Tao, A.; Liu, F.; Ge, X.; Li, C. Potential prognostic value of a eight ferroptosis-related lncRNAs model and the correlative immune activity in oral squamous cell carcinoma. BMC Genet. Data 2022, 23, 80. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Jiang, H.; Luo, Y.; Liao, T.; Xu, W.; Wang, X.; Dong, C.; Ji, Q.; Wang, Y. Tumor-Infiltrating Immune-Related Long Non-Coding RNAs Indicate Prognoses and Response to PD-1 Blockade in Head and Neck Squamous Cell Carcinoma. Front. Immunol. 2021, 12, 692079. [Google Scholar] [CrossRef] [PubMed]
- Jing, L.; Du, Y.; Fu, D. Characterization of tumor immune microenvironment and cancer therapy for head and neck squamous cell carcinoma through identification of a genomic instability-related lncRNA prognostic signature. Front. Genet. 2022, 13, 979575. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Q.; Wang, X.; Liu, L.; Shi, L.; Li, H. Multiomics Immune-Related lncRNA Analysis of Oral Squamous Cell Carcinoma and Its Correlation with Prognosis. Dis. Markers 2022, 2022, 6106503. [Google Scholar] [CrossRef]
- Wang, X.; Cao, K.; Guo, E.; Mao, X.; Guo, L.; Zhang, C.; Guo, J.; Wang, G.; Yang, X.; Sun, J.; et al. Identification of Immune-Related LncRNA Pairs for Predicting Prognosis and Immunotherapeutic Response in Head and Neck Squamous Cell Carcinoma. Front. Immunol. 2021, 12, 658631. [Google Scholar] [CrossRef]
- Qian, L.; Ni, T.; Fei, B.; Sun, H.; Ni, H. An immune-related lncRNA pairs signature to identify the prognosis and predict the immune landscape of laryngeal squamous cell carcinoma. BMC Cancer 2022, 22, 545. [Google Scholar] [CrossRef]
- Zhou, C.; Shen, Y.; Jin, Y.; Shen, Z.; Ye, D.; Shen, Y.; Deng, H. A novel Pyroptosis-related long non-coding RNA signature for predicting the prognosis and immune landscape of head and neck squamous cell carcinoma. Cancer Med. 2022, 11, 5097–5112. [Google Scholar] [CrossRef]
- Li, C.; Zhao, L.; Wang, Q.; Ma, S.; Sun, J.; Ma, C.; Liu, J.; Jing, X.; Ai, D.; Nan, Z.; et al. Neutrophils infiltration and its correlation with human papillomavirus status in the oral squamous cell carcinoma. Cancer Manag. Res. 2019, 11, 5171–5185. [Google Scholar] [CrossRef] [Green Version]
- Hanna, G.J.; Lizotte, P.; Cavanaugh, M.; Kuo, F.C.; Shivdasani, P.; Frieden, A.; Chau, N.G.; Schoenfeld, J.D.; Lorch, J.H.; Uppaluri, R.; et al. Frameshift events predict anti-PD-1/L1 response in head and neck cancer. JCI Insight 2018, 3, e98811. [Google Scholar] [CrossRef] [Green Version]
lncRNA | Status of Expression | Model | Participation in HNSCC |
---|---|---|---|
MiR31HG | Upregulated | LSCC cancer tissue | Plays an oncogenic role and its overexpression can serve as a poor prognosis marker [35]. |
USP2-AS1 | In vitro model (HNSCC cell lines) | Inhibits cellular senescence, acts as an oncogenic molecule, and promotes progression through proliferation, tumor growth, and invasion [36]. | |
TM4SF19-AS1 | In vitro model (HNSCC cell lines), RNA sequencing dataset | Acts like sponge del miR-153-3p [38], associated with OS and prognosis [39]. | |
cLINC00460 | HNSCC tissues and in vitro model (HNSCC cell lines) | Regulates cancer progression and mesenchymal marker expression in CAFs [40]. | |
HCG18 | Tissue samples of HNSCC, HNSCC cell lines, and xenograft model/in vitro model (laryngeal and hypopharyngeal squamous cell carcinoma cell lines) | Promotes cell proliferation and metastasis and modulates progression through the WNT signaling pathway [41,42]. | |
HNSCAT1 | In vitro model of primary keratinocytes | Overexpression of HNSCAT1 significantly inhibited tumor progression through HNSCAT1 interaction with miR-1254 [43]. | |
LURAP1L-AS1 | In vitro model of oral fibroblasts | Activation of the canonical NF-κB pathway, inducing the transformation of NFs (normal fibroblasts) into CAFs [44]. | |
FLJ22447/lncRNA-CAF | In vitro model of oral squamous cell carcinoma (OSCC) (primary culture of CAF) and OSCC cell line | Regulate IL-33 levels and prevented p62-dependent autophagy–lysosome degradation of IL-33 [45]. | |
LOC100506114 | In vitro model of OSCC (primary culture of CAFs) | Regulates fibroblast activation and promotes OSCC cell proliferation and migration through activation of TGFbR1/X2 and migration through activation of the TGFbR1/Smad3/ERK pathway of OSCC cells [46]. | |
H19 | In vitro model of OSCC (primary culture of CAFs) | Regulates the expression of enzymes, regulatory molecules, and oncogenes and/or oncogenes that indirectly modulate pathways involved in glucometabolic processes [47,48]. | |
TIRY | In vitro model of OSCC (primary culture of CAFs) | It acts as a miRNA sponge and downregulates miR-14 expression, promoting invasion and metastasis through WNT-β-catenin activation in oral cancer cells [49]. | |
ANRIL | In vitro model (OSCC cell lines) | Encodes 3 tumor-suppressor proteins, p15INK4b, p14ARF, and p16INK4a; its transcription is a key requirement for replicative or oncogene-induced senescence and constitutes an important barrier for tumor growth [39,50]. | |
LncRNA-IL17R | In vivo model of OSCC | Regulate response to chemotherapy, and cancer progression [51]. | |
PRINS | HNSCC RNA sequencing datasets | High expression in HPV-positive patients is associated with better OS. Is involved in the immune mechanisms, in mounting an antiviral response by affecting some pattern recognition receptors (PRRs) [52]. | |
HOTAIR | Tissue samples; in vitro and in vivo models of LSCC | Highly expressed in the advanced clinical stages of LSCC [53]. Exosomal HOTAIR induces macrophages to M2 polarization by PI3K/p-AKT/AKT signaling pathway and these M2 macrophages facilitate the migration, proliferation, and EMT of LSCC in vitro and in vivo [54]. | |
MANCR | Tissue samples and in vitro model of HNSCC | Is a high-risk factor in patients with HNSCC. Is associated with peripheral nerves and the extracellular matrix for highly expressed genes and hence may play a crucial role in the occurrence of HNSCC [55]. | |
BARX1-DT KLHL7-DT LINC02154 | RNA sequencing datasets and in vitro model of LSCC | Patients with LSCC and high expression of BARX1-DT [56], KLHL7-DT, and LINC02154 [56,57] have worse OS. These lncRNAs may boost the development of an immunosuppressive TME by downregulating the expression of key immunomodulators such as CCR3, CXCL10, and CXCL9 and subsequently decreasing the recruitment of effector CD8+ T cells [56]. | |
TRG-AS1 | RNA sequencing datasets and in vitro model of HNSCC | The high expression indicates a favorable prognosis in HNSCC. Is an essential lncRNA involving TME formation. Knockdown of TRG-AS1 inhibited the expression of HLA-A, HLA-B, HLA-C, CXCL9, CXCL10, and CXCL11 in vitro [32]. | |
LINC02195 | RNA sequencing datasets, tissue samples, and in vitro model of HNSCC | There is a correlation between high LINC02195 expression and favorable prognosis in HNSCC. Is associated with genes encoding MHC-I molecules, antigen processing, and presentation and is related to an increased number of CD8+ and CD4+ T cells [58]. | |
IFITM4P | Oral leukoplakia (OL) and OSCC tissue samples, in vitro and in vivo models of OL and HNSCC | Acts as a scaffold to facilitate the recruitment of SASH1 to bind and phosphorylate TAK1 and further increase the phosphorylation of NF-κB to induce PD-L1 transcription, hence promoting immune evasion [59]. | |
LINC01123 | Tissue samples, in vitro and in vivo models of HNSCC | High expression is associated with poor prognosis in patients with HNSCC. Acts as a miR-214-3p sponge to inhibit the activation of CD8+ T cells and promote tumor immune escape by upregulating B7–H3 [60]. | |
LINC01355 | In vitro and in vivo models of OSCC | Could induce the development of OSCC via modulating the Notch signal pathway that represses CD8+ T cell activity [61]. | |
DCST1-AS1 | In vitro and in vivo models of OSCC | Contributes to cancer progression by enhancing the NF-κB signaling pathway to promote OSCC development and M2 macrophage polarization [62]. | |
CRNDE | Tissue samples, in vitro and in vivo models of OSCC | The expression is higher in stage IV of OSCC than early stages. Can exhibit a crucial role in activating CD8+ T cell exhaustion by sponge miR-545-5p to induce TIM-3 expression [63]. | |
HOTTIP | RNA sequencing datasets, in vitro/in vivo models of HNSCC | Is highly expressed in stages III-IV of HNSCC [64]. Overexpression of HOTTIP inhibits HNSCC progression and induces the polarization of M1 macrophages because it activates the TLR5/ NF-κB signaling pathway by competitively sponging miR-19a-3p and miR-19b-3p [65]. | |
FENDRR | Downregulated | In vitro model of OSCC (primary culture of CAF) | Downregulation of FENDRR can activate the PI3K/AKT pathway in NFs and increases matrix metalloproteinase 9 (MMP9) expression [66]. |
LINC00426 | Downregulated in nasopharyngeal carcinoma cell lines CNE1, HNE1, and TW03 | HNSCC RNA sequencing datasets and in vitro model with nasopharyngeal carcinoma cell lines | Contributes to the innate immune cGAS-STING signaling pathway, related to the secretion of cytokines to recruit B cells and T cells, and promoting immune cell infiltration [11]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bueno-Urquiza, L.J.; Martínez-Barajas, M.G.; Villegas-Mercado, C.E.; García-Bernal, J.R.; Pereira-Suárez, A.L.; Aguilar-Medina, M.; Bermúdez, M. The Two Faces of Immune-Related lncRNAs in Head and Neck Squamous Cell Carcinoma. Cells 2023, 12, 727. https://doi.org/10.3390/cells12050727
Bueno-Urquiza LJ, Martínez-Barajas MG, Villegas-Mercado CE, García-Bernal JR, Pereira-Suárez AL, Aguilar-Medina M, Bermúdez M. The Two Faces of Immune-Related lncRNAs in Head and Neck Squamous Cell Carcinoma. Cells. 2023; 12(5):727. https://doi.org/10.3390/cells12050727
Chicago/Turabian StyleBueno-Urquiza, Lesly J., Marcela G. Martínez-Barajas, Carlos E. Villegas-Mercado, Jonathan R. García-Bernal, Ana L. Pereira-Suárez, Maribel Aguilar-Medina, and Mercedes Bermúdez. 2023. "The Two Faces of Immune-Related lncRNAs in Head and Neck Squamous Cell Carcinoma" Cells 12, no. 5: 727. https://doi.org/10.3390/cells12050727
APA StyleBueno-Urquiza, L. J., Martínez-Barajas, M. G., Villegas-Mercado, C. E., García-Bernal, J. R., Pereira-Suárez, A. L., Aguilar-Medina, M., & Bermúdez, M. (2023). The Two Faces of Immune-Related lncRNAs in Head and Neck Squamous Cell Carcinoma. Cells, 12(5), 727. https://doi.org/10.3390/cells12050727