Two Homeobox Transcription Factors, Goosecoid and Ventx1.1, Oppositely Regulate Chordin Transcription in Xenopus Gastrula Embryos
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. DNA and RNA Preparation
2.3. Cloning of Chrd Genomic DNA
2.4. Chrd Promoter Constructs
2.5. Embryo Injection and Explant Culture
2.6. RT-PCR
2.7. Luciferase Assays
2.8. Site-Directed Mutagenesis
2.9. Chromatin Immunoprecipitation (ChIP)
2.10. ChIP-Sequencing Analysis
2.11. eGFP Fluorescence
2.12. Statistical Analyses
3. Results
3.1. Gsc and Ventx1.1 Oppositely Regulate Chrd Expression
3.2. Chrd(-2250)eGFP Reporter Shows Positive and Negative Responses to Gsc and Ventx1.1 mRNAs, Respectively, in Gastrula Whole Embryos
3.3. Chrd Promoter Contains VRE
3.4. Gsc Requires Both GRE and WRE Cis-Acting Response Elements to Activate Chrd Transcription
3.5. Tcf7 Directly Binds on the WRE Region to Activate Chrd Transcription
4. Discussion
4.1. Ventx1.1 Inhibits Chrd Transcription to Protect Ectoderm Fate
4.2. In the Organizer Region, Gsc Activates Chrd Transcription to Induce Embryonic Patterning
4.3. Chrd Promoter Contains WRE for Tcf7-Mediated Transcription Activation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, Y.; Winklbauer, R. Cell migration in the Xenopus gastrula. Wiley Interdiscip. Rev. Dev. Biol. 2018, 7, e325. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Park, S.; Lee, U.; Kim, J. The Organizer and Its Signaling in Embryonic Development. J. Dev. Biol. 2021, 9, 47. [Google Scholar] [CrossRef]
- Piccolo, S.; Sasai, Y.; Lu, B.; De Robertis, E.M. Dorsoventral patterning in Xenopus: Inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 1996, 86, 589–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niehrs, C.; Keller, R.; Cho, K.W.; De Robertis, E.M. The homeobox gene goosecoid controls cell migration in Xenopus embryos. Cell 1993, 72, 491–503. [Google Scholar] [CrossRef] [PubMed]
- Steinbeisser, H.; Fainsod, A.; Niehrs, C.; Sasai, Y.; De Robertis, E.M. The role of gsc and BMP-4 in dorsal-ventral patterning of the marginal zone in Xenopus: A loss-of-function study using antisense RNA. EMBO J. 1995, 14, 5230–5243. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kumar, V.; Li, W.; Kim, J. Ventx Family and Its Functional Similarities with Nanog: Involvement in Embryonic Development and Cancer Progression. Int. J. Mol. Sci. 2022, 23, 2741. [Google Scholar] [CrossRef]
- Fainsod, A.; Steinbeisser, H.; De Robertis, E.M. On the function of BMP-4 in patterning the marginal zone of the Xenopus embryo. EMBO J. 1994, 13, 5015–5025. [Google Scholar] [CrossRef]
- Sander, V.; Reversade, B.; De Robertis, E.M. The opposing homeobox genes Goosecoid and Vent1/2 self-regulate Xenopus patterning. EMBO J. 2007, 26, 2955–2965. [Google Scholar] [CrossRef] [Green Version]
- Umair, Z.; Kumar, V.; Goutam, R.S.; Kumar, S.; Lee, U.; Kim, J. Goosecoid Controls Neuroectoderm Specification via Dual Circuits of Direct Repression and Indirect Stimulation in Xenopus Embryos. Mol. Cells 2021, 44, 723–735. [Google Scholar] [CrossRef]
- Dosch, R.; Gawantka, V.; Delius, H.; Blumenstock, C.; Niehrs, C. Bmp-4 acts as a morphogen in dorsoventral mesoderm patterning in Xenopus. Development 1997, 124, 2325–2334. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, Q. BMP Signaling: Lighting up the Way for Embryonic Dorsoventral Patterning. Front. Cell Dev. Biol. 2021, 9, 799772. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-S.; Lee, S.-Y.; Lee, H.; Hwang, Y.-S.; Cha, S.-W.; Park, S.; Lee, J.-Y.; Park, J.-B.; Kim, S.; Park, M.-J.; et al. Direct response elements of BMP within the PV.1A promoter are essential for its transcriptional regulation during early Xenopus development. PLoS ONE 2011, 6, e22621. [Google Scholar] [CrossRef] [Green Version]
- Umair, Z.; Kumar, S.; Kim, D.H.; Rafiq, K.; Kumar, V.; Kim, S.; Park, J.-B.; Lee, J.-Y.; Lee, U.; Kim, J. Ventx1.1 as a Direct Repressor of Early Neural Gene zic3 in Xenopus laevis. Mol. Cells 2018, 41, 1061–1071. [Google Scholar] [CrossRef]
- Hwang, Y.-S.; Lee, H.-S.; Roh, D.-H.; Cha, S.-W.; Lee, S.-Y.; Seo, J.-J.; Kim, J.; Park, M.J. Active repression of organizer genes by C-terminal domain of PV.1. Biochem. Biophys. Res. Commun. 2003, 308, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.-S.; Seo, J.-J.; Cha, S.-W.; Lee, H.-S.; Lee, S.-Y.; Roh, D.-H.; Kung Hf, H.-F.; Kim, J.; Park, M.J. Antimorphic PV.1 causes secondary axis by inducing ectopic organizer. Biochem. Biophys. Res. Commun. 2002, 292, 1081–1086. [Google Scholar] [CrossRef]
- Kumar, V.; Umair, Z.; Kumar, S.; Lee, U.; Kim, J. Smad2 and Smad3 differentially modulate chordin transcription via direct binding on the distal elements in gastrula Xenopus embryos. Biochem. Biophys. Res. Commun. 2021, 559, 168–175. [Google Scholar] [CrossRef]
- Kumar, V.; Goutam, R.S.; Umair, Z.; Park, S.; Lee, U.; Kim, J. Foxd4l1.1 Negatively Regulates Chordin Transcription in Neuroectoderm of Xenopus Gastrula. Cells 2021, 10, 2779. [Google Scholar] [CrossRef]
- Kumar, S.; Umair, Z.; Kumar, V.; Kumar, S.; Lee, U.; Kim, J. Foxd4l1.1 negatively regulates transcription of neural repressor ventx1.1 during neuroectoderm formation in Xenopus embryos. Sci. Rep. 2020, 10, 16780. [Google Scholar] [CrossRef]
- Umair, Z.; Kumar, S.; Rafiq, K.; Kumar, V.; Reman, Z.U.; Lee, S.-H.; Kim, S.; Lee, J.-Y.; Lee, U.; Kim, J. Dusp1 modulates activin/smad2 mediated germ layer specification via FGF signal inhibition in Xenopus embryos. Anim. Cells Syst. 2020, 24, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Blythe, S.A.; Reid, C.D.; Kessler, D.S.; Klein, P.S. Chromatin immunoprecipitation in early Xenopus laevis embryos. Dev. Dyn. 2009, 238, 1422–1432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Liu, T.; Meyer, C.A.; Eeckhoute, J.; Johnson, D.S.; Bernstein, B.E.; Nusbaum, C.; Myers, R.M.; Brown, M.; Li, W.; et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008, 9, R137. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Kessler, D.S. Goosecoid promotes head organizer activity by direct repression of Xwnt8 in Spemann’s organizer. Development 2001, 128, 2975–2987. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Umair, Z.; Kumar, V.; Lee, U.; Choi, S.-C.; Kim, J. Ventx1.1 competes with a transcriptional activator Xcad2 to regulate negatively its own expression. BMB Rep. 2019, 52, 403–408. [Google Scholar] [CrossRef] [Green Version]
- Sasai, Y.; Lu, B.; Steinbeisser, H.; Geissert, D.; Gont, L.K.; De Robertis, E.M. Xenopus chordin: A novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 1994, 79, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Kim, A.; Li, B.; Ransick, A.; Bugacov, H.; Chen, X.; Lindström, N.; Brown, A.; Oxburgh, L.; Ren, B.; et al. A β-catenin-driven switch in TCF/LEF transcription factor binding to DNA target sites promotes commitment of mammalian nephron progenitor cells. Elife 2021, 10, e64444. [Google Scholar] [CrossRef]
- Sena, E.; Rocques, N.; Borday, C.; Muhamad Amin, H.S.; Parain, K.; Sitbon, D.; Chesneau, A.; Durand, B.C. Barhl2 maintains T cell factors as repressors and thereby switches off the Wnt/β-Catenin response driving Spemann organizer formation. Development 2019, 146, dev173112. [Google Scholar] [CrossRef] [Green Version]
- Roël, G.; Van Den Broek, O.; Destrée, O. Functional differences between Tcf1 isoforms in early Xenopus development. Int. J. Dev. Biol. 2017, 61, 29–34. [Google Scholar] [CrossRef]
- Standley, H.J.; Destrée, O.; Kofron, M.; Wylie, C.; Heasman, J. Maternal XTcf1 and XTcf4 have distinct roles in regulating Wnt target genes. Dev. Biol. 2006, 289, 318–328. [Google Scholar] [CrossRef] [Green Version]
- Wardle, F.C.; Welch, J.V.; Dale, L. Bone morphogenetic protein 1 regulates dorsal-ventral patterning in early Xenopus embryos by degrading chordin, a BMP4 antagonist. Mech. Dev. 1999, 86, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Ambrosio, A.L.; Taelman, V.F.; Lee, H.X.; Metzinger, C.A.; Coffinier, C.; De Robertis, E.M. Crossveinless-2 Is a BMP feedback inhibitor that binds Chordin/BMP to regulate Xenopus embryonic patterning. Dev. Cell 2008, 15, 248–260. [Google Scholar] [CrossRef] [Green Version]
- Yasuo, H.; Lemaire, P. Role of Goosecoid, Xnot and Wnt antagonists in the maintenance of the notochord genetic programme in Xenopus gastrulae. Development 2001, 128, 3783–3793. [Google Scholar] [CrossRef]
- Ault, K.T.; Dirksen, M.L.; Jamrich, M. A novel homeobox gene PV.1 mediates induction of ventral mesoderm in Xenopus embryos. Proc. Natl. Acad. Sci. USA 1996, 93, 6415–6420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stickney, H.L.; Imai, Y.; Draper, B.; Moens, C.; Talbot, W.S. Zebrafish bmp4 functions during late gastrulation to specify ventroposterior cell fates. Dev. Biol. 2007, 310, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Onichtchouk, D.; Gawantka, V.; Dosch, R.; Delius, H.; Hirschfeld, K.; Blumenstock, C.; Niehrs, C. The Xvent-2 homeobox gene is part of the BMP-4 signalling pathway controlling [correction of controling] dorsoventral patterning of Xenopus mesoderm. Development 1996, 122, 3045–3053. [Google Scholar] [CrossRef] [PubMed]
- Session, A.M.; Uno, Y.; Kwon, T.; Chapman, J.A.; Toyoda, A.; Takahashi, S.; Fukui, A.; Hikosaka, A.; Suzuki, A.; Kondo, M.; et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 2016, 538, 336–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinbeisser, H.; De Robertis, E.M.; Ku, M.; Kessler, D.S.; Melton, D.A. Xenopus axis formation: Induction of goosecoid by injected Xwnt-8 and activin mRNAs. Development 1993, 118, 499–507. [Google Scholar] [CrossRef]
- Cho, K.W.; Blumberg, B.; Steinbeisser, H.; De Robertis, E.M. Molecular nature of Spemann’s organizer: The role of the Xenopus homeobox gene goosecoid. Cell 1991, 67, 1111–1120. [Google Scholar] [CrossRef]
- Lemaire, P.; Gurdon, J.B. A role for cytoplasmic determinants in mesoderm patterning: Cell-autonomous activation of the goosecoid and Xwnt-8 genes along the dorsoventral axis of early Xenopus embryos. Development 1994, 120, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Chen, X.; Shim, J.-H.; Huang, Z.; Brady, N.; Hu, D.; Drapp, R.; Sigrist, K.; Glimcher, L.H.; Jones, D. The E3 ubiquitin ligase Wwp2 regulates craniofacial development through mono-ubiquitylation of Goosecoid. Nat. Cell Biol. 2011, 13, 59–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, R.M.; Lawrence, A.R.; Stottmann, R.W.; Bachiller, D.; Klingensmith, J. Chordin and noggin promote organizing centers of forebrain development in the mouse. Development 2002, 129, 4975–4987. [Google Scholar] [CrossRef]
- Bachiller, D.; Klingensmith, J.; Shneyder, N.; Tran, U.; Anderson, R.; Rossant, J.; De Robertis, E.M. The role of chordin/Bmp signals in mammalian pharyngeal development and DiGeorge syndrome. Development 2003, 130, 3567–3578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, Y.; Ploper, D.; Sosa, E.A.; Colozza, G.; Moriyama, Y.; Benitez, M.D.J.; Zhang, K.; Merkurjev, D.; De Robertis, E.M. Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis. Proc. Natl. Acad. Sci. USA 2017, 114, E3081–E3090. [Google Scholar] [CrossRef] [Green Version]
- Cadigan, K.M. TCFs and Wnt/β-catenin signaling: More than one way to throw the switch. Curr. Top. Dev. Biol. 2012, 98, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.D.; Byers, S.W. Cell-context dependent TCF/LEF expression and function: Alternative tales of repression, de-repression and activation potentials. Crit. Rev. Eukaryot. Gene Expr. 2011, 21, 207–236. [Google Scholar] [CrossRef] [Green Version]
- Steinke, F.C.; Yu, S.; Zhou, X.; He, B.; Yang, W.; Zhou, B.; Kawamoto, H.; Zhu, J.; Tan, K.; Xue, H.-H. TCF-1 and LEF-1 act upstream of Th-POK to promote the CD4(+) T cell fate and interact with Runx3 to silence Cd4 in CD8(+) T cells. Nat. Immunol. 2014, 15, 646–656. [Google Scholar] [CrossRef] [PubMed]
- Cadigan, K.M.; Waterman, M.L. TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harb. Perspect. Biol. 2012, 4, a007906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wessely, O.; Agius, E.; Oelgeschläger, M.; Pera, E.M.; De Robertis, E.M. Neural induction in the absence of mesoderm: β-catenin-dependent expression of secreted BMP antagonists at the blastula stage in Xenopus. Dev. Biol. 2001, 234, 161–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wylie, C.; Kofron, M.; Payne, C.; Anderson, R.; Hosobuchi, M.; Joseph, E.; Heasman, J. Maternal beta-catenin establishes a ‘dorsal signal’ in early Xenopus embryos. Development 1996, 122, 2987–2996. [Google Scholar] [CrossRef]
Constructs | Primer Name | Sequences (5′ to 3′) |
---|---|---|
Upstream primer | Chrd (-2250)_F | GGGGCTAGCGAACGATACTTCAAGGACAAT |
Chrd (-2239)_F | GGGGCTAGCCAAGGACAATTGATAGAGAAAA | |
Chrd (-2228)_F | GGGGCTAGCTGATAGAGAAAAGAAAGT | |
Chrd (-2206)_F | GGGGCTAGCCCACTATCCCCACTAAGATGA | |
Chrd (-2155)_F | GGGGCTAGCAGGCATACTTTGGTTTGTGTGT | |
Chrd (-2135)_F | GGGGCTAGCGTATTCTGTGTAGCAAATCA | |
Chrd (-2104)_F | GGGGCTAGCTGTTGCTTCTGTTTTCCACC | |
Chrd (-2075)_F | GGGGCTAGCTGCAAGTCGAGATCATTGTGT | |
Chrd (-1862)_F | GGGGCTAGCAAGAACACAGTGCCAGGCACT | |
Chrd (-1473)_F | GGGGCTAGCCAGTAGGTTAGATGAACTACT | |
Chrd (-790)_F | GGGGCTAGCACACTCTCTACCCCAATTCT | |
Chrd (-386)_F | GGGGCTAGCCTTGACGGCTTTGTTTGCTT | |
Chrd (-198)_F | GGGGCTAGCGTGTGGGTACAGAGCAACAA | |
Downstream primer | Chrd (-2250)_R | GGGCTCGAGTTTTGTGGTTCCAAACGTTCT |
Gene | Primer Name | Sequences (5′ to 3′) | Cycles |
---|---|---|---|
Chrd | Chrd_F | TTAGAGAGGAGAGCAACTCGGGCAAT | 25 |
Chrd_R | GTGCTCCTGTTGCGAAACTCTACAGA | ||
Gsc | Gsc_F | GCTGATTCCACCAGTGCCTCACCAG | 30 |
Gsc_R | GGTCCTGTGCCTCCTCCTCCTCCTG | ||
eGFP | eGFP_F | GACGTAAACGGCCACAAGTT | 32 |
eGFP_R | CCTCCTTGAAGTCGATGCCC | ||
Ventx1.1 | Ventx1.1_F | CCTTCAGCATGGTTCAACAG | 28 |
Ventx1.1_R | CATCCTTCTTCCTTGGCATCTCCT | ||
ODC | ODC_F | GTCAATGATGGAGTGTATGGATC | 25 |
ODC_R | TCCATTCCGCTCTCCTGAGCAC |
Mutated Sites | Primer Name | Sequences (5′ to 3′) | Cycles |
---|---|---|---|
GRE | Chrd(-2250)mGRE_F | ACGCGTGCTAGCGAGTAATACTTCAAGGACA | 20 |
Chrd(-2250)mGRE_R | TGTCCTTGAAGTATTACTCGCTAGCACGCGT | ||
WRE | Chrd(-2250)mWRE_F | GACAATTGATAGAGAGGAGAAAGTCTAT | 20 |
Chrd(-2250)mWRE_R | ATAGACTTTCTCCTCTCTATCAATTGTC | ||
VRE | Chrd(-2250/-1473)mVRE_F | TTCTTTCAGTTCCTAGGGGTTATTAATTACTTT | 20 |
Chrd(-2250/-1473)mVRE_R | AAAGTAATTAATAACCCCTAGGAACTGAAAGAA |
Site | Primer Name | Sequences (5′ to 3′) | Cycles |
---|---|---|---|
ChIP-GRE | Chrd(GRE)_F | CGATACTTCAAGGACAATTG | 25 |
Chrd(GRE)_R | AGGTGGAAAACAGAAGCAAC | ||
ChIP-WRE | Chrd(WRE)_F | CGATACTTCAAGGACAATTG | 25 |
Chrd(WRE)_R | AGGTGGAAAACAGAAGCAAC | ||
ChIP-VRE | Chrd(VRE)_F | TCGGGTCTGGTACAGCAA | 27 |
Chrd(VRE)_R | ACCAGGAGAGGGAGATGT | ||
Internal negative control (C) | Control_F | TGCGCCGACTAAGTTTCCT | 25 |
Control_R | ATTAGTGACCCATGGCAGG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, V.; Umair, Z.; Lee, U.; Kim, J. Two Homeobox Transcription Factors, Goosecoid and Ventx1.1, Oppositely Regulate Chordin Transcription in Xenopus Gastrula Embryos. Cells 2023, 12, 874. https://doi.org/10.3390/cells12060874
Kumar V, Umair Z, Lee U, Kim J. Two Homeobox Transcription Factors, Goosecoid and Ventx1.1, Oppositely Regulate Chordin Transcription in Xenopus Gastrula Embryos. Cells. 2023; 12(6):874. https://doi.org/10.3390/cells12060874
Chicago/Turabian StyleKumar, Vijay, Zobia Umair, Unjoo Lee, and Jaebong Kim. 2023. "Two Homeobox Transcription Factors, Goosecoid and Ventx1.1, Oppositely Regulate Chordin Transcription in Xenopus Gastrula Embryos" Cells 12, no. 6: 874. https://doi.org/10.3390/cells12060874
APA StyleKumar, V., Umair, Z., Lee, U., & Kim, J. (2023). Two Homeobox Transcription Factors, Goosecoid and Ventx1.1, Oppositely Regulate Chordin Transcription in Xenopus Gastrula Embryos. Cells, 12(6), 874. https://doi.org/10.3390/cells12060874