The Impact of Histone Modifications in Endometriosis Highlights New Therapeutic Opportunities
Abstract
:1. Introduction
2. The Role of HDACs and Sirtuins in the Pathogenesis of Endometriosis
3. HDACIs as Potential Novel Agents for Endometriosis Therapy
3.1. Introduction to HDACIs
3.2. Multiple HDACIs
3.3. Valproic Acid
3.4. Suberoylanilide Hydroxamic Acid
3.5. Trichostatin A
3.6. Romidepsin
3.7. Panobinostat
3.8. Alternative HDACIs
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsamantioti, E.S.; Mahdy, H. Endometriosis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Parasar, P.; Ozcan, P.; Terry, K.L. Endometriosis: Epidemiology, Diagnosis and Clinical Management. Curr. Obstet. Gynecol. Rep. 2017, 6, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Maddern, J.; Grundy, L.; Castro, J.; Brierley, S.M. Pain in Endometriosis. Front. Cell Neurosci. 2020, 14, 590823. [Google Scholar] [CrossRef] [PubMed]
- Nicolaus, K.; Reckenbeil, L.; Brauer, D.; Sczesny, R.; Diebolder, H.; Runnebaum, I.B. Cycle-related Diarrhea and Dysmenorrhea are Independent Predictors of Peritoneal Endometriosis, Cycle-related Dyschezia is an Independent Predictor of Rectal Involvement. Geburtshilfe Frauenheilkd 2020, 80, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Doroftei, B.; Maftei, R.; Ilie, O.D.; Simionescu, G.; Anton, E.; Armeanu, T.; Dabuleanu, A.M.; Mihalceanu, E.; Condac, C.; Ilea, C. Transvaginal Ultrasound as a First-Line Approach in Deep Endometriosis: A Pictorial Essay. Diagnostics 2021, 11, 444. [Google Scholar] [CrossRef] [PubMed]
- Scioscia, M.; Virgilio, B.A.; Lagana, A.S.; Bernardini, T.; Fattizzi, N.; Neri, M.; Guerriero, S. Differential Diagnosis of Endometriosis by Ultrasound: A Rising Challenge. Diagnostics 2020, 10, 848. [Google Scholar] [CrossRef]
- Mettler, L.; Schollmeyer, T.; Lehmann-Willenbrock, E.; Schuppler, U.; Schmutzler, A.; Shukla, D.; Zavala, A.; Lewin, A. Accuracy of laparoscopic diagnosis of endometriosis. JSLS 2003, 7, 15–18. [Google Scholar] [CrossRef]
- Keyhan, S.; Hughes, C.; Price, T.; Muasher, S. An Update on Surgical versus Expectant Management of Ovarian Endometriomas in Infertile Women. Biomed. Res. Int. 2015, 2015, 204792. [Google Scholar] [CrossRef]
- Brown, J.; Crawford, T.J.; Datta, S.; Prentice, A. Oral contraceptives for pain associated with endometriosis. Cochrane Database Syst. Rev. 2018, 5, CD001019. [Google Scholar] [CrossRef]
- Weisberg, E.; Fraser, I.S. Contraception and endometriosis: Challenges, efficacy, and therapeutic importance. Open Access J. Contracept. 2015, 6, 105–115. [Google Scholar] [CrossRef]
- Kupker, W.; Felberbaum, R.E.; Krapp, M.; Schill, T.; Malik, E.; Diedrich, K. Use of GnRH antagonists in the treatment of endometriosis. Reprod Biomed. Online 2002, 5, 12–16. [Google Scholar] [CrossRef]
- Bafort, C.; Beebeejaun, Y.; Tomassetti, C.; Bosteels, J.; Duffy, J.M. Laparoscopic surgery for endometriosis. Cochrane Database Syst. Rev. 2020, 10, CD011031. [Google Scholar] [CrossRef] [PubMed]
- Signorile, P.G.; Viceconte, R.; Baldi, A. New Insights in Pathogenesis of Endometriosis. Front. Med. 2022, 9, 879015. [Google Scholar] [CrossRef] [PubMed]
- Glozak, M.A.; Seto, E. Histone deacetylases and cancer. Oncogene 2007, 26, 5420–5432. [Google Scholar] [CrossRef] [PubMed]
- Korner, M.; Tibes, U. Histone deacetylase inhibitors: A novel class of anti-cancer agents on its way to the market. Prog. Med. Chem. 2008, 46, 205–280. [Google Scholar] [CrossRef]
- Ausio, J.; van Holde, K.E. Histone hyperacetylation: Its effects on nucleosome conformation and stability. Biochemistry 1986, 25, 1421–1428. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, R.W. Histone-deacetylase inhibitors: Novel drugs for the treatment of cancer. Nat. Rev. Drug. Discov. 2002, 1, 287–299. [Google Scholar] [CrossRef]
- Trapp, J.; Jung, M. The role of NAD+ dependent histone deacetylases (sirtuins) in ageing. Curr. Drug. Targets. 2006, 7, 1553–1560. [Google Scholar] [CrossRef]
- Olzscha, H.; Sheikh, S.; La Thangue, N.B. Deacetylation of chromatin and gene expression regulation: A new target for epigenetic therapy. Crit. Rev. Oncog. 2015, 20, 1–17. [Google Scholar] [CrossRef]
- Chang, H.C.; Guarente, L. SIRT1 and other sirtuins in metabolism. Trends. Endocrinol. Metab. 2014, 25, 138–145. [Google Scholar] [CrossRef]
- Ropero, S.; Esteller, M. The role of histone deacetylases (HDACs) in human cancer. Mol. Oncol. 2007, 1, 19–25. [Google Scholar] [CrossRef]
- Kouraklis, G.; Theocharis, S. Histone deacetylase inhibitors: A novel target of anticancer therapy (review). Oncol. Rep. 2006, 15, 489–494. [Google Scholar] [CrossRef]
- Gujral, P.; Mahajan, V.; Lissaman, A.C.; Ponnampalam, A.P. Histone acetylation and the role of histone deacetylases in normal cyclic endometrium. Reprod. Biol. Endocrinol. 2020, 18, 84. [Google Scholar] [CrossRef] [PubMed]
- Munro, S.K.; Farquhar, C.M.; Mitchell, M.D.; Ponnampalam, A.P. Epigenetic regulation of endometrium during the menstrual cycle. Mol. Hum. Reprod. 2010, 16, 297–310. [Google Scholar] [CrossRef]
- Tatone, C.; Di Emidio, G.; Barbonetti, A.; Carta, G.; Luciano, A.M.; Falone, S.; Amicarelli, F. Sirtuins in gamete biology and reproductive physiology: Emerging roles and therapeutic potential in female and male infertility. Hum. Reprod. Update 2018, 24, 267–289. [Google Scholar] [CrossRef]
- Psilopatis, I.; Pergaris, A.; Giaginis, C.; Theocharis, S. Histone Deacetylase Inhibitors: A Promising Therapeutic Alternative for Endometrial Carcinoma. Dis. Mark. 2021, 2021, 7850688. [Google Scholar] [CrossRef] [PubMed]
- Garmpis, N.; Damaskos, C.; Garmpi, A.; Spartalis, E.; Kalampokas, E.; Kalampokas, T.; Margonis, G.A.; Schizas, D.; Andreatos, N.; Angelou, A.; et al. Targeting histone deacetylases in endometrial cancer: A paradigm-shifting therapeutic strategy? Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 950–960. [Google Scholar] [CrossRef]
- Psilopatis, I.; Garmpis, N.; Garmpi, A.; Vrettou, K.; Sarantis, P.; Koustas, E.; Antoniou, E.A.; Dimitroulis, D.; Kouraklis, G.; Karamouzis, M.V.; et al. The Emerging Role of Histone Deacetylase Inhibitors in Cervical Cancer Therapy. Cancers 2023, 15, 2222. [Google Scholar] [CrossRef]
- Xiaomeng, X.; Ming, Z.; Jiezhi, M.; Xiaoling, F. Aberrant histone acetylation and methylation levels in woman with endometriosis. Arch. Gynecol. Obstet. 2013, 287, 487–494. [Google Scholar] [CrossRef]
- Samartzis, E.P.; Noske, A.; Samartzis, N.; Fink, D.; Imesch, P. The expression of histone deacetylase 1, but not other class I histone deacetylases, is significantly increased in endometriosis. Reprod. Sci. 2013, 20, 1416–1422. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, Z.; Qu, Q.; Li, X.; Lu, X.; Zhang, H. Exosomal lncRNA HOTAIR Promotes the Progression and Angiogenesis of Endometriosis via the miR-761/HDAC1 Axis and Activation of STAT3-Mediated Inflammation. Int. J. Nanomed. 2022, 17, 1155–1170. [Google Scholar] [CrossRef] [PubMed]
- Colon-Diaz, M.; Baez-Vega, P.; Garcia, M.; Ruiz, A.; Monteiro, J.B.; Fourquet, J.; Bayona, M.; Alvarez-Garriga, C.; Achille, A.; Seto, E.; et al. HDAC1 and HDAC2 are differentially expressed in endometriosis. Reprod. Sci. 2012, 19, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Mai, H.; Liao, Y.; Luo, S.; Wei, K.; Yang, F.; Shi, H. Histone deacetylase HDAC2 silencing prevents endometriosis by activating the HNF4A/ARID1A axis. J. Cell Mol. Med. 2021, 25, 9972–9982. [Google Scholar] [CrossRef] [PubMed]
- Veena, K.V.; Siddamalla, S.; Deenadayal, M.; Sisinthy, S.; Bhanoori, M. Histone deacetylase 1, Sirtuin 1, and Sirtuin 3 single-nucleotide polymorphisms and the risk of endometriosis in South Indian women. J. Obstet. Gynaecol. 2022, 42, 3230–3235. [Google Scholar] [CrossRef]
- Kim, T.H.; Yoo, J.Y.; Choi, K.C.; Shin, J.H.; Leach, R.E.; Fazleabas, A.T.; Young, S.L.; Lessey, B.A.; Yoon, H.G.; Jeong, J.W. Loss of HDAC3 results in nonreceptive endometrium and female infertility. Sci. Transl. Med. 2019, 11, eaaf7533. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Young, S.L.; Sasaki, T.; Deaton, J.L.; Schammel, D.P.; Palomino, W.A.; Jeong, J.W.; Lessey, B.A. Role of SIRT1 and Progesterone Resistance in Normal and Abnormal Endometrium. J. Clin. Endocrinol. Metab. 2022, 107, 788–800. [Google Scholar] [CrossRef]
- Wang, M.; Wu, Y.; He, Y.; Liu, J.; Chen, Y.; Huang, J.; Qi, G.; Li, P. SIRT1 upregulation promotes epithelial-mesenchymal transition by inducing senescence escape in endometriosis. Sci. Rep. 2022, 12, 12302. [Google Scholar] [CrossRef]
- Mvunta, D.H.; Miyamoto, T.; Asaka, R.; Yamada, Y.; Ando, H.; Higuchi, S.; Ida, K.; Kashima, H.; Shiozawa, T. Overexpression of SIRT1 is Associated With Poor Outcomes in Patients With Ovarian Carcinoma. Appl. Immunohistochem. Mol. Morphol. 2017, 25, 415–421. [Google Scholar] [CrossRef]
- Teasley, H.E.; Beesley, A.; Kim, T.H.; Risinger, J.; Young, S.L.; Jeong, J.W.; Schammel, D.P.; Lessey, B.A.; Elder, J.W.; Puls, L. Differential Expression of KRAS and SIRT1 in Ovarian Cancers with and Without Endometriosis. Reprod. Sci. 2020, 27, 145–151. [Google Scholar] [CrossRef]
- Yoo, J.Y.; Kim, T.H.; Fazleabas, A.T.; Palomino, W.A.; Ahn, S.H.; Tayade, C.; Schammel, D.P.; Young, S.L.; Jeong, J.W.; Lessey, B.A. KRAS Activation and over-expression of SIRT1/BCL6 Contributes to the Pathogenesis of Endometriosis and Progesterone Resistance. Sci. Rep. 2017, 7, 6765. [Google Scholar] [CrossRef]
- Sansone, A.M.; Hisrich, B.V.; Young, R.B.; Abel, W.F.; Bowens, Z.; Blair, B.B.; Funkhouser, A.T.; Schammel, D.P.; Green, L.J.; Lessey, B.A.; et al. Evaluation of BCL6 and SIRT1 as Non-Invasive Diagnostic Markers of Endometriosis. Curr. Issues Mol. Biol. 2021, 43, 1350–1360. [Google Scholar] [CrossRef]
- Taguchi, A.; Wada-Hiraike, O.; Kawana, K.; Koga, K.; Yamashita, A.; Shirane, A.; Urata, Y.; Kozuma, S.; Osuga, Y.; Fujii, T. Resveratrol suppresses inflammatory responses in endometrial stromal cells derived from endometriosis: A possible role of the sirtuin 1 pathway. J. Obstet. Gynaecol. Res. 2014, 40, 770–778. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Fernandez, R.; Martin-Ramirez, R.; Rotoli, D.; Hernandez, J.; Naftolin, F.; Martin-Vasallo, P.; Palumbo, A.; Avila, J. Granulosa-Lutein Cell Sirtuin Gene Expression Profiles Differ between Normal Donors and Infertile Women. Int. J. Mol. Sci. 2019, 21, 295. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Kitada, M.; Koya, D. The impact of mitochondrial quality control by Sirtuins on the treatment of type 2 diabetes and diabetic kidney disease. Biochim. Biophys. Acta Mol. Basis. Dis. 2020, 1866, 165756. [Google Scholar] [CrossRef] [PubMed]
- Kaleler, I.; Acikgoz, A.S.; Gezer, A.; Uslu, E. A potential role of Sirtuin3 and its target enzyme activities in patients with ovarian endometrioma. Gynecol. Endocrinol. 2021, 37, 1035–1040. [Google Scholar] [CrossRef] [PubMed]
- Chadchan, S.B.; Popli, P.; Ambati, C.R.; Tycksen, E.; Han, S.J.; Bulun, S.E.; Putluri, N.; Biest, S.W.; Kommagani, R. Gut microbiota-derived short-chain fatty acids protect against the progression of endometriosis. Life Sci. Alliance 2021, 4, e202101224. [Google Scholar] [CrossRef]
- Kawano, Y.; Nasu, K.; Li, H.; Tsuno, A.; Abe, W.; Takai, N.; Narahara, H. Application of the histone deacetylase inhibitors for the treatment of endometriosis: Histone modifications as pathogenesis and novel therapeutic target. Hum. Reprod. 2011, 26, 2486–2498. [Google Scholar] [CrossRef]
- Kawano, Y.; Nasu, K.; Hijiya, N.; Tsukamoto, Y.; Amada, K.; Abe, W.; Kai, K.; Moriyama, M.; Narahara, H. CCAAT/enhancer-binding protein alpha is epigenetically silenced by histone deacetylation in endometriosis and promotes the pathogenesis of endometriosis. J. Clin. Endocrinol. Metab. 2013, 98, E1474–E1482. [Google Scholar] [CrossRef]
- Thurn, K.T.; Thomas, S.; Moore, A.; Munster, P.N. Rational therapeutic combinations with histone deacetylase inhibitors for the treatment of cancer. Future Oncol. 2011, 7, 263–283. [Google Scholar] [CrossRef]
- Kai, K.; Nasu, K.; Kawano, Y.; Aoyagi, Y.; Tsukamoto, Y.; Hijiya, N.; Abe, W.; Okamoto, M.; Moriyama, M.; Narahara, H. Death receptor 6 is epigenetically silenced by histone deacetylation in endometriosis and promotes the pathogenesis of endometriosis. Am. J. Reprod. Immunol. 2013, 70, 485–496. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Zhang, Y.; Guo, S.W. Valproic acid and progestin inhibit lesion growth and reduce hyperalgesia in experimentally induced endometriosis in rats. Reprod. Sci. 2012, 19, 360–373. [Google Scholar] [CrossRef]
- Zhao, T.; Liu, X.; Zhen, X.; Guo, S.W. Levo-tetrahydropalmatine retards the growth of ectopic endometrial implants and alleviates generalized hyperalgesia in experimentally induced endometriosis in rats. Reprod. Sci. 2011, 18, 28–45. [Google Scholar] [CrossRef] [PubMed]
- Tandon, N.; Ramakrishnan, V.; Kumar, S.K. Clinical use and applications of histone deacetylase inhibitors in multiple myeloma. Clin. Pharmacol. 2016, 8, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Marks, P.A.; Breslow, R. Dimethyl sulfoxide to vorinostat: Development of this histone deacetylase inhibitor as an anticancer drug. Nat. Biotechnol. 2007, 25, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.I.; Seo, S.K.; Chon, S.J.; Kim, G.H.; Lee, I.; Yun, B.H. Changes in the Expression of TBP-2 in Response to Histone Deacetylase Inhibitor Treatment in Human Endometrial Cells. Int. J. Mol. Sci. 2021, 22, 1427. [Google Scholar] [CrossRef]
- Zheng, Y.; Khan, Z.; Zanfagnin, V.; Correa, L.F.; Delaney, A.A.; Daftary, G.S. Epigenetic Modulation of Collagen 1A1: Therapeutic Implications in Fibrosis and Endometriosis. Biol. Reprod. 2016, 94, 87. [Google Scholar] [CrossRef]
- Tsuji, N.; Kobayashi, M.; Nagashima, K.; Wakisaka, Y.; Koizumi, K. A new antifungal antibiotic, trichostatin. J. Antibiot. 1976, 29, 1–6. [Google Scholar] [CrossRef]
- Wu, Y.; Starzinski-Powitz, A.; Guo, S.W. Trichostatin A, a histone deacetylase inhibitor, attenuates invasiveness and reactivates E-cadherin expression in immortalized endometriotic cells. Reprod. Sci. 2007, 14, 374–382. [Google Scholar] [CrossRef]
- Wu, Y.; Guo, S.W. Peroxisome proliferator-activated receptor-gamma and retinoid X receptor agonists synergistically suppress proliferation of immortalized endometrial stromal cells. Fertil. Steril. 2009, 91 (Suppl. S5), 2142–2147. [Google Scholar] [CrossRef]
- Wu, Y.; Starzinski-Powitz, A.; Guo, S.W. Constitutive and tumor necrosis factor-alpha-stimulated activation of nuclear factor-kappaB in immortalized endometriotic cells and their suppression by trichostatin A. Gynecol Obstet Investig. 2010, 70, 23–33. [Google Scholar] [CrossRef]
- Seo, S.K.; Lee, J.H.; Chon, S.J.; Yun, B.H.; Cho, S.; Choi, Y.S.; Lee, B.S. Trichostatin A Induces NAG-1 Expression and Apoptosis in Human Endometriotic Stromal Cells. Reprod. Sci. 2018, 25, 1349–1356. [Google Scholar] [CrossRef]
- Lu, Y.; Nie, J.; Liu, X.; Zheng, Y.; Guo, S.W. Trichostatin A, a histone deacetylase inhibitor, reduces lesion growth and hyperalgesia in experimentally induced endometriosis in mice. Hum. Reprod. 2010, 25, 1014–1025. [Google Scholar] [CrossRef] [PubMed]
- VanderMolen, K.M.; McCulloch, W.; Pearce, C.J.; Oberlies, N.H. Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): A natural product recently approved for cutaneous T-cell lymphoma. J. Antibiot. 2011, 64, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Imesch, P.; Fink, D.; Fedier, A. Romidepsin reduces histone deacetylase activity, induces acetylation of histones, inhibits proliferation, and activates apoptosis in immortalized epithelial endometriotic cells. Fertil. Steril. 2010, 94, 2838–2842. [Google Scholar] [CrossRef] [PubMed]
- Imesch, P.; Samartzis, E.P.; Schneider, M.; Fink, D.; Fedier, A. Inhibition of transcription, expression, and secretion of the vascular epithelial growth factor in human epithelial endometriotic cells by romidepsin. Fertil. Steril. 2011, 95, 1579–1583. [Google Scholar] [CrossRef]
- Imesch, P.; Samartzis, E.P.; Dedes, K.J.; Fink, D.; Fedier, A. Histone deacetylase inhibitors down-regulate G-protein-coupled estrogen receptor and the GPER-antagonist G-15 inhibits proliferation in endometriotic cells. Fertil. Steril. 2013, 100, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Moore, D. Panobinostat (Farydak): A Novel Option for the Treatment of Relapsed Or Relapsed and Refractory Multiple Myeloma. Pharm. Ther. 2016, 41, 296–300. [Google Scholar]
- Correa, L.F.; Zheng, Y.; Delaney, A.A.; Khan, Z.; Shenoy, C.C.; Daftary, G.S. TGF-beta Induces Endometriotic Progression via a Noncanonical, KLF11-Mediated Mechanism. Endocrinology 2016, 157, 3332–3343. [Google Scholar] [CrossRef]
- Eisalou, M.Y.; Farahpour, M.R. Effectiveness of Gamma Oryzanol on prevention of surgical induced endometriosis development in rat model. Sci. Rep. 2022, 12, 2816. [Google Scholar] [CrossRef]
- Li, Y.; An, M.; Fu, X.; Meng, X.; Ma, Y.; Liu, H.; Li, Q.; Xu, H.; Chen, J. Bushen Wenyang Huayu Decoction inhibits autophagy by regulating the SIRT1-FoXO-1 pathway in endometriosis rats. J. Ethnopharmacol. 2023, 308, 116277. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, X.; Zhang, L.; Xia, Q.; Peng, Y.; Zhang, H.; Yan, D.; Yang, Z.; Li, J. Iron overload inhibits cell proliferation and promotes autophagy via PARP1/SIRT1 signaling in endometriosis and adenomyosis. Toxicology 2022, 465, 153050. [Google Scholar] [CrossRef]
- Li, Y.; Seto, E. HDACs and HDAC Inhibitors in Cancer Development and Therapy. Cold Spring Harb. Perspect Med. 2016, 6, a026831. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Eom, G.H. HDAC and HDAC Inhibitor: From Cancer to Cardiovascular Diseases. Chonnam. Med. J. 2016, 52, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Garmpis, N.; Damaskos, C.; Dimitroulis, D.; Kouraklis, G.; Garmpi, A.; Sarantis, P.; Koustas, E.; Patsouras, A.; Psilopatis, I.; Antoniou, E.A.; et al. Clinical Significance of the Histone Deacetylase 2 (HDAC-2) Expression in Human Breast Cancer. J. Pers. Med. 2022, 12, 1672. [Google Scholar] [CrossRef] [PubMed]
- Lourenco de Freitas, N.; Deberaldini, M.G.; Gomes, D.; Pavan, A.R.; Sousa, A.; Dos Santos, J.L.; Soares, C.P. Histone Deacetylase Inhibitors as Therapeutic Interventions on Cervical Cancer Induced by Human Papillomavirus. Front. Cell Dev. Biol. 2020, 8, 592868. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, S.D.; Kumar Halder, A.; Mukherjee, U.; Kumar, D.; Dey, Y.N. Potential of histone deacetylase inhibitors in the control and regulation of prostate, breast and ovarian cancer. Front. Chem. 2022, 10, 948217. [Google Scholar] [CrossRef] [PubMed]
- Olaniyi, K.S.; Bashir, A.M.; Areloegbe, S.E.; Sabinari, I.W.; Akintayo, C.O.; Oniyide, A.A.; Aturamu, A. Short chain fatty acid, acetate restores ovarian function in experimentally induced PCOS rat model. PLoS ONE 2022, 17, e0272124. [Google Scholar] [CrossRef] [PubMed]
- Sunita, S.; Singh, P.K.; Onteru, S.K.; Singh, D. Histone deacetylase: A potential therapeutic target for ovarian dysfunction. Front. Biosci. (Landmark Ed.) 2018, 23, 512–534. [Google Scholar] [CrossRef]
- Psilopatis, I.; Karniadakis, I.; Danos, K.S.; Vrettou, K.; Michaelidou, K.; Mavridis, K.; Agelaki, S.; Theocharis, S. May EPH/Ephrin Targeting Revolutionize Lung Cancer Treatment? Int. J. Mol. Sci. 2022, 24, 93. [Google Scholar] [CrossRef]
- Psilopatis, I.; Kokkali, S.; Palamaris, K.; Digklia, A.; Vrettou, K.; Theocharis, S. Organoids: A New Chapter in Sarcoma Diagnosis and Treatment. Int. J. Mol. Sci. 2022, 23, 1271. [Google Scholar] [CrossRef]
- Psilopatis, I.; Pergaris, A.; Vrettou, K.; Theocharis, S.; Troungos, C. Thymic Epithelial Neoplasms: Focusing on the Epigenetic Alterations. Int. J. Mol. Sci. 2022, 23, 4045. [Google Scholar] [CrossRef]
- Psilopatis, I.; Pergaris, A.; Vrettou, K.; Tsourouflis, G.; Theocharis, S. The EPH/Ephrin System in Gynecological Cancers: Focusing on the Roots of Carcinogenesis for Better Patient Management. Int. J. Mol. Sci. 2022, 23, 3249. [Google Scholar] [CrossRef] [PubMed]
- Psilopatis, I.; Souferi-Chronopoulou, E.; Vrettou, K.; Troungos, C.; Theocharis, S. EPH/Ephrin-Targeting Treatment in Breast Cancer: A New Chapter in Breast Cancer Therapy. Int. J. Mol. Sci. 2022, 23, 5275. [Google Scholar] [CrossRef] [PubMed]
- Psilopatis, I.; Sykaras, A.G.; Mandrakis, G.; Vrettou, K.; Theocharis, S. Patient-Derived Organoids: The Beginning of a New Era in Ovarian Cancer Disease Modeling and Drug Sensitivity Testing. Biomedicines 2022, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Psilopatis, I.; Vrettou, K.; Fleckenstein, F.N.; Theocharis, S. The Role of Peroxisome Proliferator-Activated Receptors in Preeclampsia. Cells 2023, 12, 647. [Google Scholar] [CrossRef] [PubMed]
- Yoost, J. Understanding benefits and addressing misperceptions and barriers to intrauterine device access among populations in the United States. Patient Prefer. Adherence 2014, 8, 947–957. [Google Scholar] [CrossRef]
HDAC | Role in Endometriosis | References |
---|---|---|
HDAC1 | Significantly higher basal HDAC1 gene expression levels in endometriotic versus endometrial stromal cells | [32] |
Significantly downregulated HDAC1 mRNA expression levels in ectopic endometrium | [29] | |
Significantly elevated immunoreactivity score levels of HDAC1 in endometriosis | [30] | |
Positive correlation of HDAC1 with the expression of estrogen receptor-α and estrogen receptor-β Negative correlation of HDAC1 with the expression of the epithelial progesterone expression | [30] | |
Significant HDAC1 protein overexpression in dermal, ovarian, and gastrointestinal lesions | [32] | |
rs1741981 polymorphism significantly exponentiates the risk of endometriosis in the South Indian population | [34] | |
HDAC2 | Significantly higher basal HDAC2 gene expression levels in endometriotic versus endometrial stromal cells | [32] |
Significant HDAC2 mRNA upregulation in eutopic endometrium | [29] | |
Significantly higher HDAC2 protein levels in endometriosis tissues | [33] | |
Significant HDAC2 protein overexpression in skin lesions and endometrium from patients with endometriosis | [32] | |
HDAC3 | Low HDAC3 protein levels in eutopic endometrium of infertile women with endometriosis | [35] |
Sirtuin 1 | Significantly decreased Sirtuin 1 mRNA expression levels in eutopic endometrium | [29] |
Significant Sirtuin 1 protein overexpression in both epithelial and stromal cells of endometriosis patients | [36,40] | |
Significantly higher Sirtuin 1 protein levels in sera of women with advanced stage endometriosis | [41] | |
Further disease aggravation | [36] | |
Promotion of epithelial-mesenchymal transition during disease progression | [37] | |
More profound in endometriosis with ovarian carcinoma Correlation with KRAS expression | [38,39] | |
Positive correlation with the expression of BCL6 throughout the menstrual cycle phases | [40] | |
Sirtuin 3 | Significantly decreased Sirtuin 3 protein expression levels in endometrioma tissue samples | [45] |
Class | HDACI | Target HDAC |
---|---|---|
Hydroxamic acids | Trichostatin A Suberoylanilide hydroxamic acid | Pan Pan |
Short-chain fatty acids | N-butyrate Valproic Acid | I, II I, IIa |
Benzamides | Entinostat | I |
Cyclic peptides | Apicidin Romidepsin | I I |
HDACI | Role in Endometriosis | References |
---|---|---|
N-butyrate | Histone H3 hyperacetylation Cell viability inhibition Smaller and fewer endometriotic lesions with a thinner stroma and epithelium | [46] |
Entinostat | Histone H3 hyperacetylation Cell viability inhibition Smaller and fewer endometriotic lesions with a thinner stroma and epithelium | [46] |
Apicidin | Cell proliferation repression Cell cycle arrest Apoptosis induction Histone H3/H4 hyperacetylation in the promoter regions of cycle checkpoint kinase 2, p16INK4a, p21Waf1/Cip1, and p27Kip1 Reduced Bcl-2 and Bcl-xL protein expression | [47] |
Valproic acid | Cell proliferation repression Cell cycle arrest Apoptosis induction Histone H3/H4 hyperacetylation in the promoter regions of cycle checkpoint kinase 2, C/EBPα, p16INK4a, p21Waf1/Cip1, and p27Kip1 Reduced Bcl-2 and Bcl-xL protein expression Enhanced DR6 expression Significantly smaller lesions, better response to deleterious thermal stimuli, and increase in weight gain after combination with progesterone Significantly smaller lesions, better response to noxious thermal stimuli, reduced immunoreactivity to HDAC2 in dorsal root ganglia, as well as generalized hyperalgesia alleviation after combinational treatment with levo-tetrahydropalmatine | [47,48,50,51,52] |
Vorinostat | Cell viability inhibition Smaller and fewer lesions with a thinner stroma and epithelium Cell cycle arrest Apoptosis induction Histone H3/H4 hyperacetylation in the promoter regions of cycle checkpoint kinase 2, p16INK4a, p21Waf1/Cip1, and p27Kip1 Reduced Bcl-2 and Bcl-xL protein expression Significant TBP-2 upregulation Reduction of the TRX/TBP-2 ratio Collagen 1A1 activation Significant fibrotic disease progression Decreased GPER1 expression | [46,47,55,56] |
Trichostatin A | Histone H3 hyperacetylation Cell viability inhibition Smaller and fewer lesions with a thinner stroma and epithelium Less invasiveness E-cadherin reactivation Elevated PPARγ expression NF-κB attenuation Suppression of p65 phosphorylation and nuclear translocation More adequate response to nocifensive stimuli Induced nonsteroidal anti-inflammatory drug-activated gene-1 mRNA and protein expression Lower immunoreactivity to TRPV1 in eutopic endometrial tissue, to PKC1 in ectopic endometrium, and to PGP 9.5 in the vagina | [46,58,59,60,61,62] |
Romidepsin | p21 upregulation Low cyclin B1 and D1 levels Reduced cell proliferation Apoptotic cell death activation VEGF repression HIF-1α downregulation in cobalt chloride-pretreated cells Decreased GPER1 expression | [64,65,66] |
Garcinol | Regulation of Klf11-mediated transcription, reduced endometriosis progression and low lesional human CYP3A expression after combination with TGFβR1I | [68] |
Gamma-oryzanol | Elevated Sirtuin 1 protein levels | [69] |
BWHD | Autophagy downregulation through Sirtuin 1 upregulation | [70] |
Ferric ammonium citrate | Elevated Sirtuin 1 levels | [71] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Psilopatis, I.; Vrettou, K.; Fleckenstein, F.N.; Theocharis, S. The Impact of Histone Modifications in Endometriosis Highlights New Therapeutic Opportunities. Cells 2023, 12, 1227. https://doi.org/10.3390/cells12091227
Psilopatis I, Vrettou K, Fleckenstein FN, Theocharis S. The Impact of Histone Modifications in Endometriosis Highlights New Therapeutic Opportunities. Cells. 2023; 12(9):1227. https://doi.org/10.3390/cells12091227
Chicago/Turabian StylePsilopatis, Iason, Kleio Vrettou, Florian Nima Fleckenstein, and Stamatios Theocharis. 2023. "The Impact of Histone Modifications in Endometriosis Highlights New Therapeutic Opportunities" Cells 12, no. 9: 1227. https://doi.org/10.3390/cells12091227
APA StylePsilopatis, I., Vrettou, K., Fleckenstein, F. N., & Theocharis, S. (2023). The Impact of Histone Modifications in Endometriosis Highlights New Therapeutic Opportunities. Cells, 12(9), 1227. https://doi.org/10.3390/cells12091227