Proteomic Blood Profiles Obtained by Totally Blind Biological Clustering in Stable and Exacerbated COPD Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethics
2.2. Study Population
2.3. Clinical and General Data
2.4. Blood Sample Collection
2.5. Label-Free Liquid Chromatography/Tandem Mass Spectrometry (LC–MS/MS)
2.6. Statistical Analysis and Data Processing
2.7. Proteomic Data Preprocessing
2.8. Biological Cluster Generation and Evaluation
3. Results
3.1. Subject Characteristics
3.2. Characteristics of the Detected Proteins
3.3. Clinical-Blind Clusters under Evaluation
3.3.1. COPD Diagnosis in a Stable Condition
3.3.2. Identification of Exacerbation Episodes
3.4. Key Biological Processes Differentiating AECOPD from Clinical Stability According to Clinically Blinded Clusters
4. Discussion
4.1. The Clinically Blind Approach
4.2. Clinical Usefulness
4.2.1. COPD Diagnosis
4.2.2. Identification of AECOPD
4.2.3. Main Protein Groups Differentiating Exacerbations from Stability According to Biological Clusters
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, D.; Agusti, A.; Anzueto, A.; Barnes, P.J.; Bourbeau, J.; Celli, B.R.; Criner, G.J.; Frith, P.; Halpin, D.M.G.; Han, M.; et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease: The GOLD Science Committee Report 2019. Eur. Respir. J. 2019, 53, 1900164. [Google Scholar] [CrossRef]
- Safiri, S.; Carson-Chahhoud, K.; Noori, M.; Nejadghaderi, S.A.; Sullman, M.J.M.; Heris, J.A.; Ansarin, K.; Mansournia, M.A.; Collins, G.S.; Kolahi, A.-A.; et al. Burden of Chronic Obstructive Pulmonary Disease and Its Attributable Risk Factors in 204 Countries and Territories, 1990–2019: Results from the Global Burden of Disease Study 2019. BMJ 2022, 378, e069679. [Google Scholar] [CrossRef] [PubMed]
- Soler-Cataluña, J.J.; Piñera, P.; Trigueros, J.A.; Calle, M.; Casanova, C.; Cosío, B.G.; López-Campos, J.L.; Molina, J.; Almagro, P.; Gómez, J.-T.; et al. Spanish COPD Guidelines (GesEPOC) 2021 Update. Diagnosis and Treatment of COPD Exacerbation Syndrome. Arch. Bronconeumol. 2022, 58, 159–170. [Google Scholar] [CrossRef]
- Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease: 2024 Report; Global Initiative for Chronic Obstructive Lung Disease: Philadelphia, PA, USA, 2024; ISBN 9798883921475. [Google Scholar]
- McDonald, V.M.; Fingleton, J.; Agusti, A.; Hiles, S.A.; Clark, V.L.; Holland, A.E.; Marks, G.B.; Bardin, P.P.; Beasley, R.; Pavord, I.D.; et al. Treatable Traits: A New Paradigm for 21st Century Management of Chronic Airway Diseases: Treatable Traits Down under International Workshop Report. Eur. Respir. J. 2019, 53, 1802058. [Google Scholar] [CrossRef]
- Miravitlles, M.; Calle, M.; Soler-Cataluña, J.J. GesEPOC 2021: One More Step Towards Personalized Treatment of COPD. Arch. Bronconeumol. 2021, 57, 9–10. [Google Scholar] [CrossRef]
- Miravitlles, M.; Calle, M.; Molina, J.; Almagro, P.; Gómez, J.-T.; Trigueros, J.A.; Cosío, B.G.; Casanova, C.; López-Campos, J.L.; Riesco, J.A.; et al. Spanish COPD guidelines (GesEPOC) 2021: Updated pharmacological treatment of stable COPD. Arch. Bronconeumol. 2022, 58, T69–T81. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Hoopmann, M.R.; Castaldi, P.J.; Simonsen, K.A.; Midha, M.K.; Cho, M.H.; Criner, G.J.; Bueno, R.; Liu, J.; Moritz, R.L.; et al. Lung Proteomic Biomarkers Associated with Chronic Obstructive Pulmonary Disease. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2021, 321, L1119–L1130. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Liu, Y.; Yang, Q.; Han, S.; Zhang, H. Prognostic Biomarkers Based on Proteomic Technology in COPD: A Recent Review. Int. J. Chron. Obstruct. Pulmon. Dis. 2023, 18, 1353–1365. [Google Scholar] [CrossRef]
- Rossi, R.; De Palma, A.; Benazzi, L.; Riccio, A.M.; Canonica, G.W.; Mauri, P. Biomarker Discovery in Asthma and COPD by Proteomic Approaches. Proteom. Clin. Appl. 2014, 8, 901–915. [Google Scholar] [CrossRef]
- Stockley, R.A.; Halpin, D.M.G.; Celli, B.R.; Singh, D. Chronic Obstructive Pulmonary Disease Biomarkers and Their Interpretation. Am. J. Respir. Crit. Care Med. 2019, 199, 1195–1204. [Google Scholar] [CrossRef]
- Serban, K.A.; Pratte, K.A.; Bowler, R.P. Protein Biomarkers for COPD Outcomes. Chest 2021, 159, 2244–2253. [Google Scholar] [CrossRef]
- Gea, J.; Enríquez-Rodríguez, C.J.; Agranovich, B.; Pascual-Guardia, S. Update on Metabolomic Findings in COPD Patients. ERJ Open Res. 2023, 9, 00180-2023. [Google Scholar] [CrossRef]
- Gea, J.; Pascual, S.; Castro-Acosta, A.; Hernández-Carcereny, C.; Castelo, R.; Márquez-Martín, E.; Montón, C.; Palou, A.; Faner, R.; Furlong, L.I.; et al. The BIOMEPOC Project: Personalized Biomarkers and Clinical Profiles in Chronic Obstructive Pulmonary Disease. Arch. Bronconeumol. 2019, 55, 93–99. [Google Scholar] [CrossRef]
- Millares, L.; Pascual, S.; Montón, C.; García-Núñez, M.; Lalmolda, C.; Faner, R.; Casadevall, C.; Setó, L.; Capilla, S.; Moreno, A.; et al. Relationship between the Respiratory Microbiome and the Severity of Airflow Limitation, History of Exacerbations and Circulating Eosinophils in COPD Patients. BMC Pulm. Med. 2019, 19, 112. [Google Scholar] [CrossRef]
- Gartman, E.J.; Mulpuru, S.S.; Mammen, M.J.; Alexander, P.E.; Nici, L.; Aaron, S.D.; Ruminjo, J.K.; Thomson, C.C. Summary for Clinicians: Clinical Practice Guideline on Pharmacologic Management of Chronic Obstructive Pulmonary Disease. Ann. Am. Thorac. Soc. 2021, 18, 11–16. [Google Scholar] [CrossRef]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef]
- Castellsagué, J.; Burgos, F.; Sunyer, J.; Barberà, J.A.; Roca, J. Prediction Equations for Forced Spirometry from European Origin Populations. Barcelona Collaborative Group on Reference Values for Pulmonary Function Testing and the Spanish Group of the European Community Respiratory Health Survey. Respir. Med. 1998, 92, 401–407. [Google Scholar] [CrossRef]
- Roca, J.; Rodriguez-Roisin, R.; Cobo, E.; Burgos, F.; Perez, J.; Clausen, J.L. Single-Breath Carbon Monoxide Diffusing Capacity Prediction Equations from a Mediterranean Population. Am. Rev. Respir. Dis. 1990, 141, 1026–1032. [Google Scholar] [CrossRef]
- Enríquez-Rodríguez, C.J.; Casadevall, C.; Faner, R.; Castro-Costa, A.; Pascual-Guàrdia, S.; Seijó, L.; López-Campos, J.L.; Peces-Barba, G.; Monsó, E.; Barreiro, E.; et al. COPD: Systemic Proteomic Profiles in Frequent and Infrequent Exacerbators. ERJ Open Res. 2024, 10, 00004-2024. [Google Scholar] [CrossRef]
- Puig-Vilanova, E.; Ausin, P.; Martinez-Llorens, J.; Gea, J.; Barreiro, E. Do Epigenetic Events Take Place in the Vastus Lateralis of Patients with Mild Chronic Obstructive Pulmonary Disease? PLoS ONE 2014, 9, e102296. [Google Scholar] [CrossRef]
- Ortega, F.; Toral, J.; Cejudo, P.; Villagomez, R.; Sánchez, H.; Castillo, J.; Montemayor, T. Comparison of Effects of Strength and Endurance Training in Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2002, 166, 669–674. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Dongre, A. Proper Imputation of Missing Values in Proteomics Datasets for Differential Expression Analysis. Brief. Bioinform. 2021, 22, bbaa112. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Monti, S.; Tamayo, P.; Mesirov, J.; Golub, T. Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data. Mach. Learn. 2003, 52, 91–118. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- The UniProt Consortium. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, J.D.; Mac Namee, B.; D’Arcy, A. Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies; The MIT Press: Cambridge, MA, USA, 2015; ISBN 978-0-262-02944-5. [Google Scholar]
- Uwagboe, I.; Adcock, I.M.; Lo Bello, F.; Caramori, G.; Mumby, S. New Drugs under Development for COPD. Minerva Med. 2022, 113, 471–496. [Google Scholar] [CrossRef] [PubMed]
- Castaldi, P.J.; Dy, J.; Ross, J.; Chang, Y.; Washko, G.R.; Curran-Everett, D.; Williams, A.; Lynch, D.A.; Make, B.J.; Crapo, J.D.; et al. Cluster Analysis in the COPDGene Study Identifies Subtypes of Smokers with Distinct Patterns of Airway Disease and Emphysema. Thorax 2014, 69, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Gower, A.C.; Steiling, K.; Brothers, J.F.; Lenburg, M.E.; Spira, A. Transcriptomic Studies of the Airway Field of Injury Associated with Smoking-Related Lung Disease. Proc. Am. Thorac. Soc. 2011, 8, 173–179. [Google Scholar] [CrossRef]
- Ghosh, N.; Dutta, M.; Singh, B.; Banerjee, R.; Bhattacharyya, P.; Chaudhury, K. Transcriptomics, Proteomics and Metabolomics Driven Biomarker Discovery in COPD: An Update. Expert Rev. Mol. Diagn. 2016, 16, 897–913. [Google Scholar] [CrossRef]
- Terracciano, R.; Pelaia, G.; Preianò, M.; Savino, R. Asthma and COPD Proteomics: Current Approaches and Future Directions. Proteom. Clin. Appl. 2015, 9, 203–220. [Google Scholar] [CrossRef] [PubMed]
- Zarei, S.; Mirtar, A.; Morrow, J.D.; Castaldi, P.J.; Belloni, P.; Hersh, C.P. Subtyping Chronic Obstructive Pulmonary Disease Using Peripheral Blood Proteomics. Chronic Obstr. Pulm. Dis. 2017, 4, 97–108. [Google Scholar] [CrossRef]
- Koba, T.; Takeda, Y.; Narumi, R.; Shiromizu, T.; Nojima, Y.; Ito, M.; Kuroyama, M.; Futami, Y.; Takimoto, T.; Matsuki, T.; et al. Proteomics of Serum Extracellular Vesicles Identifies a Novel COPD Biomarker, Fibulin-3 from Elastic Fibres. ERJ Open Res. 2021, 7, 00658-2020. [Google Scholar] [CrossRef]
- Cui, M.; Cheng, C.; Zhang, L. High-Throughput Proteomics: A Methodological Mini-Review. Lab. Investig. 2022, 102, 1170–1181. [Google Scholar] [CrossRef]
- Jaeger, A.; Banks, D. Cluster Analysis: A Modern Statistical Review. WIREs Comput. Stat. 2022, 15, e1597. [Google Scholar] [CrossRef]
- Corlateanu, A.; Mendez, Y.; Wang, Y.; de Jesus Avendaño Garnica, R.; Botnaru, V.; Siafakas, N. Chronic Obstructive Pulmonary Disease and Phenotypes: A State-of-the-Art. Pulmonology 2020, 26, 95–100. [Google Scholar] [CrossRef]
- Garcia-Aymerich, J.; Gómez, F.P.; Benet, M.; Farrero, E.; Basagaña, X.; Gayete, À.; Paré, C.; Freixa, X.; Ferrer, J.; Ferrer, A.; et al. Identification and Prospective Validation of Clinically Relevant Chronic Obstructive Pulmonary Disease (COPD) Subtypes. Thorax 2011, 66, 430–437. [Google Scholar] [CrossRef]
- Nikolaou, V.; Massaro, S.; Fakhimi, M.; Stergioulas, L.; Price, D. COPD Phenotypes and Machine Learning Cluster Analysis: A Systematic Review and Future Research Agenda. Respir. Med. 2020, 171, 106093. [Google Scholar] [CrossRef]
- Ancochea, J.; Miravitlles, M.; García-Río, F.; Muñoz, L.; Sánchez, G.; Sobradillo, V.; Duran-Tauleria, E.; Soriano, J.B. Infradiagnóstico de la enfermedad pulmonar obstructiva crónica en mujeres: Cuantificación del problema, determinantes y propuestas de acción. Arch. Bronconeumol. 2013, 49, 223–229. [Google Scholar] [CrossRef]
- Miravitlles, M.; Soriano, J.B.; García-Río, F.; Muñoz, L.; Duran-Tauleria, E.; Sanchez, G.; Sobradillo, V.; Ancochea, J. Prevalence of COPD in Spain: Impact of Undiagnosed COPD on Quality of Life and Daily Life Activities. Thorax 2009, 64, 863–868. [Google Scholar] [CrossRef]
- Le Rouzic, O.; Roche, N.; Cortot, A.B.; Tillie-Leblond, I.; Masure, F.; Perez, T.; Boucot, I.; Hamouti, L.; Ostinelli, J.; Pribil, C.; et al. Defining the “Frequent Exacerbator” Phenotype in COPD: A Hypothesis-Free Approach. Chest 2018, 153, 1106–1115. [Google Scholar] [CrossRef]
- Sun, P.; Ye, R.; Wang, C.; Bai, S.; Zhao, L. Identification of Proteomic Signatures Associated with COPD Frequent Exacerbators. Life Sci. 2019, 230, 1–9. [Google Scholar] [CrossRef]
- Dickens, J.A.; Miller, B.E.; Edwards, L.D.; Silverman, E.K.; Lomas, D.A.; Tal-Singer, R. COPD Association and Repeatability of Blood Biomarkers in the ECLIPSE Cohort. Respir. Res. 2011, 12, 146. [Google Scholar] [CrossRef]
- Pinto-Plata, V.; Toso, J.; Lee, K.; Park, D.; Bilello, J.; Mullerova, H.; De Souza, M.M.; Vessey, R.; Celli, B. Profiling Serum Biomarkers in Patients with COPD: Associations with Clinical Parameters. Thorax 2007, 62, 595–601. [Google Scholar] [CrossRef]
- Agustí, A.; Hogg, J.C. Update on the Pathogenesis of Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2019, 381, 1248–1256. [Google Scholar] [CrossRef]
- Kersul, A.L.; Iglesias, A.; Ríos, Á.; Noguera, A.; Forteza, A.; Serra, E.; Agustí, A.; Cosío, B.G. Molecular Mechanisms of Inflammation during Exacerbations of Chronic Obstructive Pulmonary Disease. Arch. Bronconeumol. Engl. Ed. 2011, 47, 176–183. [Google Scholar] [CrossRef]
- Noell, G.; Cosío, B.G.; Faner, R.; Monsó, E.; Peces-Barba, G.; de Diego, A.; Esteban, C.; Gea, J.; Rodriguez-Roisin, R.; Garcia-Nuñez, M.; et al. Multi-Level Differential Network Analysis of COPD Exacerbations. Eur. Respir. J. 2017, 50, 1700075. [Google Scholar] [CrossRef]
- Maskey-Warzęchowska, M.; Rubinsztajn, R.; Przybyłowski, T.; Karwat, K.; Nejman-Gryz, P.; Paplińska-Goryca, M.; Chazan, R. Serum Amyloid A in Stable Patients with Chronic Obstructive Pulmonary Disease Does Not Reflect the Clinical Course of the Disease. Int. J. Mol. Sci. 2023, 24, 2478. [Google Scholar] [CrossRef]
- Bracht, T.; Kleefisch, D.; Schork, K.; Witzke, K.E.; Chen, W.; Bayer, M.; Hovanec, J.; Johnen, G.; Meier, S.; Ko, Y.D.; et al. Plasma Proteomics Enable Differentiation of Lung Adenocarcinoma from Chronic Obstructive Pulmonary Disease (COPD). Int. J. Mol. Sci. 2022, 23, 11242. [Google Scholar] [CrossRef]
- Guevara-Hoyer, K.; Ochoa-Grullón, J.; Fernández-Arquero, M.; Cárdenas, M.; Pérez de Diego, R.; Sánchez-Ramón, S. Serum Free Immunoglobulins Light Chains: A Common Feature of Common Variable Immunodeficiency? Front. Immunol. 2020, 11, 2004. [Google Scholar] [CrossRef]
- Tanimura, K.; Sato, S.; Sato, A.; Tanabe, N.; Hasegawa, K.; Uemasu, K.; Hamakawa, Y.; Hirai, T.; Muro, S. Low Serum Free Light Chain Is Associated with Risk of COPD Exacerbation. ERJ Open Res. 2020, 6, 00288-2019. [Google Scholar] [CrossRef]
- Kyriakopoulos, C.; Chronis, C.; Papapetrou, E.; Tatsioni, A.; Gartzonika, K.; Tsaousi, C.; Gogali, A.; Katsanos, C.; Vaggeli, A.; Tselepi, C.; et al. Prothrombotic State in Patients with Stable COPD: An Observational Study. ERJ Open Res. 2021, 7, 00297–2021. [Google Scholar] [CrossRef] [PubMed]
- Van der Vorm, L.N.; Li, L.; Huskens, D.; Hulstein, J.J.J.; Roest, M.; de Groot, P.G.; ten Cate, H.; de Laat, B.; Remijn, J.A.; Simons, S.O. Acute Exacerbations of COPD Are Associated with a Prothrombotic State through Platelet-Monocyte Complexes, Endothelial Activation and Increased Thrombin Generation. Respir. Med. 2020, 171, 106094. [Google Scholar] [CrossRef]
- Gea, J.; Sancho-Muñoz, A.; Chalela, R. Nutritional Status and Muscle Dysfunction in Chronic Respiratory Diseases: Stable Phase versus Acute Exacerbations. J. Thorac. Dis. 2018, 10, S1332–S1354. [Google Scholar] [CrossRef] [PubMed]
- Husebø, G.R.; Gabazza, E.C.; D’Alessandro Gabazza, C.; Yasuma, T.; Toda, M.; Aanerud, M.; Nielsen, R.; Bakke, P.S.; Eagan, T.M.L. Coagulation Markers as Predictors for Clinical Events in COPD. Respirology 2021, 26, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Hu, R.; Jiang, X.; Mei, X. Coagulation Dysfunction in Patients with AECOPD and Its Relation to Infection and Hypercapnia. J. Clin. Lab. Anal. 2021, 35, e23733. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Deng, L.; Wang, H.; He, K.; Xia, Q. Histidine-Rich Glycoprotein (HRGP): Pleiotropic and Paradoxical Effects on Macrophage, Tumor Microenvironment, Angiogenesis, and Other Physiological and Pathological Processes. Genes Dis. 2022, 9, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Kattula, S.; Byrnes, J.R.; Wolberg, A.S. Fibrinogen and Fibrin in Hemostasis and Thrombosis. Arterioscler. Thromb. Vasc. Biol. 2017, 37, e13–e21. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Ahn, H.-S.; Park, J.-S.; Yeom, J.; Yu, J.; Kim, K.; Oh, Y.-M. A Proteomics-Based Analysis of Blood Biomarkers for the Diagnosis of COPD Acute Exacerbation. Int. J. Chronic Obstr. Pulm. Dis. 2021, 16, 1497–1508. [Google Scholar] [CrossRef]
- De Geest, B.; Mishra, M. Impact of High-Density Lipoproteins on Sepsis. Int. J. Mol. Sci. 2022, 23, 12965. [Google Scholar] [CrossRef]
- Kotlyarov, S. High-Density Lipoproteins: A Role in Inflammation in COPD. Int. J. Mol. Sci. 2022, 23, 8128. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Gil, A.M.; Elizondo-Montemayor, L. The Role of Exercise in the Interplay between Myokines, Hepatokines, Osteokines, Adipokines, and Modulation of Inflammation for Energy Substrate Redistribution and Fat Mass Loss: A Review. Nutrients 2020, 12, 1899. [Google Scholar] [CrossRef]
- Ramírez-Vélez, R.; García-Hermoso, A.; Hackney, A.C.; Izquierdo, M. Effects of Exercise Training on Fetuin-a in Obese, Type 2 Diabetes and Cardiovascular Disease in Adults and Elderly: A Systematic Review and Meta-Analysis. Lipids Health Dis. 2019, 18, 23. [Google Scholar] [CrossRef]
- Rodríguez, D.A.; Garcia-Aymerich, J.; Valera, J.L.; Sauleda, J.; Togores, B.; Galdiz, J.B.; Gea, J.; Orozco-Levi, M.; Ferrer, A.; Gomez, F.P.; et al. Determinants of Exercise Capacity in Obese and Non-Obese COPD Patients. Respir. Med. 2014, 108, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Baraniuk, J.N.; Casado, B.; Pannell, L.K.; McGarvey, P.B.; Boschetto, P.; Luisetti, M.; Iadarola, P. Protein Networks in Induced Sputum from Smokers and COPD Patients. Int. J. Chron. Obstruct. Pulmon. Dis. 2015, 10, 1957–1975. [Google Scholar] [CrossRef]
- Vanni, H.; Kazeros, A.; Wang, R.; Harvey, B.-G.; Ferris, B.; De, B.P.; Carolan, B.J.; Hübner, R.-H.; O’Connor, T.P.; Crystal, R.G. Cigarette Smoking Induces Overexpression of a Fat-Depleting Gene AZGP1 in the Human. Chest 2009, 135, 1197–1208. [Google Scholar] [CrossRef]
- Eriksson, B.; Backman, H.; Bossios, A.; Bjerg, A.; Hedman, L.; Lindberg, A.; Rönmark, E.; Lundbäck, B. Only Severe COPD Is Associated with Being Underweight: Results from a Population Survey. ERJ Open Res. 2016, 2, 00051-2015. [Google Scholar] [CrossRef]
- Putcha, N.; Anzueto, A.R.; Calverley, P.M.A.; Celli, B.R.; Tashkin, D.P.; Metzdorf, N.; Mueller, A.; Wise, R.A. Mortality and Exacerbation Risk by Body Mass Index in Patients with COPD in TIOSPIR and UPLIFT. Ann. Am. Thorac. Soc. 2022, 19, 204–213. [Google Scholar] [CrossRef]
- Merle, N.S.; Church, S.E.; Fremeaux-Bacchi, V.; Roumenina, L.T. Complement System Part I—Molecular Mechanisms of Activation and Regulation. Front. Immunol. 2015, 6, 262. [Google Scholar] [CrossRef] [PubMed]
- Merle, N.S.; Noe, R.; Halbwachs-Mecarelli, L.; Fremeaux-Bacchi, V.; Roumenina, L.T. Complement System Part II: Role in Immunity. Front. Immunol. 2015, 6, 257. [Google Scholar] [CrossRef]
- Reis, E.S.; Mastellos, D.C.; Hajishengallis, G.; Lambris, J.D. New Insights into the Immune Functions of Complement. Nat. Rev. Immunol. 2019, 19, 503–516. [Google Scholar] [CrossRef] [PubMed]
- Ermert, D.; Blom, A.M. C4b-Binding Protein: The Good, the Bad and the Deadly. Novel Functions of an Old Friend. Immunol. Lett. 2016, 169, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.B.A.; Ito, J.; Peters, K.; Livk, A.; Lipscombe, R.J.; Casey, T.M.; Moodley, Y.P. Protein Network Analysis Identifies Changes in the Level of Proteins Involved in Platelet Degranulation, Proteolysis and Cholesterol Metabolism Pathways in AECOPD Patients. J. Chronic Obstr. Pulm. Dis. 2020, 17, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Olivar, R.; Luque, A.; Naranjo-Gómez, M.; Quer, J.; García de Frutos, P.; Borràs, F.E.; Rodríguez de Córdoba, S.; Blom, A.M.; Aran, J.M. The A7β0 Isoform of the Complement Regulator C4b-Binding Protein Induces a Semimature, Anti-Inflammatory State in Dendritic Cells. J. Immunol. 2013, 190, 2857–2872. [Google Scholar] [CrossRef] [PubMed]
- Serrano, I.; Luque, A.; Mitjavila, F.; Blom, A.M.; de Córdoba, S.R.; Vega, M.C.; Torras, J.; Aran, J.M. The Hidden Side of Complement Regulator C4BP: Dissection and Evaluation of Its Immunomodulatory Activity. Front. Immunol. 2022, 13, 883743. [Google Scholar] [CrossRef] [PubMed]
- Ermert, D.; Weckel, A.; Agarwal, V.; Frick, I.-M.; Björck, L.; Blom, A.M. Binding of Complement Inhibitor C4b-Binding Protein to a Highly Virulent Streptococcus Pyogenes M1 Strain Is Mediated by Protein H and Enhances Adhesion to and Invasion of Endothelial Cells. J. Biol. Chem. 2013, 288, 32172–32183. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, J.; Casado, S.; Porras, S. Exact Methods for Variable Selection in Principal Component Analysis: Guide Functions and Pre-Selection. Comput. Stat. Data Anal. 2013, 57, 95–111. [Google Scholar] [CrossRef]
- Boulesteix, A.-L.; Strimmer, K. Partial Least Squares: A Versatile Tool for the Analysis of High-Dimensional Genomic Data. Brief. Bioinform. 2007, 8, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Adeloye, D.; Song, P.; Zhu, Y.; Campbell, H.; Sheikh, A.; Rudan, I. Global, Regional, and National Prevalence of, and Risk Factors for, Chronic Obstructive Pulmonary Disease (COPD) in 2019: A Systematic Review and Modelling Analysis. Lancet Respir. Med. 2022, 10, 447–458. [Google Scholar] [CrossRef]
- Grosdidier, S.; Ferrer, A.; Faner, R.; Piñero, J.; Roca, J.; Cosío, B.; Agustí, A.; Gea, J.; Sanz, F.; Furlong, L.I. Network Medicine Analysis of COPD Multimorbidities. Respir. Res. 2014, 15, 111. [Google Scholar] [CrossRef]
COPD | |||
---|---|---|---|
CONTROL (n = 10) | SCOPD (n = 24) | AECOPD (n = 10) | |
General characteristics | |||
Age, yr. | 63 ± 11 | 66 ± 9 | 63 ± 7 |
Males, % in the group | 60 | 58 | 56 |
BMI, kg/m2 | 25.3 ± 2.0 | 24.8 ± 6.9 | 26.2 ± 4.7 |
Smoking status | |||
Current or Ex, % in the group | 60 | 100 * | 100 * |
Pack/years smoking | 13.2 ± 15.5 | 52.8 ± 22.8 *** | 62.0 ± 34.2 ** |
Lung Function | |||
FEV1, % pred. | 82 ± 3 | 40 ± 10 *** | 36 ± 12 *** |
FEV1/FVC, % | 80 ± 2 | 49 ± 10 *** | 52 ± 12 ** |
DLco, % pred. | NA | 45 ± 14 | 40 ± 8 |
GOLD Stage | |||
I–II, % within the group | --- | 21 | 22 |
III–IV, % within the group | --- | 79 | 78 |
A–B, % within the group | --- | 25 | 20 |
E, % within the group | --- | 75 | 80 |
Exacerbations | |||
last year, n | --- | 2.6 ± 2.6 | 2.4 ± 1.6 |
0–2/year, % in the group | --- | 42 | 50 |
>2/year, % in the group | --- | 58 | 50 |
Conventional Blood Analysis | |||
Leucocytes, n/µL | 7216 ± 1356 | 8384 ± 2693 | 12,486 ± 5551 *,# |
Neutrophils, n/µL | 4337 ± 1030 | 5409 ± 2323 | 10,243 ± 5665 *,## |
Eosinophils, n/µL | 221 ± 142 | 214 ± 230 | 119 ± 181 |
CRP, mg/dL | 0.4 ± 0.2 | 0.9 ± 1.4 | 3.1 ± 3.9 |
Fibrinogen, mg/dL | 207 ± 31 | 210 ± 57 | 221 ± 65 |
Proteomic Clusters | ||
---|---|---|
A | B | |
Individuals, n | 24 | 10 |
General characteristics | ||
Age, yr. | 64 ± 9 | 67 ± 10 |
Males, n (% in the cluster) | 12 (50) | 8 (80) |
BMI, kg/m2 | 25.7 ± 6.2 | 23.1 ± 4.8 |
Group | ||
CONTROL, n (% in the cluster) | 8 (33) | 2 (20) |
SCOPD, n (% in the cluster) | 16 (67) | 8 (80) |
N of Clusters | SP | SE | PPV | PNV | ACC | MCC | Raw p-Value | Bonferroni |
---|---|---|---|---|---|---|---|---|
2 | 20 (16) | 67 (19) | 67 (19) | 20 (16) | 53 (20) | −0.13 | 0.68 | 1 |
Proteomic Clusters | ||
---|---|---|
A | B | |
Individuals, n | 13 | 21 |
General characteristics | ||
Age, yr. | 66 ± 8 | 64 ± 9 |
Males, n (% in the cluster) | 6 (46) | 13 (62) |
BMI, kg/m2 | 29.3 ± 7.4 | 23.6 ± 4.8 * |
COPD group | ||
SCOPD, n (% in the cluster) | 5 (39) | 19 (91) ** |
AECOPD, n (% in the cluster) | 8 (61) | 2 (9) ** |
N of Clusters | SP | SE | PPV | PNV | ACC | MCC | Raw p-Value | Bonferroni |
---|---|---|---|---|---|---|---|---|
2 | 79 (25) | 80 (25) | 62 (30) | 91 (18) | 79.3 (25) | 0.55 | ˂0.01 | ˂0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enríquez-Rodríguez, C.J.; Pascual-Guardia, S.; Casadevall, C.; Caguana-Vélez, O.A.; Rodríguez-Chiaradia, D.; Barreiro, E.; Gea, J. Proteomic Blood Profiles Obtained by Totally Blind Biological Clustering in Stable and Exacerbated COPD Patients. Cells 2024, 13, 866. https://doi.org/10.3390/cells13100866
Enríquez-Rodríguez CJ, Pascual-Guardia S, Casadevall C, Caguana-Vélez OA, Rodríguez-Chiaradia D, Barreiro E, Gea J. Proteomic Blood Profiles Obtained by Totally Blind Biological Clustering in Stable and Exacerbated COPD Patients. Cells. 2024; 13(10):866. https://doi.org/10.3390/cells13100866
Chicago/Turabian StyleEnríquez-Rodríguez, Cesar Jessé, Sergi Pascual-Guardia, Carme Casadevall, Oswaldo Antonio Caguana-Vélez, Diego Rodríguez-Chiaradia, Esther Barreiro, and Joaquim Gea. 2024. "Proteomic Blood Profiles Obtained by Totally Blind Biological Clustering in Stable and Exacerbated COPD Patients" Cells 13, no. 10: 866. https://doi.org/10.3390/cells13100866
APA StyleEnríquez-Rodríguez, C. J., Pascual-Guardia, S., Casadevall, C., Caguana-Vélez, O. A., Rodríguez-Chiaradia, D., Barreiro, E., & Gea, J. (2024). Proteomic Blood Profiles Obtained by Totally Blind Biological Clustering in Stable and Exacerbated COPD Patients. Cells, 13(10), 866. https://doi.org/10.3390/cells13100866