Exploring the Potential Role of Metabolomics in COPD: A Concise Review
Abstract
:1. Introduction
2. Materials and Methods
3. Analytical Techniques in Metabolomics
3.1. Mass Spectrometry
3.2. Nuclear Magnetic Resonance Spectroscopy
3.3. E-Nose Gas Chromatography
4. Biological Matrices for Metabolomic Studies in COPD
4.1. Exhaled Breath Condensate
4.2. Plasma and Serum
4.3. Bronchoalveolar Lavage Fluid
4.4. Urine
4.5. Induced Sputum
4.6. Stools
4.7. Lung and Bronchial Tissue
5. Application of Metabolomics in the Study of COPD: Biomarkers of Disease and Prognosis
- -
- Phospholipid-derived sphingomyelins and glycerophospholipids metabolism are altered in COPD, causing endothelial defense mechanism dysregulation, alveolar epithelial cell apoptosis induction, promotion of inflammatory response, and macrophage dysfunction due to ceramide accumulation in lung tissue [61]. This alteration also leads to dysfunction in vascular endothelial cells by activating NF-κB and promoting the inflammatory production of cytokines, mediated by lyso-phospholipids accumulation in lung tissue [62]. Consequently, there is an increase in oxidative stress, phospholipid oxidation, and activation of the innate immune system, resulting in persistent inflammation [63].
- -
- Chemerin, an adipokine secreted primarily by white adipose tissue, adiponectin is a regulator of inflammation, glucose, and lipid metabolism. These elements coexist and interact in COPD patients, making adiponectin a potential therapeutic target. Particularly in the context of exercise-mediated lung rehabilitation, its expression is influenced by exercise in vivo [45,46]. Particularly, this adipokine promotes the recruitment of inflammatory cells to inflammation sites during the early phase of COPD, causing early vascular remodeling, endothelial barrier dysfunction, angiogenesis, and supporting the recruitment of antigen-presenting cells [48]. Moreover, it also alters glucose metabolism by influencing insulin secretion and sensitivity (inducing insulin resistance) and distorts lipid metabolism by increasing the transformation of preadipocytes to mature adipocytes through chemerin-binding receptors. Therefore, chemerin is also involved in adipogenesis as a chemokine, since increased adiposity is thought to be associated with chronic low-grade systemic inflammation [49]. Controlling chemerin signaling may be a promising approach to improve various aspects of COPD-related dysfunction. Therapeutic alterations of chemerin activity could serve as a target for therapeutic approaches aimed at rehabilitating COPD patients through exercise.Chemerin can be considered an exacerbation biomarker because it plays a role in pathological processes during acute exacerbation of COPD. Levels of chemerin in the peripheral blood of patients with acute exacerbation were found to be significantly higher than those of healthy controls. With recovery from the exacerbation, the expression level of chemerin decreases [50]. Li C. et al. have demonstrated that the plasma chemerin levels in COPD patients were higher and negatively correlated with blood levels of various lipids. They also found that the circulating levels of both chemerin and lipids are associated with the six-month readmission and mortality rates of COPD patients. This suggests that chemerin might be used as an index for health status assessment and prognosis [51]. Finally, Fang N. et al. observed that salmeterol/fluticasone propionate combined with pursed lip breathing reduced plasma chemerin and lipid levels in COPD patients, consequently reducing the risk of COPD exacerbations and progression [52]. In conclusion, chemerin plays a key role in COPD metabolomics as both an exacerbation and prognostic biomarker.
- -
- Glutamine: glutamine has a key regulatory role in antioxidative stress in COPD. Oliveira et al. have reported that the levels of Glutamine are increased in COPD, which may be associated with abnormal skeletal muscle protein metabolism and oxidative stress. However, these data and another report that highlight the increased glutamine, aspartate, arginine, phenylalanine, and branched-chain amino acid levels in patients with COPD are still insufficient to confirm the correlations between amino acid-metabolism and COPD, probably because the amino acids levels depend also on other factors like the BMI and inflammatory reaction than on the presence of COPD itself [53,54].
- -
- Sphingolipids and glycerophospholipids: sphingolipids levels, related to altered sphingolipids metabolism, are directly associated with worse lung function outcomes and severity exacerbation. The alteration of glycerophospholipid metabolism was related to airflow obstruction and COPD exacerbations. Thus, sphingolipids and glycerophospholipid represent important exacerbation, and consequently prognostic, biomarkers [55].
- -
- N,N,N-trimethyl-alanylproline betaine (TMAP): TMAP has been associated with a reduced frequency of exacerbations. Although the biological origin of TMAP has not yet been identified and other studies are needed to understand its pathophysiology, it appears to be associated with reduced activity and low oxygen intake in COPD patients.
- -
- Citrate: The tricarboxylic cycle metabolite (citrate) is increased and significantly associated with a higher rate of emphysema, which may be related to a dysregulation of the Krebs cycle, with mitochondrial dysfunction and inflammatory–oxidative stress, in smoking patients, which is implicated in the pathology of emphysema. Also, the accumulation of lactosylceramide was identified as a mechanism of emphysema pathogenesis because induces apoptotic–inflammatory responses, aberrant autophagy and the production of reactive oxidation species [56].
- -
- Glutamylphenylalanine: in a study conducted on plasma of Chinese COPD patients compared to healthy people, it has been found that glutamylphenylalanine was highly expressed in the healthy group and less expressed in COPD patients with exacerbations. The different plasma levels of glutamylphenylalanine in different COPD stages reflect different proteolytic activities [57].
- -
- Phenylalanine: some studies have indicated that phenylalanine, one of the essential amino acids, is related to the severity of COPD. Phenylalanine and other markers such as 3-methylhistidine, acetylated glycoproteins, 3-hydroxypyruvate, serum lipids, and ascorbate could be utilized to categorize COPD patients based on their protein turnover, mitochondrial function, and nutritional status. 3-Methylhistidine, for example, is increased in patients with emphysema due to increased degradation of muscle protein and use of BCAAs (branched-chain amino acids). This suggests an elevated muscle protein turnover in COPD patients with emphysema, which can precede the development of cachexia. The three BCAAs (valine, leucine, and isoleucine) are reduced in COPD patients. This has been interpreted as a result of protein malnutrition and hypermetabolism caused by COPD exacerbation. In cachexia, which is present in 25% of COPD patients, there is altered availability of BCAAs contributing to the anorexic effects of COPD and resulting in low food intake. At the beginning, BCAAs rise with protein degradation. However, after weeks, the blood concentration of BCAAs decreases, and ketone body production increases [57].
6. Metabolomics as a Possible Tool in the Differential Diagnosis of Lung Diseases
7. Age and Sex as Modulating Factors in Metabolomics of COPD
8. Association between Metabolites and COPD Phenotypes
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adeloye, D.; Song, P.; Zhu, Y.; Campbell, H.; Sheikh, A.; Rudan, I.; NIHR RESPIRE Global Respiratory Health Unit. Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: A systematic review and modelling analysis. Lancet Respir. Med. 2022, 10, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Piloni, D.; Ottaviani, S.; Saderi, L.; Corda, L.; Baderna, P.; Barzon, V.; Balderacchi, A.M.; Seebacher, C.; Balbi, B.; Albicini, F.; et al. Comparison among populations with severe and intermediate alpha1-antitrypsin deficiency and chronic obstructive pulmonary disease. Minerva Medica 2023. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Zhou, A.; Zeng, Y.; Lin, L.; Song, Q.; Liu, C.; Zhou, Z.; Peng, Y.; Yang, M.; Yang, L.; et al. Prediction of Hospitalization and Mortality in Patients with Chronic Obstructive Pulmonary Disease with the New Global Initiative for Chronic Obstructive Lung Disease 2023 Group Classification: A Prospective Cohort and a Retrospective Analysis. Int. J. Chron. Obstruct. Pulmon. Dis. 2023, 18, 2341–2352. [Google Scholar] [CrossRef] [PubMed]
- Bollard, M.E.; Stanley, E.G.; Lindon, J.C.; Nicholson, J.K.; Holmes, E. NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR Biomed. 2005, 18, 143–162. [Google Scholar] [CrossRef] [PubMed]
- Tirelli, C.; Pesenti, C.; Miozzo, M.; Mondoni, M.; Fontana, L.; Centanni, S. The Genetic and Epigenetic Footprint in Idiopathic Pulmonary Fibrosis and Familial Pulmonary Fibrosis: A State-of-the-Art Review. Diagnostics 2022, 12, 3107. [Google Scholar] [CrossRef] [PubMed]
- Tirelli, C.; Zanframundo, G.; Valentini, A.; Bortolotto, C.; Dore, R.; Oggionni, T.; Milani, P.; Bravi, E.; Kadija, Z.; Mariani, F.; et al. CT-guided biopsy in the differential diagnosis of Sjogren syndrome associated cystic lung disease: A case of lung nodular AL-k amyloidosis. Radiol. Case Rep. 2020, 15, 2331–2334. [Google Scholar] [CrossRef]
- Arakaki, A.K.; Skolnick, J.; McDonald, J.F. Marker metabolites can be therapeutic targets as well. Nature 2008, 456, 443. [Google Scholar] [CrossRef]
- Li, C.-X.; Wheelock, C.E.; Sköld, C.M.; Wheelock, Å.M. Integration of multi-omics datasets enables molecular classification of COPD. Eur. Respir. J. 2018, 51, 1701930. [Google Scholar] [CrossRef]
- Maniscalco, M.; Cutignano, A.; Paris, D.; Melck, D.J.; Molino, A.; Fuschillo, S.; Motta, A. Metabolomics of Exhaled Breath Condensate by Nuclear Magnetic Resonance Spectroscopy and Mass Spectrometry: A Methodological Approach. Curr. Med. Chem. 2020, 27, 2381–2399. [Google Scholar] [CrossRef] [PubMed]
- Beckonert, O.; Keun, H.C.; Ebbels, T.M.D.; Bundy, J.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2007, 2, 2692–2703. [Google Scholar] [CrossRef] [PubMed]
- Maniscalco, M.; Fuschillo, S.; Paris, D.; Cutignano, A.; Sanduzzi, A.; Motta, A. Clinical metabolomics of exhaled breath condensate in chronic respiratory diseases. Adv. Clin. Chem. 2019, 88, 121–149. [Google Scholar]
- Santini, G.; Mores, N.; Penas, A.; Capuano, R.; Mondino, C.; Trové, A.; Macagno, F.; Zini, G.; Cattani, P.; Martinelli, E.; et al. Electronic Nose and Exhaled Breath NMR-based Metabolomics Applications in Airways Disease. Curr. Top. Med. Chem. 2016, 16, 1610–1630. [Google Scholar] [CrossRef]
- Kan, M.; Shumyatcher, M.; Himes, B.E. Using omics approaches to understand pulmonary diseases. Respir. Res. 2017, 18, 149. [Google Scholar] [CrossRef]
- Paris, D.; Maniscalco, M.; Motta, A. Nuclear magnetic resonance-based metabolomics in respiratory medicine. Eur. Respir. J. 2018, 52, 1801107. [Google Scholar] [CrossRef] [PubMed]
- Horvath, I.; Hunt, J.; Barnes, P.J.; Alving, K.; Antczak, A.; Baraldi, E.; Becher, G.; van Beurden, W.J.; Corradi, M.; Dekhuijzen, R.; et al. ATS/ERS Task Force on Exhaled Breath Condensate. Exhaled breath condensate: Methodological recommendations and unresolved questions. Eur. Respir. J. 2005, 26, 523–548. [Google Scholar] [CrossRef]
- Wang, C.-J.; Yang, N.-H.; Liou, S.-H.; Lee, H.-L. Fast quantification of the exhaled breath condensate of oxidative stress 8-iso-prostaglandin F2α using on-line solid-phase extraction coupled with liquid chromatography/electrospray ionization mass spectrometry. Talanta 2010, 82, 1434–1438. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Chen, Z.; Fang, Z.; Zhao, J.; Zhou, Y.; Tang, C. Multi-omics study on biomarker and pathway discovery of chronic obstructive pulmonary disease. J. Breath Res. 2021, 15, 044001. [Google Scholar] [CrossRef] [PubMed]
- The Standard Metabolic Reporting Structures Working Group; Lindon, J.C.; Nicholson, J.K.; Holmes, E.; Keun, H.C.; Craig, A.; Pearce, J.T.M.; Bruce, S.J.; Hardy, N.; Sansone, S.-A.; et al. Summary recommendations for standardization and reporting of metabolic analyses. Nat. Biotechnol. 2005, 23, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Dona, A.C. Instrumental platforms for NMR-based metabolomics. In NMR-Based Metabolomics; Keun, H.C., Ed.; RSC Publishing: Cambridge, UK, 2018; pp. 1–21. [Google Scholar]
- Kaiser, K.A.; Merrywell, C.E.; Fang, F.; Larive, C.K. Metabolic profiling. In NMR Spectroscopy in Pharmaceutical Analysis; Holzgrabe, U., Wawer, I., Diehl, B., Eds.; Elsevier: Oxford, UK, 2010; Volume II, pp. 233–267. [Google Scholar]
- Scarlata, S.; Finamore, P.; Meszaros, M.; Dragonieri, S.; Bikov, A. The Role of Electronic Noses in Phenotyping Patients with Chronic Obstructive Pulmonary Disease. Biosensors 2020, 10, 171. [Google Scholar] [CrossRef] [PubMed]
- Montuschi, P.; Mores, N.; Trové, A.; Mondino, C.; Barnes, P.J. The electronic nose in respiratory medicine. Respiration 2013, 85, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Scarlata, S.; Pennazza, G.; Santonico, M.; Pedone, C.; Incalzi, R.A. Exhaled breath analysis by electronic nose in respiratory diseases. Expert Rev. Mol. Diagn. 2015, 15, 933–956. [Google Scholar] [CrossRef] [PubMed]
- Maniscalco, M.; Motta, A. Metabolomics of exhaled breath condensate: A means for phenotyping respiratory diseases? Biomarkers Med. 2017, 11, 405–407. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.K.; Lindon, J.C. Systems biology: Metabonomics. Nature 2008, 455, 1054–1056. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.D.; Montpetit, A.J. Exhaled Breath Condensate. Immunol. Allergy Clin. N. Am. 2018, 38, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Accordino, R.; Visentin, A.; Bordin, A.; Ferrazzoni, S.; Marian, E.; Rizzato, F.; Canova, C.; Venturini, R.; Maestrelli, P. Long-term repeatability of exhaled breath condensate pH in asthma. Respir. Med. 2008, 102, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Psychogios, N.; Hau, D.D.; Peng, J.; Guo, A.C.; Mandal, R.; Bouatra, S.; Sinelnikov, I.; Krishnamurthy, R.; Eisner, R.; Gautam, B.; et al. The human serum metabolome. PLoS ONE 2011, 6, e16957. [Google Scholar] [CrossRef]
- Liang, Y.; Gai, X.Y.; Chang, C.; Zhang, X.; Wang, J.; Li, T.T. Metabolomic Profiling Differences among Asthma, COPD, and Healthy Subjects: A LC-MS-based Metabolomic Analysis. Biomed. Environ. Sci. 2019, 32, 659–672. [Google Scholar] [CrossRef]
- Paige, M.; Burdick, M.D.; Kim, S.; Xu, J.; Lee, J.K.; Shim, Y.M. Pilot analysis of the plasma metabolite profiles associated with emphysematous Chronic Obstructive Pulmonary Disease phenotype. Biochem. Biophys. Res. Commun. 2011, 413, 588–593. [Google Scholar] [CrossRef]
- Celli, B.R.; Locantore, N.; Yates, J.; Tal-Singer, R.; Miller, B.E.; Bakke, P.; Calverley, P.; Coxson, H.; Crim, C.; Edwards, L.D.; et al. Inflammatory biomarkers improve clinical prediction of mortality in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2012, 185, 1065–1072. [Google Scholar] [CrossRef]
- Halper-Stromberg, E.; Gillenwater, L.; Cruickshank-Quinn, C.; O’neal, W.K.; Reisdorph, N.; Petrache, I.; Zhuang, Y.; Labaki, W.W.; Curtis, J.L.; Wells, J.; et al. Bronchoalveolar Lavage Fluid from COPD Patients Reveals More Compounds Associated with Disease than Matched Plasma. Metabolites 2019, 9, 157. [Google Scholar] [CrossRef]
- Tirelli, C.; DE Amici, M.; Piloni, D.; Sacchi, L.; Mariani, F.; Testa, G.; Torre, C.; Ciprandi, G.; Centanni, S.; Marseglia, G.; et al. Serum Aspergillus-specific IgE, IgG and IgG4 immunoglobulins assessment in the work-up of invasive pulmonary aspergillosis: A prospective cohort study. Minerva Medica 2023, 114, 433–443. [Google Scholar] [CrossRef]
- DE Amici, M.; Piloni, D.; Tirelli, C.; Mariani, F.; Accordino, G.; Sacchi, L.; Testa, G.; Licari, A.; Corsico, A.G. Eosinophilic cationic protein (ECP) in the clinical work-up of chronic cough. Minerva Medica 2023, 114, 148–151. [Google Scholar] [CrossRef]
- Balgoma, D.; Yang, M.; Sjödin, M.; Snowden, S.; Karimi, R.; Levänen, B.; Merikallio, H.; Kaarteenaho, R.; Palmberg, L.; Larsson, K.; et al. Linoleic acid-derived lipid mediators increase in a female-dominated subphenotype of COPD. Eur. Respir. J. 2016, 47, 1645–1656. [Google Scholar] [CrossRef]
- Papakonstantinou, E.; Klagas, I.; Roth, M.; Tamm, M.; Stolz, D. Acute Exacerbations of COPD Are Associated with Increased Expression of Heparan Sulfate and Chondroitin Sulfate in BAL. Chest 2016, 149, 685–695. [Google Scholar] [CrossRef]
- Wang, L.; Tang, Y. Metabonomic profiling of serum and urine by (1)H NMR-based spectroscopy discriminates patients with chronic obstructive pulmonary disease and healthy individuals. PLoS ONE 2013, 8, e65675. [Google Scholar] [CrossRef]
- Celejewska-Wójcik, N.; Kania, A.; Górka, K.; Nastałek, P.; Wójcik, K.; Gielicz, A.; Mastalerz, L.; Sanak, M.; Sładek, K. Eicosanoids and Eosinophilic Inflammation of Airways in Stable COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2021, 16, 1415–1424. [Google Scholar] [CrossRef] [PubMed]
- Esther, C.R.; O’neal, W.K.; Anderson, W.H.; Kesimer, M.; Ceppe, A.; Doerschuk, C.M.; Alexis, N.E.; Hastie, A.T.; Barr, R.G.; Bowler, R.P.; et al. Identification of Sputum Biomarkers Predictive of Pulmonary Exacerbations in COPD. Chest 2022, 161, 1239–1249. [Google Scholar] [CrossRef] [PubMed]
- Godbole, S.; Bowler, R.P. Metabolome Features of COPD: A Scoping Review. Metabolites 2022, 12, 621. [Google Scholar] [CrossRef] [PubMed]
- Bowerman, K.L.; Rehman, S.F.; Vaughan, A.; Lachner, N.; Budden, K.F.; Kim, R.Y.; Wood, D.L.A.; Gellatly, S.L.; Shukla, S.D.; Wood, L.G.; et al. Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease. Nat. Commun. 2020, 11, 5886. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Deeb, R.S.; Ma, Y.; Staudt, M.R.; Crystal, R.G.; Gross, S.S. Serum metabolite biomarkers discriminate healthy smokers from COPD smokers. PLoS ONE 2015, 10, e0143937. [Google Scholar] [CrossRef] [PubMed]
- Eggers, L.F.; Müller, J.; Marella, C.; Scholz, V.; Watz, H.; Kugler, C.; Rabe, K.F.; Goldmann, T.; Schwudke, D. Lipidomes of lung cancer and tumour-free lung tissues reveal distinct molecular signatures for cancer differentiation, age, inflammation, and pulmonary emphysema. Sci. Rep. 2017, 7, 11087. [Google Scholar] [CrossRef]
- Berdyshev, E.V.; A Serban, K.; Schweitzer, K.S.; A Bronova, I.; Mikosz, A.; Petrache, I. Ceramide and sphingosine-1 phosphate in COPD lungs. Thorax 2021, 76, 821–825. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Mahler, D.A.; Marcus, P.; Owen, C.A.; Yawn, B.; Rennard, S. Inflammation in COPD: Implications for management. Am. J. Med. 2012, 125, 1162–1170. [Google Scholar] [CrossRef] [PubMed]
- Malin, S.K.; Navaneethan, S.D.; Mulya, A.; Huang, H.; Kirwan, J.P. Exercise-induced lowering of chemerin is associated with reduced cardiometabolic risk and glucose-stimulated insulin secretion in older adults. J. Nutr. Health Aging 2014, 18, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Helfer, G.; Wu, Q.-F. Chemerin: A multifaceted adipokine involved in metabolic disorders. J. Endocrinol. 2018, 238, R79–R94. [Google Scholar] [CrossRef]
- Bozaoglu, K.; Curran, J.E.; Stocker, C.J.; Zaibi, M.S.; Segal, D.; Konstantopoulos, N.; Morrison, S.; Carless, M.; Dyer, T.D.; Cole, S.A.; et al. Chemerin, a novel adipokine in the regulation of angiogenesis. J. Clin. Endocrinol. Metab. 2010, 95, 2476–2485. [Google Scholar] [CrossRef]
- Ghosh, A.R.; Bhattacharya, R.; Bhattacharya, S.; Nargis, T.; Rahaman, O.; Duttagupta, P.; Raychaudhuri, D.; Liu, C.S.C.; Roy, S.; Ghosh, P.; et al. Adipose recruitment and activation of plasmacytoid dendritic cells fuel metaflammation. Diabetes 2016, 65, 3440–3452. [Google Scholar] [CrossRef]
- Fu, D.; Gu, Y.; Ding, T.; Rao, X.; Ouyang, Y. The role of chemerin in the pathogenesis of COPD. J. Zunyi Med. Univ. 2014, 37, 431–433. [Google Scholar]
- Li, C.; Yan, L.; Song, J. Plasma level of chemerin in COPD patients and the relationship between chemerin and lipid metabolism. J. Cent. South Univ. 2016, 41, 676–683. [Google Scholar]
- Fang, N.; Li, Y.; Liu, G.; Tan, X. Effect of salmeterol propionate fluticasone combined with lip shrinkage respiration on chemerin level and lipid metabolism in patients with chronic obstructive pulmonary disease. Chin. J. Lung Dis. 2017, 10, 569–571. [Google Scholar]
- Oliveira, G.P.; de Abreu, M.G.; Pelosi, P.; Rocco, P.R. Exogenous Glutamine in Respiratory Diseases: Myth or Reality? Nutrients 2016, 8, 76. [Google Scholar] [CrossRef]
- Ubhi, B.K.; Cheng, K.K.; Dong, J.; Janowitz, T.; Jodrell, D.; Tal-Singer, R.; MacNee, W.; Lomas, D.A.; Riley, J.H.; Griffin, J.L.; et al. Targeted metabolomics identifies perturbations in amino acid metabolism that sub-classify patients with COPD. Mol. Biosyst. 2012, 8, 3125–3133. [Google Scholar] [CrossRef]
- Bowler, R.P.; Jacobson, S.; Cruickshank, C.; Hughes, G.J.; Siska, C.; Ory, D.S.; Petrache, I.; Schaffer, J.E.; Reisdorph, N.; Kechris, K. Plasma sphingolipids associated with chronic obstructive pulmonary disease phenotypes. Am. J. Respir. Crit. Care Med. 2015, 191, 275–284. [Google Scholar] [CrossRef]
- Lucas, A.; Gillenwater, K.A. Plasma Metabolomic Signatures of Chronic Obstructive Pulmonary Disease and the Impact of Genetic Variants on Phenotype-Driven Modules. Netw. Syst. Med. 2020, 3, 159–181. [Google Scholar]
- Zhou, J.; Li, Q.; Liu, C.; Pang, R.; Yin, Y. Plasma Metabolomics and Lipidomics Reveal Perturbed Metabolites in Different Disease Stages of Chronic Obstructive Pulmonary Disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2020, 15, 553–565. [Google Scholar] [CrossRef]
- Maniscalco, M.; Paris, D.; Melck, D.J.; Molino, A.; Carone, M.; Ruggeri, P.; Caramori, G.; Motta, A. Differential diagnosis between newly diagnosed asthma and COPD using exhaled breath condensate metabolomics: A pilot study. Eur. Respir. J. 2018, 51, 1701825. [Google Scholar] [CrossRef] [PubMed]
- Bertini, I.; Luchinat, C.; Miniati, M.; Monti, S.; Tenori, L. Phenotyping COPD by 1H NMR metabolomics of exhaled breath condensate. Metabolomics 2014, 10, 302–311. [Google Scholar] [CrossRef]
- de Laurentiis, G.; Paris, D.; Melck, D.; Montuschi, P.; Maniscalco, M.; Bianco, A.; Sofia, M.; Motta, A. Separating smoking-related diseases using NMR-based metabolomics of exhaled breath condensate. J. Proteome Res. 2013, 12, 1502–1511. [Google Scholar] [CrossRef] [PubMed]
- Bodas, M.; Pehote, G.; Silverberg, D.; Gulbins, E.; Vij, N. Autophagy augmentation alleviates cigarette smoke-induced CFTR-dysfunction, ceramide-accumulation and COPD-emphysema pathogenesis. Free. Radic. Biol. Med. 2018, 131, 81–97. [Google Scholar] [CrossRef]
- Haybar, H.; Shahrabi, S.; Rezaeeyan, H.; Shirzad, R.; Saki, N. Endothelial Cells: From Dysfunction Mechanism to Pharmacological Effect in Cardiovascular Disease. Cardiovasc. Toxicol. 2019, 19, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, S.R.; Fessler, M.B.; Gowdy, K.M. Role for phospholipid acyl chains and cholesterol in pulmonary infections and inflammation. J. Leukoc. Biol. 2016, 100, 985–997. [Google Scholar] [CrossRef]
- Ubhi, B.K.; Riley, J.H.; Shaw, P.A.; Lomas, D.A.; Tal-Singer, R.; MacNee, W.; Griffin, J.L.; Connor, S.C. Metabolic profiling detects biomarkers of protein degradation in COPD patients. Eur. Respir. J. 2012, 40, 345–355. [Google Scholar] [CrossRef]
- Maniscalco, M.; Motta, A. Metabolomics of chronic obstructive pulmonary disease and obstructive sleep apnea syndrome: A comment. Metabolomics 2016, 12, 29. [Google Scholar] [CrossRef]
- Lin, M.; Huang, Z.; Chen, Y.; Xiao, H.; Wang, T. Lung cancer patients with chronic obstructive pulmonary disease benefit from anti-PD-1/PD-L1 therapy. Front. Immunol. 2022, 13, 1038715. [Google Scholar] [CrossRef] [PubMed]
- Polverino, F.; Mirra, D.; Yang, C.X.; Esposito, R.; Spaziano, G.; Rojas-Quintero, J.; Sgambato, M.; Piegari, E.; Cozzolino, A.; Cione, E.; et al. Similar programmed death ligand 1 (PD-L1) expression profile in patients with mild COPD and lung cancer. Sci. Rep. 2022, 12, 22402. [Google Scholar] [CrossRef] [PubMed]
- Spangenberg, S.H.; Palermo, A.; Gazaniga, N.R.; Martínez-Peña, F.; Guijas, C.; Chin, E.N.; Rinschen, M.M.; Sander, P.N.; Webb, B.; Pereira, L.E.; et al. Hydroxyproline metabolism enhances IFN-γ-induced PD-L1 expression and inhibits autophagic flux. Cell Chem. Biol. 2023, 30, 1115–1134.e10. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, F.; Tanabe, N.; Iijima, H.; Shimada, T.; Shiraishi, Y.; Maetani, T.; Yamazaki, H.; Shimizu, K.; Suzuki, M.; Chubachi, S.; et al. Early chronic obstructive pulmonary disease: Associations of two spirometry criteria with clinical features. Respir. Med. 2022, 204, 107011. [Google Scholar] [CrossRef] [PubMed]
- Casas-Recasens, S.; Mendoza, N.; López-Giraldo, A.; Garcia, T.; Cosio, B.G.; Pascual-Guardia, S.; Acosta-Castro, A.; Borras-Santos, A.; Gea, J.; Garrabou, G.; et al. Telomere length but not mitochondrial DNA copy number is altered in both young and old COPD. Front. Med. 2021, 8, 761767. [Google Scholar] [CrossRef]
- Mangoni, A.; Rodionov, R.N.; McEvoy, M.; Zinellu, A.; Carru, C.; Sotgia, S. New horizons in arginine metabolism, ageing and chronic disease states. Age Ageing 2019, 48, 776–782. [Google Scholar] [CrossRef]
- Klinge, C.M.; Clark, B.J.; Prough, R.A. Dehydroepiandrosterone research: Past, current, and future. Vitam. Horm. 2018, 108, 1–28. [Google Scholar]
- Cruz-Jentoft, A.J. Beta-hydroxy-beta-methyl butyrate (HMB): From experimental data to clinical evidence in sarcopenia. Curr. Protein Pept. Sci. 2018, 19, 668–672. [Google Scholar] [CrossRef] [PubMed]
- Naz, S.; Kolmert, J.; Yang, M.; Reinke, S.N.; Kamleh, M.A.; Snowden, S.; Heyder, T.; Levänen, B.; Erle, D.J.; Sköld, C.M.; et al. Metabolomics analysis identifies sex-associated metabotypes of oxidative stress and the autotaxin-lysoPA axis in COPD. Eur. Respir. J. 2017, 49, 1602322. [Google Scholar] [CrossRef] [PubMed]
- Gea, J.; Enríquez-Rodríguez, C.J.; Agranovich, B.; Pascual-Guardia, S. Update on metabolomic findings in COPD patients. ERJ Open Res. 2023, 9, 00180–2023. [Google Scholar] [CrossRef] [PubMed]
Mass Spectrometry | Nuclear Magnetic Resonance Spectroscopy | |
---|---|---|
Detection of Metabolites | Specific chemical classes | All chemical classes |
Sample Quantity Needed for Analysis | Few microliters | 200–400 microliters |
Limit of Detection (Metabolite Dimensions) | Picomolar | Nanomolar |
Recovery of the Sample | NO: Destructive technique | YES: Non destructive tecnhique |
Time for Data acquisition | 10–15 min | 10–15 min |
Analysis Reproducibility | High (++): targeted approach; Quite low (+−): untargeted approach | Very high (+++) |
Metabolites Molecular Identification | Variable (adopted technique) | High |
Biomatrix | Metabolites (Levels) in COPD Patients |
---|---|
Exhaled Breath Condensate (EBC) | Ethanol and methanol (+++) Lactate, acetate, propionate, serine, proline and tyrosine (++) 2-propanol (+) Formate and acetone/acetoin (--) Isobutyrate (-) |
Plasma and Serum | Creatine, glycine, and N,N-dimethylglycine (---) |
Bronchoalveolar Lavage Fluid (BALF) | Amino acid (arginine, isoleucine, and serine), fatty acids, and phospholipids (+++) |
Urine | 1-Methylnicotinamide, creatinine and lactate (--), Acetate, acetoacetate, acetone, carnosine, hydroxyphenylacetate, phenylacetylglycine, pyruvate and a-ketoglutarate (++) |
Induced Sputum | Sialic acid, hypoxanthine, xanthine, methylthioadenosine, adenine, and glutathione (++++) Leukotriene E4, D4, prostaglandin D2, E2, 8-iso-prostaglandin E2, F2a, 5-oxo-eicosatetraenoic acid, 12-oxo-eicosatetraenoic acid, and 11-dehydro-thromboxane B2 (++) |
Stools | Cotinine, N-acetylcadaverine, N-acetyltaurine (+++) |
Metabolite | Biomarker Type | Activity and Levels in COPD Patients |
---|---|---|
Chemerin [45,46,47,48,49,50,51,52] | Exacerbation biomarker; Prognostic biomarker | Chemerin promotes the inflammatory cells recruitment to inflammation sites during the early phase of COPD, causing early vascular remodeling, endothelial barrier dysfunction, angiogenesis and supports the recruitment of antigen-presenting cells; Levels of plasma chemerin are related to mortality rates of COPD patients |
Glutamine [53,54] | Disease biomarker; Exacerbation biomarker | Key regulatory role in antioxidative stress; Levels of Glutamine are increased in COPD |
Sphingolipids, Glycerophospholipids [55] | Exacerbation biomarker; Prognostic biomarker | Altered sphingolipids metabolism is directly associated with worse lung function and severity exacerbation; alteration of glycerophospholipid metabolism is related to airflow obstruction and COPD exacerbations |
N,N,N-trimethyl-alanylproline betaine (TMAP) [56] | Exacerbation biomarker | TMAP levels correlate to low oxygen intake in COPD patients |
Citrate [56] | Disease biomarker; Prognostic biomarker | Citrate is increased and significantly associated with a higher rate of emphysema, which may be related to a dysregulation of the Krebs cycle. Dysregulation of the Krebs cycle is a mechanism of emphysema pathogenesis because induces apoptotic-inflammatory responses, aberrant autophagy and the production of reactive oxidation species |
Glutamylphenylalanine [57] | Exacerbation biomarker | Different plasma levels of glutamylphenylalanine in different COPD stages reflect different proteolytic activities |
Phenylalanine [57] | Disease biomarker; Prognostic biomarker | Phenylalanine is related to the severity of COPD, its reduced levels in COPD patients can be interpreted as a result of protein malnutrition and of hypermetabolism caused by COPD exacerbation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tirelli, C.; Mira, S.; Belmonte, L.A.; De Filippi, F.; De Grassi, M.; Italia, M.; Maggioni, S.; Guido, G.; Mondoni, M.; Canonica, G.W.; et al. Exploring the Potential Role of Metabolomics in COPD: A Concise Review. Cells 2024, 13, 475. https://doi.org/10.3390/cells13060475
Tirelli C, Mira S, Belmonte LA, De Filippi F, De Grassi M, Italia M, Maggioni S, Guido G, Mondoni M, Canonica GW, et al. Exploring the Potential Role of Metabolomics in COPD: A Concise Review. Cells. 2024; 13(6):475. https://doi.org/10.3390/cells13060475
Chicago/Turabian StyleTirelli, Claudio, Sabrina Mira, Luca Alessandro Belmonte, Federica De Filippi, Mauro De Grassi, Marta Italia, Sara Maggioni, Gabriele Guido, Michele Mondoni, Giorgio Walter Canonica, and et al. 2024. "Exploring the Potential Role of Metabolomics in COPD: A Concise Review" Cells 13, no. 6: 475. https://doi.org/10.3390/cells13060475
APA StyleTirelli, C., Mira, S., Belmonte, L. A., De Filippi, F., De Grassi, M., Italia, M., Maggioni, S., Guido, G., Mondoni, M., Canonica, G. W., & Centanni, S. (2024). Exploring the Potential Role of Metabolomics in COPD: A Concise Review. Cells, 13(6), 475. https://doi.org/10.3390/cells13060475