Assessing Different Histological Preparations for Reconstruction of Astrocyte Tridimensional Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Tissue Processing
2.3. Morphological Analysis
2.4. Fluorescence Intensity Analysis
2.5. Statistical Analysis
3. Results
3.1. GFAP Immunolabeling in Vibratome Sections Displays a Higher Level of Detail for Astrocyte Reconstruction
3.2. Free-Floating GFAP Immunolabeling Increases the Level of Detail for Astrocyte Reconstruction
3.3. Tridimensional Reconstruction of Less Complex Astrocyte Backbones in Cryosections Still Allows for Identifying Significant Structural Changes
3.4. Antigen Retrieval in 20 µm Cryosections Enhances the Detail of Astrocytic Backbone Reconstructions
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Araque, A.; Carmignoto, G.; Haydon, P.G.; Oliet, S.H.R.; Robitaille, R.; Volterra, A. Gliotransmitters Travel in Time and Space. Neuron 2014, 81, 728–739. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.F.; Sardinha, V.M.; Guerra-Gomes, S.; Araque, A.; Sousa, N. Do Stars Govern Our Actions? Astrocyte Involvement in Rodent Behavior. Trends Neurosci. 2015, 38, 535–549. [Google Scholar] [CrossRef] [PubMed]
- Nagai, J.; Yu, X.; Papouin, T.; Cheong, E.; Freeman, M.R.; Monk, K.R.; Hastings, M.H.; Haydon, P.G.; Rowitch, D.; Shaham, S.; et al. Behaviorally Consequential Astrocytic Regulation of Neural Circuits. Neuron 2021, 109, 576–596. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.F.; Araque, A. Astrocyte Regulation of Neural Circuit Activity and Network States. Glia 2022, 70, 1455–1466. [Google Scholar] [CrossRef] [PubMed]
- Khakh, B.S.; Sofroniew, M.V. Diversity of Astrocyte Functions and Phenotypes in Neural Circuits. Nat. Neurosci. 2015, 18, 942–952. [Google Scholar] [CrossRef] [PubMed]
- Endo, F.; Kasai, A.; Soto, J.S.; Yu, X.; Qu, Z.; Hashimoto, H.; Gradinaru, V.; Kawaguchi, R.; Khakh, B.S. Molecular Basis of Astrocyte Diversity and Morphology across the CNS in Health and Disease. Science 2022, 378, eadc9020. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, K.T.; Murai, K.K.; Khakh, B.S. Astrocyte Morphology. Trends Cell Biol. 2023, in press. [CrossRef] [PubMed]
- Lanjakornsiripan, D.; Pior, B.-J.; Kawaguchi, D.; Furutachi, S.; Tahara, T.; Katsuyama, Y.; Suzuki, Y.; Fukazawa, Y.; Gotoh, Y. Layer-Specific Morphological and Molecular Differences in Neocortical Astrocytes and Their Dependence on Neuronal Layers. Nat. Commun. 2018, 9, 1623. [Google Scholar] [CrossRef] [PubMed]
- Karpf, J.; Unichenko, P.; Chalmers, N.; Beyer, F.; Wittmann, M.-T.; Schneider, J.; Fidan, E.; Reis, A.; Beckervordersandforth, J.; Brandner, S.; et al. Dentate Gyrus Astrocytes Exhibit Layer-Specific Molecular, Morphological and Physiological Features. Nat. Neurosci. 2022, 25, 1626–1638. [Google Scholar] [CrossRef]
- Viana, J.F.; Machado, J.L.; Abreu, D.S.; Veiga, A.; Barsanti, S.; Tavares, G.; Martins, M.; Sardinha, V.M.; Guerra-Gomes, S.; Domingos, C.; et al. Astrocyte Structural Heterogeneity in the Mouse Hippocampus. Glia 2023, 71, 1667–1682. [Google Scholar] [CrossRef]
- Sun, D.; Jakobs, T.C. Structural Remodeling of Astrocytes in the Injured CNS. Neuroscientist 2012, 18, 567–588. [Google Scholar] [CrossRef] [PubMed]
- Sofroniew, M.V. Astrocyte Reactivity: Subtypes, States, and Functions in CNS Innate Immunity. Trends Immunol. 2020, 41, 758–770. [Google Scholar] [CrossRef] [PubMed]
- Escartin, C.; Galea, E.; Lakatos, A.; O’Callaghan, J.P.; Petzold, G.C.; Serrano-Pozo, A.; Steinhäuser, C.; Volterra, A.; Carmignoto, G.; Agarwal, A.; et al. Reactive Astrocyte Nomenclature, Definitions, and Future Directions. Nat. Neurosci. 2021, 24, 312–325. [Google Scholar] [CrossRef] [PubMed]
- Hasel, P.; Rose, I.V.L.; Sadick, J.S.; Kim, R.D.; Liddelow, S.A. Neuroinflammatory Astrocyte Subtypes in the Mouse Brain. Nat. Neurosci. 2021, 24, 1475–1487. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, C.B.; Stephensen, H.J.T.; Mokso, R.; Benraiss, A.; Sporring, J.; Goldman, S.A. Astrocytic Engagement of the Corticostriatal Synaptic Cleft Is Disrupted in a Mouse Model of Huntington’s Disease. Proc. Natl. Acad. Sci. USA 2023, 120, e2210719120. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Nagai, J.; Khakh, B.S. Improved Tools to Study Astrocytes. Nat. Rev. Neurosci. 2020, 21, 121–138. [Google Scholar] [CrossRef]
- Emsley, J.G.; Macklis, J.D. Astroglial Heterogeneity Closely Reflects the Neuronal-Defined Anatomy of the Adult Murine CNS. Neuron Glia Biol. 2006, 2, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Parekh, R.; Ascoli, G.A. Neuronal Morphology Goes Digital: A Research Hub for Cellular and System Neuroscience. Neuron 2013, 77, 1017–1038. [Google Scholar] [CrossRef]
- Kulkarni, P.M.; Barton, E.; Savelonas, M.; Padmanabhan, R.; Lu, Y.; Trett, K.; Shain, W.; Leasure, J.L.; Roysam, B. Quantitative 3-D Analysis of GFAP Labeled Astrocytes from Fluorescence Confocal Images. J. Neurosci. Methods 2015, 246, 38–51. [Google Scholar] [CrossRef]
- Tavares, G.; Martins, M.; Correia, J.S.; Sardinha, V.M.; Guerra-Gomes, S.; das Neves, S.P.; Marques, F.; Sousa, N.; Oliveira, J.F. Employing an Open-Source Tool to Assess Astrocyte Tridimensional Structure. Brain Struct. Funct. 2017, 222, 1989–1999. [Google Scholar] [CrossRef]
- Campos, J.; Guerra-Gomes, S.; Serra, S.C.; Baltazar, G.; Oliveira, J.F.; Teixeira, F.G.; Salgado, A.J. Astrocyte Signaling Impacts the Effects of Human Bone Marrow Mesenchymal Stem Cells Secretome Application into the Hippocampus: A Proliferation and Morphometrical Analysis on Astrocytic Cell Populations. Brain Res. 2020, 1732, 146700. [Google Scholar] [CrossRef]
- Bondi, H.; Bortolotto, V.; Canonico, P.L.; Grilli, M. Complex and Regional-Specific Changes in the Morphological Complexity of GFAP+ Astrocytes in Middle-Aged Mice. Neurobiol. Aging 2021, 100, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Machado-Santos, A.R.; Alves, N.D.; Araújo, B.; Correia, J.S.; Patrício, P.; Mateus-Pinheiro, A.; Loureiro-Campos, E.; Bessa, J.M.; Sousa, N.; Pinto, L. Astrocytic Plasticity at the Dorsal Dentate Gyrus on an Animal Model of Recurrent Depression. Neuroscience 2021, 454, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Turk, A.Z.; Lotfi Marchoubeh, M.; Fritsch, I.; Maguire, G.A.; SheikhBahaei, S. Dopamine, Vocalization, and Astrocytes. Brain Lang. 2021, 219, 104970. [Google Scholar] [CrossRef] [PubMed]
- Hol, E.M.; Pekny, M. Glial Fibrillary Acidic Protein (GFAP) and the Astrocyte Intermediate Filament System in Diseases of the Central Nervous System. Curr. Opin. Cell Biol. 2015, 32, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.K. Manual of Histological Techniques, 2nd ed.; Jaypee Brothers Medical Publishers Pvt. Ltd.: New Delhi, India, 2019; ISBN 978-93-86293-88-6. [Google Scholar]
- Potts, E.M.; Coppotelli, G.; Ross, J.M. Histological-Based Stainings Using Free-Floating Tissue Sections. J. Vis. Exp. 2020, 162, e61622. [Google Scholar] [CrossRef] [PubMed]
- Feng, G.; Mellor, R.H.; Bernstein, M.; Keller-Peck, C.; Nguyen, Q.T.; Wallace, M.; Nerbonne, J.M.; Lichtman, J.W.; Sanes, J.R. Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP. Neuron 2000, 28, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Sardinha, V.M.; Guerra-Gomes, S.; Caetano, I.; Tavares, G.; Martins, M.; Reis, J.S.; Correia, J.S.; Teixeira-Castro, A.; Pinto, L.; Sousa, N.; et al. Astrocytic Signaling Supports Hippocampal–Prefrontal Theta Synchronization and Cognitive Function. Glia 2017, 65, 1944–1960. [Google Scholar] [CrossRef] [PubMed]
- Guerra-Gomes, S.; Viana, J.F.; Nascimento, D.S.M.; Correia, J.S.; Sardinha, V.M.; Caetano, I.; Sousa, N.; Pinto, L.; Oliveira, J.F. The Role of Astrocytic Calcium Signaling in the Aged Prefrontal Cortex. Front. Cell. Neurosci. 2018, 12, 379. [Google Scholar] [CrossRef]
- Mateus-Pinheiro, A.; Patrício, P.; Alves, N.D.; Martins-Macedo, J.; Caetano, I.; Silveira-Rosa, T.; Araújo, B.; Mateus-Pinheiro, M.; Silva-Correia, J.; Sardinha, V.M.; et al. Hippocampal Cytogenesis Abrogation Impairs Inter-Regional Communication between the Hippocampus and Prefrontal Cortex and Promotes the Time-Dependent Manifestation of Emotional and Cognitive Deficits. Mol. Psychiatry 2021, 26, 7154–7166. [Google Scholar] [CrossRef]
- Paxinos, G.; Franklin, K.B.J. Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates, 5th ed.; Elsevier Shop: Amsterdam, The Netherlands, 2019; Available online: https://shop.elsevier.com/books/paxinos-and-franklins-the-mouse-brain-in-stereotaxic-coordinates/paxinos/978-0-12-816157-9 (accessed on 22 March 2024).
- Shi, S.-R.; Shi, Y.; Taylor, C.R. Antigen Retrieval Immunohistochemistry. J. Histochem. Cytochem. 2011, 59, 13–32. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.; Sardinha, V.M.; Oliveira, A.F.; Reis, M.; Mota, C.; Silva, M.A.; Marques, F.; Cerqueira, J.J.; Pinto, L.; Sousa, N.; et al. Astrocyte Pathology in the Prefrontal Cortex Impairs the Cognitive Function of Rats. Mol. Psychiatry 2014, 19, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Bushong, E.A.; Martone, M.E.; Jones, Y.Z.; Ellisman, M.H. Protoplasmic Astrocytes in CA1 Stratum Radiatum Occupy Separate Anatomical Domains. J. Neurosci. 2002, 22, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Ariel, P. A Beginner’s Guide to Tissue Clearing. Int. J. Biochem. Cell Biol. 2017, 84, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Duraiyan, J.; Govindarajan, R.; Kaliyappan, K.; Palanisamy, M. Applications of Immunohistochemistry. J. Pharm. Bioallied Sci. 2012, 4, S307–S309. [Google Scholar] [CrossRef] [PubMed]
- de Aquino, C.C.; Leitão, R.A.; Oliveira Alves, L.A.; Coelho-Santos, V.; Guerrant, R.L.; Ribeiro, C.F.; Malva, J.O.; Silva, A.P.; Oriá, R.B. Effect of Hypoproteic and High-Fat Diets on Hippocampal Blood-Brain Barrier Permeability and Oxidative Stress. Front. Nutr. 2019, 5, 131. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-O.; Kim, J.; Okajima, T.; Cho, N.-J. Mechanical Properties of Paraformaldehyde-Treated Individual Cells Investigated by Atomic Force Microscopy and Scanning Ion Conductance Microscopy. Nano Converg. 2017, 4, 5. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barsanti, S.; Viana, J.F.; Veiga, A.; Machado, J.L.; Abreu, D.S.; Dias, J.D.; Monteiro, S.; Silva, N.A.; Pinto, L.; Oliveira, J.F. Assessing Different Histological Preparations for Reconstruction of Astrocyte Tridimensional Structure. Cells 2024, 13, 969. https://doi.org/10.3390/cells13110969
Barsanti S, Viana JF, Veiga A, Machado JL, Abreu DS, Dias JD, Monteiro S, Silva NA, Pinto L, Oliveira JF. Assessing Different Histological Preparations for Reconstruction of Astrocyte Tridimensional Structure. Cells. 2024; 13(11):969. https://doi.org/10.3390/cells13110969
Chicago/Turabian StyleBarsanti, Sara, João Filipe Viana, Alexandra Veiga, João Luís Machado, Daniela Sofia Abreu, José Duarte Dias, Susana Monteiro, Nuno A. Silva, Luísa Pinto, and João Filipe Oliveira. 2024. "Assessing Different Histological Preparations for Reconstruction of Astrocyte Tridimensional Structure" Cells 13, no. 11: 969. https://doi.org/10.3390/cells13110969
APA StyleBarsanti, S., Viana, J. F., Veiga, A., Machado, J. L., Abreu, D. S., Dias, J. D., Monteiro, S., Silva, N. A., Pinto, L., & Oliveira, J. F. (2024). Assessing Different Histological Preparations for Reconstruction of Astrocyte Tridimensional Structure. Cells, 13(11), 969. https://doi.org/10.3390/cells13110969