Different Lengths of Gestational Exposure to Secondhand Smoke or e-Cigarette Vapor Induce the Development of Placental Disease Symptoms
Abstract
:1. Introduction
2. Methods
2.1. Animals and Tissue Preparation
2.2. Blood Pressure
2.3. Proteinuria
2.4. Inflammatory Molecule Analyses
2.5. Statistical Analysis
3. Results
3.1. Blood Pressure, Proteinuria, and Fetal and Placental Weights
3.2. Inflammatory Molecule Analyses
3.2.1. Th1, Th17, and Th2 Pathway Molecules
3.2.2. Chemokine Signaling Pathway
3.2.3. TNF Family Signaling Pathway
3.2.4. Other Associated Proteins
4. Discussion
4.1. Th1, Th17, and Th2 Pathways and Proteins
4.2. Chemokine Signaling Pathway
4.3. TNF Family Signaling Pathway
4.4. Other Associated Proteins
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colson, A.; Sonveaux, P.; Debiève, F.; Sferruzzi-Perri, A.N. Adaptations of the human placenta to hypoxia: Op-portunities for interventions in fetal growth restriction. Hum. Reprod. Update 2021, 27, 531–569. [Google Scholar] [CrossRef] [PubMed]
- Brar, H.S.; E Rutherford, S. Classification of intrauterine growth retardation. Semin. Perinatol. 1988, 12, 2–10. [Google Scholar] [PubMed]
- Pollack, R.N.; Divon, M.Y. Intrauterine Growth Retardation: Definition, Classification, and Etiology. Clin. Obstet. Gynecol. 1992, 35, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Allaire, A.D.; Ballenger, K.A.; Wells, S.R.; McMahon, M.J.; Lessey, B.A. Placental apoptosis in preeclampsia. Obstet. Gynecol. 2000, 96, 271–276. [Google Scholar] [PubMed]
- Hung, T.H.; Skepper, J.N.; Charnock-Jones, D.S.; Burton, G.J. Hypoxia-reoxygenation: A potent inducer of apop-totic changes in the human placenta and possible etiological factor in preeclampsia. Circ. Res. 2002, 90, 1274–1281. [Google Scholar] [CrossRef] [PubMed]
- Lecarpentier, E.; Tsatsaris, V.; Goffinet, F.; Cabrol, D.; Sibai, B.; Haddad, B. Risk Factors of Superimposed Preeclampsia in Women with Essential Chronic Hypertension Treated before Pregnancy. PLoS ONE 2013, 8, e62140. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.M.; Bodnar, L.M.; Patrick, T.E.; Powers, R.W. The role of obesity in preeclampsia. Pregnancy Hypertens 2010, 1, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Kenny, L.C.; English, F.; McCarthy, F.P. Risk factors and effective management of preeclampsia. Integr. Blood Press. Control. 2015, 8, 7–12. [Google Scholar] [CrossRef]
- DiFederico, E.; Genbacev, O.; Fisher, S.J. Preeclampsia is associated with widespread apoptosis of placental cy-totrophoblasts within the uterine wall. Am. J. Pathol. 1999, 155, 293–301. [Google Scholar] [CrossRef]
- Conde-Agudelo, A.; Althabe, F.; Belizán, J.M.; Kafury-Goeta, A.C. Cigarette smoking during pregnancy and risk of preeclampsia: A systematic review. Am. J. Obstet. Gynecol. 1999, 181, 1026–1035. [Google Scholar] [CrossRef]
- Klonoff-Cohen, H.; Edelstein, S.; Savitz, D. Cigarette smoking and preeclampsia. Obstet. Gynecol. 1993, 81, 541–544. [Google Scholar] [CrossRef] [PubMed]
- Bickerstaff, M.; Beckmann, M.; Gibbons, K.; Flenady, V. Recent cessation of smoking and its effect on pregnancy outcomes. Aust. New Zealand J. Obstet. Gynaecol. 2012, 52, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Akkar, O.B.; Yildiz, C.; Karakus, S.; Akkar, I.; Cetin, A.; Yanik, A.; Yenicesu, A.G.I.; Boztosun, A. Antenatal counseling against passive smoking may improve birth weight for gestational age. Clin. Exp. Obstet. Gynecol. 2015, 42, 805–809. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.B.; Mejia, C.; Jordan, C.; Monson, T.D.; Bodine, J.S.; Dunaway, T.M.; Egbert, K.M.; Lewis, A.L.; Wright, T.J.; Ogden, K.C.; et al. Inhibition of the receptor for advanced glycation end-products (RAGE) protects from secondhand smoke (SHS)-induced intrauterine growth restriction IUGR in mice. Cell Tissue Res. 2017, 370, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Kummet, C.M.; Moreno, L.M.; Wilcox, A.J.; Romitti, P.A.; DeRoo, L.A.; Munger, R.G.; Lie, R.T.; Wehby, G.L. Pas-sive smoke exposure as a risk factor for oral clefts—A large international population-based study. Am. Jour-Nal Epidemiol. 2016, 183, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Vardavas, C.I.; Hohmann, C.; Patelarou, E.; Martinez, D.; Henderson, A.J.; Granell, R.; Sunyer, J.; Torrent, M.P.; Fantini, M.; Gori, D.; et al. The independent role of prenatal and postnatal exposure to active and passive smoking on the development of early wheeze in children. Eur. Respir. J. 2016, 48, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Jorge, J.G.; Botelho, C.; Silva, A.M.C.; Moi, G.P. Influence of passive smoking on learning in elementary school. J. De Pediatr. 2016, 92, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Vardavas, C.I.; Anagnostopoulos, N.; Kougias, M.; Evangelopoulou, V.; Connolly, G.N.; Behrakis, P.K. Short-term pulmonary effects of using an electronic cigarette: Impact on respiratory flow resistance, impedance, and ex-haled nitric oxide. Chest 2012, 141, 1400–1406. [Google Scholar] [CrossRef] [PubMed]
- Etter, J.-F. Electronic cigarettes: A survey of users. BMC Public Health 2010, 10, 231. [Google Scholar] [CrossRef]
- Vansickel, A.R.; Cobb, C.O.; Weaver, M.F.; Eissenberg, T.E. A Clinical Laboratory Model for Evaluating the Acute Effects of Electronic “Cigarettes”: Nicotine Delivery Profile and Cardiovascular and Subjective Effects. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1945–1953. [Google Scholar] [CrossRef]
- Gennimata, S.-A.; Palamidas, A.; Kaltsakas, G.; Tsikrika, S.; Vakali, S.; Gratziou, C.; Koulouris, N. Acute effect of e-cigarette on pulmonary function in healthy subjects and smokers. Eur. Respir. J. 2012, 40, P1053. [Google Scholar]
- Challis, J.R.; Lockwood, C.J.; Myatt, L.; Norman, J.E.; Strauss, J.F.; Petraglia, F. Inflammation and Pregnancy. Reprod. Sci. 2009, 16, 206–215. [Google Scholar] [CrossRef]
- Otani, N.; Nakajima, K.; Ishikawa, K.; Ichiki, K.; Ueda, T.; Takesue, Y.; Yamamoto, T.; Tanimura, S.; Shima, M.; Okuno, T. Changes in Cell-Mediated Immunity (IFN-γ and Granzyme B) Following Influenza Vaccination. Viruses 2021, 13, 1137. [Google Scholar] [CrossRef] [PubMed]
- Damsker, J.M.; Hansen, A.M.; Caspi, R.R. Th1 and Th17 cells: Adversaries and collaborators. Ann. New York Acad. Sci. 2010, 1183, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.P.; Tayade, C.; Ashkar, A.A.; Hatta, K.; Zhang, J.; Croy, B.A. Interferon gamma in successful pregnan-cies. Biology of reproduction 2009, 80, 848–859. [Google Scholar] [CrossRef] [PubMed]
- Boehm, K.D.; Kelley, M.F.; Ilan, J. The interleukin 2 gene is expressed in the syncytiotrophoblast of the human placenta. Proc. Natl. Acad. Sci. USA 1989, 86, 656–660. [Google Scholar] [CrossRef] [PubMed]
- Deer, E.; Amaral, L.M.; Campbell, N.; Fitzgerald, S.; Herrock, O.; Ibrahim, T.; LaMarca, B. Low dose of IL-2 nor-malizes hypertension and mitochondrial function in the RUPP rat model of placental ischemia. Cells 2021, 10, 2797. [Google Scholar] [CrossRef] [PubMed]
- Elenkov, I.J.; Wilder, R.L.; Bakalov, V.K.; Link, A.A.; Dimitrov, M.A.; Fisher, S.; Crane, M.; Kanik, K.S.; Chrousos, G.P. IL-12, TNF-α, and hormonal changes during late pregnancy and early postpartum: Implications for auto-immune disease activity during these times. J. Clin. Endocrinol. Metab. 2001, 86, 4933–4938. [Google Scholar]
- Ethuin, F.; Delarche, C.; Gougerot-Pocidalo, M.-A.; Eurin, B.; Jacob, L.; Chollet-Martin, S. Regulation of interleu-kin 12 p40 and p70 production by blood and alveolar phagocytes during severe sepsis. Lab. Investig. 2003, 83, 1353–1360. [Google Scholar] [CrossRef]
- Benyo, D.F.; Smarason, A.; Redman, C.W.; Sims, C.; Conrad, K.P. Expression of inflammatory cytokines in pla-centas from women with preeclampsia. J. Clin. Endocrinol. Metab. 2001, 86, 2505–2512. [Google Scholar]
- Xie, Y.; Li, X.; Lv, D.; He, M.; Sun, Y.; Lin, X.; Fan, Y.; Yang, M.; Xu, H.; Zhang, X. TREM-1 amplifies trophoblastic inflammation via activating NF-κB pathway during preeclampsia. Placenta 2021, 115, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Prins, J.R.; Gomez-Lopez, N.; Robertson, S.A. Interleukin-6 in pregnancy and gestational disorders. J. Reprod. Immunol. 2012, 95, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Southcombe, J.H.; Redman, C.W.G.; Sargent, I.L.; Granne, I. Interleukin-1 family cytokines and their regulatory proteins in normal pregnancy and pre-eclampsia. Clin. Exp. Immunol. 2015, 181, 480–490. [Google Scholar] [CrossRef]
- Berger, A. Th1 and Th2 responses: What are they? Bmj 2000, 321, 424. [Google Scholar] [CrossRef]
- Wang, W.; Sung, N.; Gilman-Sachs, A.; Kwak-Kim, J. T helper (Th) cell profiles in pregnancy and recurrent pregnancy losses: Th1/Th2/Th9/Th17/Th22/Tfh cells. Front. Immunol. 2020, 11, 548539. [Google Scholar] [CrossRef]
- Gadani, S.P.; Cronk, J.C.; Norris, G.T.; Kipnis, J. IL-4 in the Brain: A Cytokine To Remember. J. Immunol. 2012, 189, 4213–4219. [Google Scholar] [CrossRef] [PubMed]
- de Moraes-Pinto, M.; Vince, G.; Flanagan, B.; Hart, C.; Johnson, P. Localization of IL-4 and IL-4 receptors in the human term placenta, decidua and amniochorionic membranes. Immunology 1997, 90, 87–94. [Google Scholar] [CrossRef]
- Xie, N.; Jia, Z.; Li, L. miR-320a upregulation contributes to the development of preeclampsia by inhibiting the growth and invasion of trophoblast cells by targeting interleukin 4. Mol. Med. Rep. 2019, 20, 3256–3264. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, S.; Zhou, Q.; Li, X. Trophoblast-derived interleukin 9 mediates immune cell conversion and con-tributes to maternal-fetal tolerance. J. Reprod. Immunol. 2021, 148, 103379. [Google Scholar] [CrossRef]
- Dealtry, G.B.; Clark, D.E.; Sharkey, A.; Charnock-Jones, D.S.; Smith, S.K. Expression and Localization of the Th2-type Cytokine Interleukin-13 and Its Receptor in the Placenta During Human Pregnancy. Am. J. Reprod. Immunol. 1998, 40, 283–290. [Google Scholar] [CrossRef]
- Al-Azemi, M.; Raghupathy, R.; Azizieh, F. Pro-inflammatory and anti-inflammatory cytokine profiles in fetal growth restriction. Clin. Exp. Obstet. Gynecol. 2017, 44, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.; Han, J.; Kim, S.O. The multifaceted effects of granulocyte colony-stimulating factor in immunomod-ulation and potential roles in intestinal immune homeostasis. IUBMB Life 2010, 62, 611–617. [Google Scholar] [CrossRef]
- Kazanietz, M.G.; Durando, M.; Cooke, M. CXCL13 and Its Receptor CXCR5 in Cancer: Inflammation, Immune Response, and Beyond. Front. Endocrinol. 2019, 10, 471. [Google Scholar] [CrossRef]
- Kim, M.J.; Romero, R.; Kim, C.J.; Tarca, A.L.; Chhauy, S.; LaJeunesse, C.; Lee, D.-C.; Draghici, S.; Gotsch, F.; Kusanovic, J.P.; et al. Villitis of Unknown Etiology Is Associated with a Distinct Pattern of Chemokine Up-Regulation in the Feto-Maternal and Placental Compartments: Implications for Conjoint Maternal Allograft Rejection and Maternal Anti-Fetal Graft-versus-Host Disease. J. Immunol. 2009, 182, 3919–3927. [Google Scholar] [CrossRef]
- Chau, S.E.; Murthi, P.; Wong, M.H.; Whitley, G.S.; Brennecke, S.P.; Keogh, R.J. Control of extravillous trophoblast function by the eotaxins CCL11, CCL24 and CCL26. Hum. Reprod. 2013, 28, 1497–1507. [Google Scholar] [CrossRef]
- Ullah, A.; Zhao, J.; Singla, R.K.; Shen, B. Pathophysiological impact of CXC and CX3CL1 chemokines in preeclampsia and gestational diabetes mellitus. Front. Cell Dev. Biol. 2023, 11, 1272536. [Google Scholar] [CrossRef]
- Liu, Z.; He, J.; Jin, P.; Ran, Y.; Yin, N.; Qi, H. CCL21/CCR7 Axis Contributes to Trophoblastic Cell Migration and Invasion in Preeclampsia by Affecting the Epithelial Mesenchymal Transition via the ERK1/2 Signaling Path-way. Biology 2023, 12, 150. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.M.; Tian, F.J.; Zeng, W.H.; Ma, X.L.; Ren, J.B.; Lin, Y. XCL 1-XCR 1 pathway promotes trophoblast inva-sion at maternal-fetal interface by inducing MMP-2/MMP-9 activity. Am. J. Reprod. Immunol. 2018, 80, e12990. [Google Scholar] [CrossRef] [PubMed]
- Krivokuća, M.J.; Vilotić, A.; Nacka-Aleksić, M.; Pirković, A.; Ćujić, D.; Legner, J.; Dekanski, D.; Bojić-Trbojević, Ž. Galectins in Early Pregnancy and Pregnancy-Associated Pathologies. Int. J. Mol. Sci. 2021, 23, 69. [Google Scholar] [CrossRef]
- Wallach, D. The Tumor Necrosis Factor Family: Family Conventions and Private Idiosyncrasies. Cold Spring Harb. Perspect. Biol. 2018, 10, a028431. [Google Scholar] [CrossRef]
- Jang, D.-I.; Lee, A.-H.; Shin, H.-Y.; Song, H.-R.; Park, J.-H.; Kang, T.-B.; Lee, S.-R.; Yang, S.-H. The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. Int. J. Mol. Sci. 2021, 22, 2719. [Google Scholar] [CrossRef] [PubMed]
- Fakhr, Y.; Koshti, S.; Habibyan, Y.B.; Webster, K.; Hemmings, D.G. Tumor Necrosis Factor-α Induces a Preeclamptic-like Phenotype in Placental Villi via Sphingosine Kinase 1 Activation. Int. J. Mol. Sci. 2022, 23, 3750. [Google Scholar] [CrossRef] [PubMed]
- Riddle, E.S.; Campbell, M.S.; Lang, B.Y.; Bierer, R.; Wang, Y.; Bagley, H.N.; Joss-Moore, L.A. Intrauterine growth restriction increases TNFα and activates the unfolded protein response in male rat pups. J. Obes. 2014, 2014, 829862. [Google Scholar] [CrossRef] [PubMed]
- Volpe, E.; Sambucci, M.; Battistini, L.; Borsellino, G. Fas–Fas Ligand: Checkpoint of T Cell Functions in Multiple Sclerosis. Front. Immunol. 2016, 7, 382. [Google Scholar] [CrossRef] [PubMed]
- Langat, D.L.; Wheaton, D.A.; Platt, J.S.; Sifers, T.; Hunt, J.S. Signaling Pathways for B Cell-Activating Factor (BAFF) and a Proliferation-Inducing Ligand (APRIL) in Human Placenta. Am. J. Pathol. 2008, 172, 1303–1311. [Google Scholar] [CrossRef] [PubMed]
- Riccardi, C.; Ronchetti, S.; Nocentini, G. Glucocorticoid-induced TNFR-related gene (GITR) as a therapeutic tar-get for immunotherapy. Expert Opin. Ther. Targets 2018, 22, 783–797. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Zhong, J.; Dong, L. The Role of Decorin in Autoimmune and Inflammatory Diseases. J. Immunol. Res. 2022, 2022, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Haas, M.S.; Kagey, M.H.; Heath, H.; Schuerpf, F.; Rottman, J.B.; Newman, W. mDKN-01, a Novel Anti-DKK1 mAb, Enhances Innate Immune Responses in the Tumor Microenvironment. Mol. Cancer Res. 2020, 19, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Ying, H.; Chen, Z.; long Zhu, Y.; Gu, Y.; Hu, L.; Chen, D.; Zhong, N. Down-regulation of DKK1 and Wnt1/β-catenin pathway by increased homeobox B7 resulted in cell differentiation suppression of intrauterine fetal growth retardation in human placenta. Placenta 2019, 80, 27–35. [Google Scholar] [CrossRef]
- Yin, E.; Fukuhara, T.; Takeda, K.; Kojima, Y.; Fukuhara, K.; Ikejima, K.; Bashuda, H.; Kitaura, J.; Yagita, H.; Okumura, K.; et al. Anti-CD321 antibody immunotherapy protects liver against ischemia and reperfusion-induced injury. Sci. Rep. 2021, 11, 1–10. [Google Scholar] [CrossRef]
- Reddy Gaddam, R.; Chambers, S.; Bhatia, M. ACE and ACE2 in inflammation: A tale of two enzymes. Inflamma-Tion Allergy-Drug Targets (Former. Curr. Drug Targets-Inflamm. Allergy)(Discontin. ) 2014, 13, 224–234. [Google Scholar]
- Knöfler, M.; Pollheimer, J. IFPA Award in Placentology lecture: Molecular regulation of human trophoblast in-vasion. Placenta 2012, 33, S55–S62. [Google Scholar] [CrossRef] [PubMed]
- Ridder, A.; Giorgione, V.; Khalil, A.; Thilaganathan, B. Preeclampsia: The Relationship between Uterine Artery Blood Flow and Trophoblast Function. Int. J. Mol. Sci. 2019, 20, 3263. [Google Scholar] [CrossRef] [PubMed]
- Tranquilli, A.L.; Giannubilo, S.R. Blood pressure is elevated in normotensive pregnant women with intrauterine growth restriction. Eur. J. Obstet. Gynecol. Reprod. Biol. 2005, 122, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Silber, M.; Dekel, N.; Heusler, I.; Biron-Shental, T.; Amiel, A.; Kidron, D.; Weisz, A.; Benchetrit, S.; Zitman-Gal, T. Inflammasome activation in preeclampsia and intrauterine growth restriction. Am. J. Reprod. Immunol. 2022, 88, e13598. [Google Scholar] [CrossRef] [PubMed]
- Cotechini, T.; Graham, C. Aberrant maternal inflammation as a cause of pregnancy complications: A potential therapeutic target? Placenta 2015, 36, 960–966. [Google Scholar] [CrossRef] [PubMed]
- Saito, S.; Sakai, M.; Sasaki, Y.; Tanebe, K.; Tsuda, H.; Michimata, T. Quantitative analysis of peripheral blood Th0, Th1, Th2 and the Th1: Th2 cell ratio during normal human pregnancy and preeclampsia. Clin. Ex-Perimental Immunol. 1999, 117, 550–555. [Google Scholar] [CrossRef]
- Nurzadeh, M.; Ghalandarpoor-Attar, S.M.; Ghalandarpoor-Attar, S.N.; Rabiei, M. The Role of Interferon (IFN)-γ in Extravillous Trophoblast Cell (EVT) Invasion and Preeclampsia Progression. Reprod. Sci. 2022, 30, 1462–1469. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Su, X.; Xu, W.; Zhou, R. Interleukin-18 and interferon gamma levels in preeclampsia: A systematic re-view and meta-analysis. Am. J. Reprod. Immunol. 2014, 72, 504–514. [Google Scholar] [CrossRef]
- Cunningham, M.W.; Amaral, L.M.; Campbell, N.E.; Cornelius, D.C.; Ibrahim, T.; Vaka, V.R.; LaMarca, B. Inves-tigation of interleukin-2-mediated changes in blood pressure, fetal growth restriction, and innate immune acti-vation in normal pregnant rats and in a preclinical rat model of preeclampsia. Biol. Sex Differ. 2021, 12, 1–10. [Google Scholar] [CrossRef]
- Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 2003, 3, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Gibot, S. Soluble triggering receptor expressed on myeloid cells and the diagnosis of pneumonia and severe sepsis. In Seminars in Respiratory and Critical Care Medicine; Thieme Medical Publishers, Inc.: New York, NY, USA, 2006; pp. 29–33. [Google Scholar]
- Gray, P.W.; Glaister, D.; Seeburg, P.H.; Guidotti, A.; Costa, E. Cloning and expression of cDNA for human diazepam binding inhibitor, a natural ligand of an allosteric regulatory site of the gamma-aminobutyric acid type A receptor. Proc. Natl. Acad. Sci. USA 1986, 83, 7547–7551. [Google Scholar] [CrossRef] [PubMed]
- Lim, R.; Barker, G.; Lappas, M. TREM-1 Expression Is Increased in Human Placentas From Severe Early-Onset Preeclamptic Pregnancies Where It May Be Involved in Syncytialization. Reprod. Sci. 2013, 21, 562–572. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A. Immunological and Inflammatory Functions of the Interleukin-1 Family. Annu. Rev. Immunol. 2009, 27, 519–550. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 2011, 117, 3720–3732. [Google Scholar] [CrossRef] [PubMed]
- Brien, M.; Boufaied, I.; Bernard, N.; Forest, J.; Giguere, Y.; Girard, S. Specific inflammatory profile in each pregnancy complication: A comparative study. Am. J. Reprod. Immunol. 2020, 84, e13316. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ding, J.; Zhang, Y.; Liu, S.; Yang, J.; Yin, T. Regulation and Function of Chemokines at the Maternal–Fetal Interface. Front. Cell Dev. Biol. 2022, 10, 826053. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Lin, P.; Qu, M.; Zhai, R.; Zhang, L.; Zhang, L.; Zhu, L.; Liu, C.; Shu, H.; Feng, X.; et al. Neutrophil count is a useful marker to predict the severity of preeclampsia. Clin. Exp. Hypertens. 2022, 44, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Takahama, Y. XCL1 and XCR1 in the immune system. Microbes Infect. 2012, 14, 262–267. [Google Scholar] [CrossRef]
- Zhuo, S.; Li, N.; Zheng, Y.; Peng, X.; Xu, A.; Ge, Y. Expression of the Lymphocyte Chemokine XCL1 in Lung Tissue of COPD Mice, and Its Relationship to CD4+/CD8+ Ratio and IL-2. Cell Biochem. Biophys. 2015, 73, 505–511. [Google Scholar] [CrossRef]
- Xie, Y.; Zhao, F.; Freitag, N.; Borowski, S.; Wang, Y.; Harms, C.; Pang, P.-C.; Desforges, J.; Wen, T.; Schwedhelm, E.; et al. Maternal-derived galectin-1 shapes the placenta niche through Sda terminal glycosylation: Implication for preeclampsia. PNAS Nexus 2023, 2, pgad247. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.-X.; Ying, X.; Dong, M.-Y. Galectin-1 expression in the serum and placenta of pregnant women with fetal growth restriction and its significance. BMC Pregnancy Childbirth 2021, 21, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Holcberg, G.; Huleihel, M.; Sapir, O.; Katz, M.; Tsadkin, M.; Furman, B.; Mazor, M.; Myatt, L. Increased produc-tion of tumor necrosis factor-α TNF-α by IUGR human placentae. Eur. J. Obstet. Gynecol. Reprod. Biol. 2001, 94, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Hunt, J.S.; Pace, J.L.; Gill, R.M. Immunoregulatory molecules in human placentas: Potential for diverse roles in pregnancy. Int. J. Dev. Biol. 2010, 54, 457–467. [Google Scholar] [CrossRef] [PubMed]
- Karara, J.R.; Tomas, S.Z.; Marušić, J.; Roje, D.; Prusac, I.K. Fas and FasL expression in placentas complicated with intrauterine growth retardation with and without preeclampsia. J. Matern. Neonatal Med. 2015, 29, 1154–1159. [Google Scholar] [CrossRef] [PubMed]
- Kavurma, M.M.; Khachigian, L.M. Signaling and transcriptional control of Fas ligand gene expression. Cell Death Differ. 2003, 10, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Nocentini, G.; Cuzzocrea, S.; Genovese, T.; Bianchini, R.; Mazzon, E.; Ronchetti, S.; Esposito, E.; di Paola, R.; Bramanti, P.; Riccardi, C. GITR-FC FUSION PROTEIN INHIBITS GITR TRIGGERING AND PROTECTS FROM THE INFLAMMATORY RESPONSE FOLLOWING SPINAL CORD INJURY. Molecular Pharmacology 2008.
- Siddiqui, M.F.; Nandi, P.; Girish, G.V.; Nygard, K.; Eastabrook, G.; de Vrijer, B.; Han, V.K.; Lala, P.K. Decorin over-expression by decidual cells in preeclampsia: A potential blood biomarker. Am. J. Obstet. Gynecol. 2016, 215, 361.e1–361.e15. [Google Scholar] [CrossRef] [PubMed]
- Halari, C.D.; Zheng, M.; Lala, P.K. Roles of two small leucine-rich proteoglycans decorin and biglycan in preg-nancy and pregnancy-associated diseases. Int. J. Mol. Sci. 2021, 22, 10584. [Google Scholar] [CrossRef]
- Knöfler, M.; Pollheimer, J. Human placental trophoblast invasion and differentiation: A particular focus on Wnt signaling. Front. Genet. 2013, 4, 190. [Google Scholar] [CrossRef]
- Dong, J.; Wang, S.; Yin, X.; Fang, M.; Gong, Z.; Wu, Y. Angiotensin I converting enzyme (ACE) inhibitory activity and antihypertensive effects of rice peptides. Food Sci. Hum. Wellness 2022, 11, 1539–1543. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirkham, M.N.; Cooper, C.; Broberg, E.; Robertson, P.; Clarke, D.; Pickett, B.E.; Bikman, B.; Reynolds, P.R.; Arroyo, J.A. Different Lengths of Gestational Exposure to Secondhand Smoke or e-Cigarette Vapor Induce the Development of Placental Disease Symptoms. Cells 2024, 13, 1009. https://doi.org/10.3390/cells13121009
Kirkham MN, Cooper C, Broberg E, Robertson P, Clarke D, Pickett BE, Bikman B, Reynolds PR, Arroyo JA. Different Lengths of Gestational Exposure to Secondhand Smoke or e-Cigarette Vapor Induce the Development of Placental Disease Symptoms. Cells. 2024; 13(12):1009. https://doi.org/10.3390/cells13121009
Chicago/Turabian StyleKirkham, Madison N., Christian Cooper, Emily Broberg, Peter Robertson, Derek Clarke, Brett E. Pickett, Benjamin Bikman, Paul R. Reynolds, and Juan A. Arroyo. 2024. "Different Lengths of Gestational Exposure to Secondhand Smoke or e-Cigarette Vapor Induce the Development of Placental Disease Symptoms" Cells 13, no. 12: 1009. https://doi.org/10.3390/cells13121009
APA StyleKirkham, M. N., Cooper, C., Broberg, E., Robertson, P., Clarke, D., Pickett, B. E., Bikman, B., Reynolds, P. R., & Arroyo, J. A. (2024). Different Lengths of Gestational Exposure to Secondhand Smoke or e-Cigarette Vapor Induce the Development of Placental Disease Symptoms. Cells, 13(12), 1009. https://doi.org/10.3390/cells13121009