An Examination of the Effect of Aspirin and Salicylic Acid on Soluble Fms-like Tyrosine Kinase-1 Release from Human Placental Trophoblasts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Drug Materials
2.3. LDA-Relevant Drug Concentrations
2.4. Enzyme-Linked Immunosorbent Assay (ELISA)
2.5. Real-Time Quantitative PCR (RT-PCR)
2.6. Data Analysis
3. Results
3.1. Effects of Aspirin and Salicylic Acid on sFlt1 Protein Release and mRNA Expression in BeWo Cells
3.2. Effects of Aspirin and Salicylic Acid on Hypoxia-Induced sFlt1 Protein Release and mRNA Expression in BeWo Cells
3.3. Effects of Aspirin and Salicylic Acid on sFlt1 Protein Release and mRNA Expression in HTR-8/SVneo Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AUC | area under the curve |
Cmax | maximum concentration |
COX | cyclooxygenase |
LDA | low-dose aspirin |
PlGF | placental growth factor |
sFlt1 | soluble fms-like tyrosine kinase-1 |
VEGF | vascular endothelial growth factor |
References
- Hanson, U.; Persson, B. Outcome of pregnancies complicated by type 1 insulin-dependent diabetes in Sweden: Acute pregnancy complications, neonatal mortality and morbidity. Am. J. Perinatol. 1993, 10, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Jenkins, A.J.; Nankervis, A.J.; Hanssen, K.F.; Scholz, H.; Henriksen, T.; Lorentzen, B.; Clausen, T.; Garg, S.K.; Menard, M.K.; et al. Anti-angiogenic factors and pre-eclampsia in type 1 diabetic women. Diabetologia 2009, 52, 160–168. [Google Scholar] [CrossRef] [PubMed]
- American College of Obstetricians and Gynecologists. Hypertension in Pregnancy, Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet. Gynecol. 2013, 122, 1122–1131. [Google Scholar]
- Roberts, J.M.; Hubel, C.A. The two stage model of preeclampsia: Variations on the theme. Placenta 2009, 30 (Suppl. A), S32–S37. [Google Scholar] [CrossRef] [PubMed]
- Levine, R.J.; Maynard, S.E.; Qian, C.; Lim, K.H.; England, L.J.; Yu, K.F.; Schisterman, E.F.; Thadhani, R.; Sachs, B.P.; Epstein, F.H.; et al. Circulating angiogenic factors and the risk of preeclampsia. N. Engl. J. Med. 2004, 350, 672–683. [Google Scholar] [CrossRef]
- Naljayan, M.V.; Karumanchi, S.A. New developments in the pathogenesis of preeclampsia. Adv. Chronic. Kidney Dis. 2013, 20, 265–270. [Google Scholar] [CrossRef]
- Rana, S.; Schnettler, W.T.; Powe, C.; Wenger, J.; Salahuddin, S.; Cerdeira, A.S.; Verlohren, S.; Perschel, F.H.; Arany, Z.; Lim, K.H.; et al. Clinical characterization and outcomes of preeclampsia with normal angiogenic profile. Hypertens. Pregnancy 2013, 32, 189–201. [Google Scholar] [CrossRef]
- Bergmann, A.; Ahmad, S.; Cudmore, M.; Gruber, A.D.; Wittschen, P.; Lindenmaier, W.; Christofori, G.; Gross, V.; Gonzalves, A.; Grone, H.J.; et al. Reduction of circulating soluble Flt-1 alleviates preeclampsia-like symptoms in a mouse model. J. Cell. Mol. Med. 2010, 14, 1857–1867. [Google Scholar] [CrossRef]
- Maynard, S.E.; Min, J.Y.; Merchan, J.; Lim, K.H.; Li, J.; Mondal, S.; Libermann, T.A.; Morgan, J.P.; Sellke, F.W.; Stillman, I.E.; et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Investig. 2003, 111, 649–658. [Google Scholar] [CrossRef]
- Thadhani, R.; Kisner, T.; Hagmann, H.; Bossung, V.; Noack, S.; Schaarschmidt, W.; Jank, A.; Kribs, A.; Cornely, O.A.; Kreyssig, C.; et al. Pilot study of extracorporeal removal of soluble fms-like tyrosine kinase 1 in preeclampsia. Circulation 2011, 124, 940–950. [Google Scholar] [CrossRef]
- Thadhani, R.; Hagmann, H.; Schaarschmidt, W.; Roth, B.; Cingoez, T.; Karumanchi, S.A.; Wenger, J.; Lucchesi, K.J.; Tamez, H.; Lindner, T.; et al. Removal of Soluble Fms-Like Tyrosine Kinase-1 by Dextran Sulfate Apheresis in Preeclampsia. J. Am. Soc. Nephrol. 2016, 27, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Rolnik, D.L.; Nicolaides, K.H.; Poon, L.C. Prevention of preeclampsia with aspirin. Am. J. Obstet. Gynecol. 2022, 226, S1108–S1119. [Google Scholar] [CrossRef]
- Askie, L.M.; Duley, L.; Henderson-Smart, D.J.; Stewart, L.A. Antiplatelet agents for prevention of pre-eclampsia: A meta-analysis of individual patient data. Lancet 2007, 369, 1791–1798. [Google Scholar] [CrossRef] [PubMed]
- Duley, L.; Meher, S.; Hunter, K.E.; Seidler, A.L.; Askie, L.M. Antiplatelet agents for preventing pre-eclampsia and its complications. Cochrane Database Syst. Rev. 2019, 10, CD004659. [Google Scholar] [CrossRef] [PubMed]
- Henderson, J.T.; Vesco, K.K.; Senger, C.A.; Thomas, R.G.; Redmond, N. Aspirin Use to Prevent Preeclampsia and Related Morbidity and Mortality: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2021, 326, 1192–1206. [Google Scholar] [CrossRef] [PubMed]
- Force, U.S.P.S.T.; Davidson, K.W.; Barry, M.J.; Mangione, C.M.; Cabana, M.; Caughey, A.B.; Davis, E.M.; Donahue, K.E.; Doubeni, C.A.; Kubik, M.; et al. Aspirin Use to Prevent Preeclampsia and Related Morbidity and Mortality: US Preventive Services Task Force Recommendation Statement. JAMA 2021, 326, 1186–1191. [Google Scholar]
- Espinoza, J. Low-Dose Aspirin for the Prevention of Preeclampsia. JAMA 2021, 326, 1153–1155. [Google Scholar] [CrossRef]
- Rolnik, D.L.; Wright, D.; Poon, L.C.; O’Gorman, N.; Syngelaki, A.; de Paco Matallana, C.; Akolekar, R.; Cicero, S.; Janga, D.; Singh, M.; et al. Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. N. Engl. J. Med. 2017, 377, 613–622. [Google Scholar] [CrossRef]
- Li, C.; Raikwar, N.S.; Santillan, M.K.; Santillan, D.A.; Thomas, C.P. Aspirin inhibits expression of sFLT1 from human cytotrophoblasts induced by hypoxia, via cyclo-oxygenase 1. Placenta 2015, 36, 446–453. [Google Scholar] [CrossRef]
- Brennecke, S.; Pratt, A.; Yong, H.; Panagodage, S.; Borg, A.; Murthi, P. Low dose aspirin corrects in vitro the placental cell derived sFlt-1/PlGF imbalance characteristic of preeclampsia: Biomarkers, prediction of preeclampsia. Pregnancy Hypertens. 2016, 6, 149. [Google Scholar] [CrossRef]
- Su, M.T.; Wang, C.Y.; Tsai, P.Y.; Chen, T.Y.; Tsai, H.L.; Kuo, P.L. Aspirin enhances trophoblast invasion and represses soluble fms-like tyrosine kinase 1 production: A putative mechanism for preventing preeclampsia. J. Hypertens. 2019, 37, 2461–2469. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Li, G.; Zhang, W.; Wang, Y.L.; Yang, H. Low-dose aspirin reduces hypoxia-induced sFlt1 release via the JNK/AP-1 pathway in human trophoblast and endothelial cells. J. Cell Physiol. 2019, 234, 18928–18941. [Google Scholar] [CrossRef] [PubMed]
- Han, C.S.; Mulla, M.J.; Brosens, J.J.; Chamley, L.W.; Paidas, M.J.; Lockwood, C.J.; Abrahams, V.M. Aspirin and heparin effect on basal and antiphospholipid antibody modulation of trophoblast function. Obstet. Gynecol. 2011, 118, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Shanmugalingam, R.; Chau, K.; Pears, S.; Hennessy, A.; Makris, A. The effect of acetyl salicylic acid (Aspirin) on trophoblast-endothelial interaction in vitro. J. Reprod. Immunol. 2017, 124, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Murtoniemi, K.; Vahlberg, T.; Hamalainen, E.; Kajantie, E.; Pesonen, A.K.; Raikkonen, K.; Taipale, P.; Villa, P.M.; Laivuori, H. The effect of low-dose aspirin on serum placental growth factor levels in a high-risk PREDO cohort. Pregnancy Hypertens. 2018, 13, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Mayer-Pickel, K.; Kolovetsiou-Kreiner, V.; Stern, C.; Munzker, J.; Eberhard, K.; Trajanoski, S.; Lakovschek, I.C.; Ulrich, D.; Csapo, B.; Lang, U.; et al. Effect of Low-Dose Aspirin on Soluble FMS-Like Tyrosine Kinase 1/Placental Growth Factor (sFlt-1/PlGF Ratio) in Pregnancies at High Risk for the Development of Preeclampsia. J. Clin. Med. 2019, 8, 1429. [Google Scholar] [CrossRef]
- Mone, F.; Mulcahy, C.; McParland, P.; Downey, P.; Culliton, M.; Maguire, O.C.; Mooney, E.E.; Clarke, P.; Fitzgerald, D.; Tully, E.; et al. Evaluation of the Effect of Low-Dose Aspirin on Biochemical and Biophysical Biomarkers for Placental Disease in Low-Risk Pregnancy: Secondary Analysis of a Multicenter RCT. Am. J. Perinatol. 2019, 36, 1387–1393. [Google Scholar] [CrossRef]
- Wice, B.; Menton, D.; Geuze, H.; Schwartz, A.L. Modulators of cyclic AMP metabolism induce syncytiotrophoblast formation in vitro. Exp. Cell Res. 1990, 186, 306–316. [Google Scholar] [CrossRef]
- Nevo, O.; Soleymanlou, N.; Wu, Y.; Xu, J.; Kingdom, J.; Many, A.; Zamudio, S.; Caniggia, I. Increased expression of sFlt-1 in in vivo and in vitro models of human placental hypoxia is mediated by HIF-1. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 291, R1085–R1093. [Google Scholar] [CrossRef]
- Graham, C.H.; Hawley, T.S.; Hawley, R.G.; MacDougall, J.R.; Kerbel, R.S.; Khoo, N.; Lala, P.K. Establishment and characterization of first trimester human trophoblast cells with extended lifespan. Exp. Cell Res. 1993, 206, 204–211. [Google Scholar] [CrossRef]
- Zhao, J.; Chow, R.P.; McLeese, R.H.; Hookham, M.B.; Lyons, T.J.; Yu, J.Y. Modelling preeclampsia: A comparative analysis of the common human trophoblast cell lines. FASEB Bioadv. 2021, 3, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Rymark, P.; Berntorp, E.; Nordsjo, P.; Liedholm, H.; Melander, A.; Gennser, G. Low-dose aspirin to pregnant women: Single dose pharmacokinetics and influence of short term treatment on bleeding time. J. Perinat. Med. 1994, 22, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Shanmugalingam, R.; Wang, X.; Munch, G.; Fulcher, I.; Lee, G.; Chau, K.; Xu, B.; Kumar, R.; Hennessy, A.; Makris, A. A pharmacokinetic assessment of optimal dosing, preparation, and chronotherapy of aspirin in pregnancy. Am. J. Obstet. Gynecol. 2019, 221, 255 e1–255 e9. [Google Scholar] [CrossRef] [PubMed]
- Leonhardt, A.; Bernert, S.; Watzer, B.; Schmitz-Ziegler, G.; Seyberth, H.W. Low-dose aspirin in pregnancy: Maternal and neonatal aspirin concentrations and neonatal prostanoid formation. Pediatrics 2003, 111, e77–e81. [Google Scholar] [CrossRef] [PubMed]
- Patrick, J.; Dillaha, L.; Armas, D.; Sessa, W.C. A randomized trial to assess the pharmacodynamics and pharmacokinetics of a single dose of an extended-release aspirin formulation. Postgrad. Med. 2015, 127, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Bochner, F.; Williams, D.B.; Morris, P.M.; Siebert, D.M.; Lloyd, J.V. Pharmacokinetics of low-dose oral modified release, soluble and intravenous aspirin in man, and effects on platelet function. Eur. J. Clin. Pharmacol. 1988, 35, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Charman, W.N.; Charman, S.A.; Monkhouse, D.C.; Frisbee, S.E.; Lockhart, E.A.; Weisman, S.; Fitzgerald, G.A. Biopharmaceutical characterisation of a low-dose (75 mg) controlled-release aspirin formulation. Br. J. Clin. Pharmacol. 1993, 36, 470–473. [Google Scholar] [CrossRef]
- Clarke, R.J.; Mayo, G.; Price, P.; FitzGerald, G.A. Suppression of thromboxane A2 but not of systemic prostacyclin by controlled-release aspirin. N. Engl. J. Med. 1991, 325, 1137–1141. [Google Scholar] [CrossRef]
- Benedek, I.H.; Joshi, A.S.; Pieniaszek, H.J.; King, S.Y.; Kornhauser, D.M. Variability in the pharmacokinetics and pharmacodynamics of low dose aspirin in healthy male volunteers. J. Clin. Pharmacol. 1995, 35, 1181–1186. [Google Scholar] [CrossRef]
- Nagelschmitz, J.; Blunck, M.; Kraetzschmar, J.; Ludwig, M.; Wensing, G.; Hohlfeld, T. Pharmacokinetics and pharmacodynamics of acetylsalicylic acid after intravenous and oral administration to healthy volunteers. Clin. Pharmacol. 2014, 6, 51–59. [Google Scholar] [CrossRef]
- Patrignani, P.; Filabozzi, P.; Patrono, C. Selective cumulative inhibition of platelet thromboxane production by low-dose aspirin in healthy subjects. J. Clin. Investig. 1982, 69, 1366–1372. [Google Scholar] [CrossRef] [PubMed]
- Patrono, C.; Rodriguez, L.A.G.; Landolfi, R.; Baigent, C. Low-dose aspirin for the prevention of atherothrombosis. N. Engl. J. Med. 2005, 353, 2373–2383. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.A.; Akarasereenont, P.; Thiemermann, C.; Flower, R.J.; Vane, J.R. Selectivity of nonsteroidal antiinflammatory drugs as inhibitors of constitutive and inducible cyclooxygenase. Proc. Natl. Acad. Sci. USA 1993, 90, 11693–11697. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, A.K.; FitzGerald, G.A. Dose-related kinetics of aspirin. Presystemic acetylation of platelet cyclooxygenase. N. Engl. J. Med. 1984, 311, 1206–1211. [Google Scholar] [CrossRef]
- Zhou, Y.; Gormley, M.J.; Hunkapiller, N.M.; Kapidzic, M.; Stolyarov, Y.; Feng, V.; Nishida, M.; Drake, P.M.; Bianco, K.; Wang, F.; et al. Reversal of gene dysregulation in cultured cytotrophoblasts reveals possible causes of preeclampsia. J. Clin. Investig. 2013, 123, 2862–2872. [Google Scholar] [CrossRef]
- Jacobson, R.L.; Brewer, A.; Eis, A.; Siddiqi, T.A.; Myatt, L. Transfer of aspirin across the perfused human placental cotyledon. Am. J. Obstet. Gynecol. 1991, 165 Pt 1, 939–944. [Google Scholar] [CrossRef]
- Walsh, S.W.; Wang, Y. Secretion of lipid peroxides by the human placenta. Am. J. Obstet. Gynecol. 1993, 169, 1462–1466. [Google Scholar] [CrossRef]
Aspirin Dose (mg/day or Single Dose) | Formulations | Aspirin Cmax (μmol/L) | Aspirin AUC (μmol/L∗h) | SA Cmax (μmol/L) | SA AUC (μmol/L∗h) | SA vs. Aspirin Cmax Ratio | Subjects | References |
---|---|---|---|---|---|---|---|---|
40 | Immediate-release tablet | 1.3 ± 0.4 | 2.1 ± 0.7 | 10.9 ± 2.1 | 44.9 ± 11.6 | 8.4 | Healthy males and females | [35] |
40 | Extended-release tablet | 0.2 ± 0.1 | 0.6 ± 0.5 | 3.8 ± 0.9 | 40.1 ± 13.4 | 18.1 | ||
81 | Immediate-release tablet | 2.8 ± 0.8 | 4.8 ± 1.4 | 22.8 ± 4.9 | 101.4 ± 29.8 | 8.1 | ||
81 | Extended-release tablet | 0.6 ± 0.3 | 1.8 ± 0.7 | 9.0 ± 3.5 | 87.6 ± 30.2 | 15.3 | ||
50 | Modified-release capsule | 1.2 ± 0.6 | 2.1 ± 0.7 | 19.9 ± 2.5 | 10.6 ± 14.5 | 16.6 | Healthy males and females | [36] |
50 | Solution | 7.3 ± 4.1 | 3.8 ± 1.9 | 31.5 ± 3.7 | 78.2 ± 8.3 | 4.3 | ||
75 | Solution | 7.3 ± 2.1 | 3.6 ± 0.5 | ~14.5 | 34.4 ± 8.8 | 2.0 | Healthy males | [37] |
75 | Controlled-release tablet | 0.5 ± 0.1 | 2.7 ± 0.6 | 4.9 ± 1.4 | 29.1 ± 8.0 | 9.2 | ||
75 | n/a | 5.1 ± 2.6 | 4.5 ± 2.0 | 23.2 ± 5.9 | 54.8 ± 14.7 | 4.5 | Healthy pregnant women (27–29 weeks) | [32] |
75 | n/a | 5.1 ± 1.8 | 4.9 ± 2.0 | 17.8 ± 3.0 | 44.7 ± 8.5 | 3.5 | Healthy pregnant women (36–38 weeks) | |
75 | n/a | 7.4 ± 1.3 | 6.4 ± 2.0 | 29.6 ± 8.4 | 71.4 ± 24.3 | 4.0 | Healthy males and non-pregnant females | |
75 | Controlled-release | 0.3 ± 0.03 | n/a | 2.3 ± 0.4 | n/a | 7.9 | Healthy males | [38] |
162.5 | Immediate-release | 6.8 ± 1.3 | n/a | 15.4 ± 1.6 | n/a | 2.3 | ||
80 | Tablet | 5.5 ± 1.3 | 5.2 ± 0.8 | 30.2 ± 6.7 | 88.5 ± 23.4 | 5.5 | Healthy males | [39] |
100 | Tablet | 5.6 ± 1.9 | 4.9 ± 2.2 | 30.3 ± 7.1 | 105.7 ± 28.0 | 5.4 | Healthy males and females | [40] |
100 | n/a | 23.4 | n/a | 57.4 | n/a | 2.5 | Pregnant women | [34] |
100 | Enteric-coated tablet | n/a | n/a | 9.2 ± 0.7 | 86.4 ± 0.8 | n/a | High-risk pregnant women | [33] |
100 | Non enteric-coated tablet | n/a | n/a | 17.5 ± 0.5 | 88.2 ± 0.7 | n/a | ||
150 | Non enteric-coated tablet | n/a | n/a | 23.8 ± 0.8 | 144.8 ± 1.7 | n/a | ||
100 | Enteric-coated tablet | n/a | n/a | 13.1 ± 1.1 | 159.4 ± 0.9 | n/a | Non-pregnant women | |
100 | Non enteric-coated tablet | n/a | n/a | 23.3 ± 0.7 | 152.8 ± 3.9 | n/a | ||
150 | Non enteric-coated tablet | n/a | n/a | 34.7 ± 1.3 | 212.1 ± 3.1 | n/a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Duan, R.; Sun, J.; Chow, R.P.; Lyons, T.J.; Yu, J.Y. An Examination of the Effect of Aspirin and Salicylic Acid on Soluble Fms-like Tyrosine Kinase-1 Release from Human Placental Trophoblasts. Cells 2024, 13, 113. https://doi.org/10.3390/cells13020113
Zhao J, Duan R, Sun J, Chow RP, Lyons TJ, Yu JY. An Examination of the Effect of Aspirin and Salicylic Acid on Soluble Fms-like Tyrosine Kinase-1 Release from Human Placental Trophoblasts. Cells. 2024; 13(2):113. https://doi.org/10.3390/cells13020113
Chicago/Turabian StyleZhao, Jiawu, Rui Duan, Jinghui Sun, Rebecca P. Chow, Timothy J. Lyons, and Jeremy Y. Yu. 2024. "An Examination of the Effect of Aspirin and Salicylic Acid on Soluble Fms-like Tyrosine Kinase-1 Release from Human Placental Trophoblasts" Cells 13, no. 2: 113. https://doi.org/10.3390/cells13020113
APA StyleZhao, J., Duan, R., Sun, J., Chow, R. P., Lyons, T. J., & Yu, J. Y. (2024). An Examination of the Effect of Aspirin and Salicylic Acid on Soluble Fms-like Tyrosine Kinase-1 Release from Human Placental Trophoblasts. Cells, 13(2), 113. https://doi.org/10.3390/cells13020113