IL-22 in Atopic Dermatitis
Abstract
:1. Introduction
1.1. Definition and Subtypes of Atopic Dermatitis
1.2. Prevalence
1.3. Scoring Atopic Dermatitis (SCORAD)
1.4. Eczema Area and Severity Index (EASI)
1.5. Investigator Global Assessment (IGA)
- A score of 0 = no inflammatory signs of AD present (erythema, induration/papular lesions, lichenization, oozing/scab); post-inflammatory hyper- and/or hypopigmentation may be present;
- A score of 1 = almost invisible erythema, almost invisible induration or papular changes or minimal lichenization; no oozing and no scabbing;
- A score of 2 = slight but apparent erythema (pink), slight but apparent induration/papular lesions, or slight but apparent lichenization; no oozing and no scabbing;
- A score of 3 = prominent erythema (dull red), clearly visible induration/papular lesions, or visible lichenization; oozing and scabbing may be present;
- 4 = significant erythema (dark or bright red), significant induration/papular lesions or significant lichenization; widespread lesions; oozing or scabbing may be present [16].
1.6. The Hanifin–Rajka Criteria (HRC)
1.7. Aim of the Study
2. Pathophysiology of AD
2.1. Th2 Response
2.2. Th17 Response
2.3. Th22 Response
3. Review of IL-22 Functions
3.1. IL-22 Receptor
3.2. IL-22 Binding Protein
4. IL-22 in Wound Healing Processes
5. IL-22 Protects against Infections
6. IL-22 Promotes Epidermal Hyperplasia and Skin Barrier Dysfunction in AD
7. IL-22 in Other Dermatological Diseases
7.1. Psoriasis
7.2. Allergic Contact Dermatitis
7.3. Alopecia Areata
7.4. Rosacea
8. Novel Drugs in the Treatment of AD
8.1. Biological Drugs
8.1.1. Fezakinumab (FZ, ILV-094)
8.1.2. Dupilumab
8.1.3. Tralokinumab
8.1.4. Lebrikizumab
8.1.5. Tezepelumab (AMG-157/MEDI9929)
8.1.6. Nemolizumab
8.1.7. GBR 830
8.1.8. Janus Kinase Inhibitors (JAKi)
8.2. Combined Biological Therapy for AD
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, H.; Zhang, Z.; Zhang, H.; Guo, Y.; Yao, Z. Update on the Pathogenesis and Therapy of Atopic Dermatitis. Clin. Rev. Allergy Immunol. 2021, 61, 324–338. [Google Scholar] [CrossRef] [PubMed]
- Garmhausen, D.; Hagemann, T.; Bieber, T.; Dimitriou, I.; Fimmers, R.; Diepgen, T.; Novak, N. Characterization of Different Courses of Atopic Dermatitis in Adolescent and Adult Patients. Allergy 2013, 68, 498–506. [Google Scholar] [CrossRef]
- Czarnowicki, T.; He, H.; Krueger, J.G.; Guttman-Yassky, E. Atopic Dermatitis Endotypes and Implications for Targeted Therapeutics. J. Allergy Clin. Immunol. 2019, 143, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Tokura, Y.; Hayano, S. Subtypes of Atopic Dermatitis: From Phenotype to Endotype. Allergol. Int. 2022, 71, 14–24. [Google Scholar] [CrossRef]
- Khan, A.; Adalsteinsson, J.; Whitaker-Worth, D.L. Atopic Dermatitis and Nutrition. Clin. Dermatol. 2022, 40, 135–144. [Google Scholar] [CrossRef]
- Barbarot, S.; Auziere, S.; Gadkari, A.; Girolomoni, G.; Puig, L.; Simpson, E.L.; Margolis, D.J.; de Bruin-Weller, M.; Eckert, L. Epidemiology of Atopic Dermatitis in Adults: Results from an International Survey. Allergy 2018, 73, 1284–1293. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, J.I.; Barbarot, S.; Gadkari, A.; Simpson, E.L.; Weidinger, S.; Mina-Osorio, P.; Rossi, A.B.; Brignoli, L.; Saba, G.; Guillemin, I.; et al. Atopic Dermatitis in the Pediatric Population: A Cross-Sectional, International Epidemiologic Study. Ann. Allergy Asthma Immunol. 2021, 126, 417–428.e2. [Google Scholar] [CrossRef]
- Gilaberte, Y.; Pérez-Gilaberte, J.B.; Poblador-Plou, B.; Bliek-Bueno, K.; Gimeno-Miguel, A.; Prados-Torres, A. Prevalence and Comorbidity of Atopic Dermatitis in Children: A Large-Scale Population Study Based on Real-World Data. J. Clin. Med. 2020, 9, 1632. [Google Scholar] [CrossRef]
- Wollenberg, A.; Christen-Zäch, S.; Taieb, A.; Paul, C.; Thyssen, J.P.; de Bruin-Weller, M.; Vestergaard, C.; Seneschal, J.; Werfel, T.; Cork, M.J.; et al. ETFAD/EADV Eczema Task Force 2020 Position Paper on Diagnosis and Treatment of Atopic Dermatitis in Adults and Children. J Eur Acad Dermatol Venereol 2020, 34, 2717–2744. [Google Scholar] [CrossRef]
- Oranje, A.P.; Glazenburg, E.J.; Wolkerstorfer, A.; De Waard-Van Der Spek, F.B. Practical Issues on Interpretation of Scoring Atopic Dermatitis: The SCORAD Index, Objective SCORAD and the Three-Item Severity Score. Br. J. Dermatol. 2007, 157, 645–648. [Google Scholar] [CrossRef]
- Cukrowska, B.; Ceregra, A.; Maciorkowska, E.; Surowska, B.; Zegadło-Mylik, M.A.; Konopka, E.; Trojanowska, I.; Zakrzewska, M.; Bierła, J.B.; Zakrzewski, M.; et al. The Effectiveness of Probiotic Lactobacillus Rhamnosus and Lactobacillus Casei Strains in Children with Atopic Dermatitis and Cow’s Milk Protein Allergy: A Multicenter, Randomized, Double Blind, Placebo Controlled Study. Nutrients 2021, 13, 1169. [Google Scholar] [CrossRef]
- Oranje, A.P. Practical Issues on Interpretation of Scoring Atopic Dermatitis: SCORAD Index, Objective SCORAD, Patient-Oriented SCORAD and Three-Item Severity Score. Curr. Probl. Dermatol. 2011, 41, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Hanifin, J.M.; Baghoomian, W.; Grinich, E.; Leshem, Y.A.; Jacobson, M.; Simpson, E.L. The Eczema Area and Severity Index-A Practical Guide. Dermatitis 2022, 33, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Chopra, R.; Vakharia, P.P.; Sacotte, R.; Patel, N.; Immaneni, S.; White, T.; Kantor, R.; Hsu, D.Y.; Silverberg, J.I. Severity Strata for Eczema Area and Severity Index (EASI), Modified EASI, Scoring Atopic Dermatitis (SCORAD), Objective SCORAD, Atopic Dermatitis Severity Index and Body Surface Area in Adolescents and Adults with Atopic Dermatitis. Br. J. Dermatol. 2017, 177, 1316–1321. [Google Scholar] [CrossRef]
- Gooderham, M.J.; Hong, C.H.; Albrecht, L.; Bissonnette, R.; Dhadwal, G.; Gniadecki, R.; Grewal, P.; Kirchhof, M.G.; Landells, I.; Lansang, P.; et al. Approach to the Assessment and Management of Adult Patients with Atopic Dermatitis: A Consensus Document. J. Cutan. Med. Surg. 2018, 22, 3S–5S. [Google Scholar] [CrossRef] [PubMed]
- Simpson, E.; Bissonnette, R.; Eichenfield, L.F.; Guttman-Yassky, E.; King, B.; Silverberg, J.I.; Beck, L.A.; Bieber, T.; Reich, K.; Kabashima, K.; et al. The Validated Investigator Global Assessment for Atopic Dermatitis (VIGA-AD): The Development and Reliability Testing of a Novel Clinical Outcome Measurement Instrument for the Severity of Atopic Dermatitis. J. Am. Acad. Dermatol. 2020, 83, 839–846. [Google Scholar] [CrossRef]
- Ricci, G.; Dondi, A.; Patrizi, A. Useful Tools for the Management of Atopic Dermatitis. Am. J. Clin. Dermatol. 2009, 10, 287–300. [Google Scholar] [CrossRef] [PubMed]
- Böhme, M.; Svensson, Å.; Kull, I.; Wahlgren, C.F. Hanifin’s and Rajka’s Minor Criteria for Atopic Dermatitis: Which Do 2-Year-Olds Exhibit? J. Am. Acad. Dermatol. 2000, 43, 785–792. [Google Scholar] [CrossRef]
- Samochocki, Z.; Dejewska, J. A Comparison of Criteria for Diagnosis of Atopic Dermatitis in Children. World J. Pediatr. 2012, 8, 355–358. [Google Scholar] [CrossRef]
- Dutta, A.; De, A.; Das, S.; Banerjee, S.; Kar, C.; Dhar, S. A Cross-Sectional Evaluation of the Usefulness of the Minor Features of Hanifin and Rajka Diagnostic Criteria for the Diagnosis of Atopic Dermatitis in the Pediatric Population. Indian J. Dermatol. 2021, 66, 583–590. [Google Scholar] [CrossRef]
- De, D.; Kanwar, A.J.; Handa, S. Comparative Efficacy of Hanifin and Rajka’s Criteria and the UK Working Party’s Diagnostic Criteria in Diagnosis of Atopic Dermatitis in a Hospital Setting in North India. J. Eur. Acad. Dermatol. Venereol. 2006, 20, 853–859. [Google Scholar] [CrossRef]
- David Boothe, W.; Tarbox, J.A.; Tarbox, M.B. Atopic Dermatitis: Pathophysiology. Adv. Exp. Med. Biol. 2017, 1027, 21–37. [Google Scholar] [CrossRef]
- Kim, J.; Kim, B.E.; Leung, D.Y.M. Pathophysiology of Atopic Dermatitis: Clinical Implications. Allergy Asthma Proc. 2019, 40, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Torres, T.; Ferreira, E.O.; Gonçalo, M.; Mendes-Bastos, P.; Selores, M.; Filipe, P. Update on Atopic Dermatitis. Acta Med. Port. 2019, 32, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Goh, M.S.Y.; Yun, J.S.W.; Su, J.C. Management of Atopic Dermatitis: A Narrative Review. Med. J. Aust. 2022, 216, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Dzienis, K.; Tryniszewska, E.; Kaczmarski, M. Disorders of Immunological Balance between Th1 and Th2 Cells and the Role of Chosen Cytokines in Atopic Dermatitis. Adv. Dermatol. Allergol./Postępy Dermatol. I Alergol. 2006, 23, 88–93. [Google Scholar]
- Gomułka, K.; Tota, M.; Laska, J.; Gojny, K.; Sędek, Ł. Serum Concentration of IL-5 Receptor (IL-5R) and Associations with Disease Severity in Patients with Chronic Spontaneous Urticaria (CSU) and Atopic Dermatitis (AD). Int. J. Mol. Sci. 2024, 25, 7598. [Google Scholar] [CrossRef]
- Hashimoto, T.; Yokozeki, H.; Karasuyama, H.; Satoh, T. IL-31-Generating Network in Atopic Dermatitis Comprising Macrophages, Basophils, Thymic Stromal Lymphopoietin, and Periostin. J. Allergy Clin. Immunol. 2023, 151, 737–746.e6. [Google Scholar] [CrossRef]
- Gooderham, M.J.; Hong, H.C.-H.; Eshtiaghi, P.; Papp, K.A. Dupilumab: A Review of Its Use in the Treatment of Atopic Dermatitis. J. Am. Acad. Dermatol. 2018, 78, S28–S36. [Google Scholar] [CrossRef]
- Nakashima, C.; Yanagihara, S.; Otsuka, A. Innovation in the Treatment of Atopic Dermatitis: Emerging Topical and Oral Janus Kinase Inhibitors. Allergol. Int. 2022, 71, 40–46. [Google Scholar] [CrossRef]
- Meng, J.; Li, Y.; Fischer, M.J.M.; Steinhoff, M.; Chen, W.; Wang, J. Th2 Modulation of Transient Receptor Potential Channels: An Unmet Therapeutic Intervention for Atopic Dermatitis. Front. Immunol. 2021, 12, 696784. [Google Scholar] [CrossRef]
- Koga, C.; Kabashima, K.; Shiraishi, N.; Kobayashi, M.; Tokura, Y. Possible Pathogenic Role of Th17 Cells for Atopic Dermatitis. J. Investig. Dermatol. 2008, 128, 2625–2630. [Google Scholar] [CrossRef] [PubMed]
- Sugaya, M. The Role of Th17-Related Cytokines in Atopic Dermatitis. Int. J. Mol. Sci. 2020, 21, 1314. [Google Scholar] [CrossRef]
- Brunner, P.M.; Israel, A.; Zhang, N.; Leonard, A.; Wen, H.C.; Huynh, T.; Tran, G.; Lyon, S.; Rodriguez, G.; Immaneni, S.; et al. Early-Onset Pediatric Atopic Dermatitis Is Characterized by TH2/TH17/TH22-Centered Inflammation and Lipid Alterations. J. Allergy Clin. Immunol. 2018, 141, 2094–2106. [Google Scholar] [CrossRef]
- Esaki, H.; Brunner, P.M.; Renert-Yuval, Y.; Czarnowicki, T.; Huynh, T.; Tran, G.; Lyon, S.; Rodriguez, G.; Immaneni, S.; Johnson, D.B.; et al. Early-Onset Pediatric Atopic Dermatitis Is TH2 but Also TH17 Polarized in Skin. J. Allergy Clin. Immunol. 2016, 138, 1639–1651. [Google Scholar] [CrossRef]
- Brunner, P.M.; Guttman-Yassky, E.; Leung, D.Y.M. The Immunology of Atopic Dermatitis and Its Reversibility with Broad-Spectrum and Targeted Therapies. J. Allergy Clin. Immunol. 2017, 139, S65–S76. [Google Scholar] [CrossRef]
- Guttman-Yassky, E.; Khattri, S.; Brunner, P.M.; Neumann, A.; Malik, K.; Fuentes-Duculan, J.; Garcet, S.; Suarez-Farinas, M.; Lebwohl, M.; Krueger, J.G. A Pathogenic Role for Th22/IL-22 in Atopic Dermatitis Is Established by a Placebo-Controlled Trial with an Anti IL-22/ILV-094 MAb. J. Investig. Dermatol. 2017, 137, S53. [Google Scholar] [CrossRef]
- Eyerich, S.; Eyerich, K.; Pennino, D.; Carbone, T.; Nasorri, F.; Pallotta, S.; Cianfarani, F.; Odorisio, T.; Traidl-Hoffmann, C.; Behrendt, H.; et al. Th22 Cells Represent a Distinct Human T Cell Subset Involved in Epidermal Immunity and Remodeling. J. Clin. Investig. 2009, 119, 3573–3585. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Guttman-Yassky, E. JAK Inhibitors for Atopic Dermatitis: An Update. Am. J. Clin. Dermatol. 2019, 20, 181–192. [Google Scholar] [CrossRef]
- Noda, S.; Suárez-Fariñas, M.; Ungar, B.; Kim, S.J.; De Guzman Strong, C.; Xu, H.; Peng, X.; Estrada, Y.D.; Nakajima, S.; Honda, T.; et al. The Asian Atopic Dermatitis Phenotype Combines Features of Atopic Dermatitis and Psoriasis with Increased TH17 Polarization. J. Allergy Clin. Immunol. 2015, 136, 1254–1264. [Google Scholar] [CrossRef]
- Lopez, D.V.; Kongsbak-Wismann, M. Role of IL-22 in Homeostasis and Diseases of the Skin. APMIS 2022, 130, 314–322. [Google Scholar] [CrossRef]
- Seth, P.; Dubey, S. IL-22 as a Target for Therapeutic Intervention: Current Knowledge on Its Role in Various Diseases. Cytokine 2023, 169, 156293. [Google Scholar] [CrossRef]
- Keir, M.E.; Yi, T.; Lu, T.T.; Ghilardi, N. The Role of IL-22 in Intestinal Health and Disease. J. Exp. Med. 2020, 217, e20192195. [Google Scholar] [CrossRef] [PubMed]
- Nagem, R.A.P.; Colau, D.; Dumoutier, L.; Renauld, J.C.; Ogata, C.; Polikarpov, I. Crystal Structure of Recombinant Human Interleukin-22. Structure 2002, 10, 1051–1062. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Logsdon, N.J.; Walter, M.R. Structure of Insect-Cell-Derived IL-22. Acta Crystallogr. D Biol. Crystallogr. 2005, 61, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.S.; Feldman, K.E.; Lee, J.; Verma, S.; Huang, D.-B.; Huynh, K.; Chang, M.; Ponomarenko, J.V.; Sun, S.C.; Benedict, C.A.; et al. The Specificity of Innate Immune Responses Is Enforced by Repression of Interferon Response Elements by NF-ΚB P50. Sci. Signal. 2011, 4, ra11. [Google Scholar] [CrossRef]
- Xu, T.; Logsdon, N.J.; Walter, M.R. Crystallization and X-ray Diffraction Analysis of Insect-Cell-Derived IL-22. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 1295–1298. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, S.G. Interleukin-22: A Likely Target for Treatment of Autoimmune Diseases. Autoimmun. Rev. 2014, 13, 615. [Google Scholar] [CrossRef]
- Dudakov, J.A.; Hanash, A.M.; Van Den Brink, M.R.M. Interleukin-22: Immunobiology and Pathology. Annu. Rev. Immunol. 2015, 33, 747. [Google Scholar] [CrossRef]
- Sabat, R.; Ouyang, W.; Wolk, K. Therapeutic Opportunities of the IL-22-IL-22R1 System. Nat. Rev. Drug Discov. 2014, 13, 21–38. [Google Scholar] [CrossRef]
- Bleicher, L.; de Moura, P.R.; Watanabe, L.; Colau, D.; Dumoutier, L.; Renauld, J.C.; Polikarpov, I. Crystal Structure of the IL-22/IL-22R1 Complex and Its Implications for the IL-22 Signaling Mechanism. FEBS Lett. 2008, 582, 2985–2992. [Google Scholar] [CrossRef] [PubMed]
- Perusina Lanfranca, M.; Lin, Y.; Fang, J.; Zou, W.; Frankel, T. Biological and Pathological Activities of Interleukin-22. J. Mol. Med. 2016, 94, 523. [Google Scholar] [CrossRef] [PubMed]
- Mossner, S.; Kuchner, M.; Modares, N.F.; Knebel, B.; Al-Hasani, H.; Floss, D.M.; Scheller, J. Synthetic Interleukin 22 (IL-22) Signaling Reveals Biological Activity of Homodimeric IL-10 Receptor 2 and Functional Cross-Talk with the IL-6 Receptor Gp130. J. Biol. Chem. 2020, 295, 12378–12397. [Google Scholar] [CrossRef]
- Ouyang, W.; O’Garra, A. IL-10 Family Cytokines IL-10 and IL-22: From Basic Science to Clinical Translation. Immunity 2019, 50, 871–891. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Croix, C.S.; Good, M.; Chen, J.; Zhao, J.; Hu, S.; Ross, M.; Myerburg, M.M.; Pilewski, J.M.; Williams, J.; et al. Interleukin-22 Inhibits Respiratory Syncytial Virus Production by Blocking Virus-Mediated Subversion of Cellular Autophagy. iScience 2020, 23, 101256. [Google Scholar] [CrossRef] [PubMed]
- Patnaude, L.; Mayo, M.; Mario, R.; Wu, X.; Knight, H.; Creamer, K.; Wilson, S.; Pivorunas, V.; Karman, J.; Phillips, L.; et al. Mechanisms and Regulation of IL-22-Mediated Intestinal Epithelial Homeostasis and Repair. Life Sci. 2021, 271, 119195. [Google Scholar] [CrossRef]
- Lee, D.; Jo, H.; Go, C.; Jang, Y.; Chu, N.; Bae, S.; Kang, D.; Kim, Y.; Kang, J.S. The Roles of IL-22 and Its Receptor in the Regulation of Inflammatory Responses in the Brain. Int. J. Mol. Sci. 2022, 23, 757. [Google Scholar] [CrossRef]
- Wolk, K.; Kunz, S.; Witte, E.; Friedrich, M.; Asadullah, K.; Sabat, R. IL-22 Increases the Innate Immunity of Tissues. Immunity 2004, 21, 241–254. [Google Scholar] [CrossRef]
- Li, J.; Tomkinson, K.N.; Tan, X.Y.; Wu, P.; Yan, G.; Spaulding, V.; Deng, B.; Annis-Freeman, B.; Heveron, K.; Zollner, R.; et al. Temporal Associations between Interleukin 22 and the Extracellular Domains of IL-22R and IL-10R2. Int. Immunopharmacol. 2004, 4, 693–708. [Google Scholar] [CrossRef]
- Arshad, T.; Mansur, F.; Palek, R.; Manzoor, S.; Liska, V. A Double Edged Sword Role of Interleukin-22 in Wound Healing and Tissue Regeneration. Front. Immunol. 2020, 11, 2148. [Google Scholar] [CrossRef]
- Saxton, R.A.; Henneberg, L.T.; Calafiore, M.; Su, L.; Jude, K.M.; Hanash, A.M.; Garcia, K.C. The Tissue Protective Functions of Interleukin-22 Can Be Decoupled from pro-Inflammatory Actions through Structure-Based Design. Immunity 2021, 54, 660–672.e9. [Google Scholar] [CrossRef]
- Hernandez, P.; Gronke, K.; Diefenbach, A. A Catch-22: Interleukin-22 and Cancer. Eur. J. Immunol. 2018, 48, 15–31. [Google Scholar] [CrossRef]
- Briukhovetska, D.; Suarez-Gosalvez, J.; Voigt, C.; Markota, A.; Giannou, A.D.; Schübel, M.; Jobst, J.; Zhang, T.; Dörr, J.; Märkl, F.; et al. T Cell-Derived Interleukin-22 Drives the Expression of CD155 by Cancer Cells to Suppress NK Cell Function and Promote Metastasis. Immunity 2023, 56, 143. [Google Scholar] [CrossRef] [PubMed]
- Kempski, J.; Giannou, A.D.; Riecken, K.; Zhao, L.; Steglich, B.; Lücke, J.; Garcia-Perez, L.; Karstens, K.F.; Wöstemeier, A.; Nawrocki, M.; et al. IL22BP Mediates the Antitumor Effects of Lymphotoxin against Colorectal Tumors in Mice and Humans. Gastroenterology 2020, 159, 1417. [Google Scholar] [CrossRef] [PubMed]
- Zenewicz, L.A. IL-22 Binding Protein (IL-22BP) in the Regulation of IL-22 Biology. Front. Immunol. 2021, 12, 766586. [Google Scholar] [CrossRef] [PubMed]
- Fantou, A.; Lagrue, E.; Laurent, T.; Delbos, L.; Blandin, S.; Jarry, A.; Beriou, G.; Braudeau, C.; Salabert, N.; Marin, E.; et al. IL-22BP Production Is Heterogeneously Distributed in Crohn’s Disease. Front. Immunol. 2022, 13, 1034570. [Google Scholar] [CrossRef] [PubMed]
- Zaharie, R.D.; Popa, C.; Schlanger, D.; Vălean, D.; Zaharie, F. The Role of IL-22 in Wound Healing. Potential Implications in Clinical Practice. Int. J. Mol. Sci. 2022, 23, 3693. [Google Scholar] [CrossRef]
- Brockmann, L.; Giannou, A.D.; Gagliani, N.; Huber, S. Regulation of TH17 Cells and Associated Cytokines in Wound Healing, Tissue Regeneration, and Carcinogenesis. Int. J. Mol. Sci. 2017, 18, 1033. [Google Scholar] [CrossRef]
- Lecron, J.C.; Charreau, S.; Jégou, J.F.; Salhi, N.; Petit-Paris, I.; Guignouard, E.; Burucoa, C.; Favot-Laforge, L.; Bodet, C.; Barra, A.; et al. IL-17 and IL-22 Are Pivotal Cytokines to Delay Wound Healing of S. Aureus and P. Aeruginosa Infected Skin. Front. Immunol. 2022, 13, 984016. [Google Scholar] [CrossRef]
- Shabgah, A.G.; Navashenaq, J.G.; Shabgah, O.G.; Mohammadi, H.; Sahebkar, A. Interleukin-22 in Human Inflammatory Diseases and Viral Infections. Autoimmun. Rev. 2017, 16, 1209–1218. [Google Scholar] [CrossRef]
- Perez, L.G.; Kempski, J.; McGee, H.M.; Pelzcar, P.; Agalioti, T.; Giannou, A.; Konczalla, L.; Brockmann, L.; Wahib, R.; Xu, H.; et al. TGF-β Signaling in Th17 Cells Promotes IL-22 Production and Colitis-Associated Colon Cancer. Nat. Commun. 2020, 11, 2608. [Google Scholar] [CrossRef]
- Gao, J.; Chen, F.; Fang, H.; Mi, J.; Qi, Q.; Yang, M. Daphnetin Inhibits Proliferation and Inflammatory Response in Human HaCaT Keratinocytes and Ameliorates Imiquimod-Induced Psoriasis-like Skin Lesion in Mice. Biol. Res. 2020, 53, 48. [Google Scholar] [CrossRef] [PubMed]
- Wolk, K.; Witte, E.; Wallace, E.; Döcke, W.D.; Kunz, S.; Asadullah, K.; Volk, H.D.; Sterry, W.; Sabat, R. IL-22 Regulates the Expression of Genes Responsible for Antimicrobial Defense, Cellular Differentiation, and Mobility in Keratinocytes: A Potential Role in Psoriasis. Eur. J. Immunol. 2006, 36, 1309–1323. [Google Scholar] [CrossRef] [PubMed]
- Avitabile, S.; Odorisio, T.; Madonna, S.; Eyerich, S.; Guerra, L.; Eyerich, K.; Zambruno, G.; Cavani, A.; Cianfarani, F. Interleukin-22 Promotes Wound Repair in Diabetes by Improving Keratinocyte Pro-Healing Functions. J. Investig. Dermatol. 2015, 135, 2862–2870. [Google Scholar] [CrossRef] [PubMed]
- McGee, H.M.; Schmidt, B.A.; Booth, C.J.; Yancopoulos, G.D.; Valenzuela, D.M.; Murphy, A.J.; Stevens, S.; Flavell, R.A.; Horsley, V. Interleukin-22 Promotes Fibroblast- Mediated Wound Repair in the Skin. J. Investig. Dermatol. 2013, 133, 1321. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Han, D.; Li, F.; Hou, W.; Wang, L.; Meng, L.; Mou, K.; Lu, S.; Zhu, W.; Zhou, Y. Elevated IL-22 in Psoriasis Plays an Anti-Apoptotic Role in Keratinocytes through Mediating Bcl-XL/Bax. Apoptosis 2020, 25, 663. [Google Scholar] [CrossRef]
- Chiang, H.Y.; Lu, H.H.; Sudhakar, J.N.; Chen, Y.W.; Shih, N.S.; Weng, Y.T.; Shui, J.W. IL-22 Initiates an IL-18-Dependent Epithelial Response Circuit to Enforce Intestinal Host Defence. Nat. Commun. 2022, 13, 874. [Google Scholar] [CrossRef]
- Lim, C.; Savan, R. The Role of the IL-22/IL-22R1 Axis in Cancer. Cytokine Growth Factor. Rev. 2014, 25, 257–271. [Google Scholar] [CrossRef]
- Zhu, Y.; Shi, T.; Lu, X.; Xu, Z.; Qu, J.; Zhang, Z.; Shi, G.; Shen, S.; Hou, Y.; Chen, Y.; et al. Fungal-Induced Glycolysis in Macrophages Promotes Colon Cancer by Enhancing Innate Lymphoid Cell Secretion of IL-22. EMBO J. 2021, 40, e105320. [Google Scholar] [CrossRef]
- da Cunha Colombo Tiveron, L.R.; da Silva, I.R.; da Silva, M.V.; Peixoto, A.B.; Rodrigues, D.B.R.; Rodrigues, V. High in Situ MRNA Levels of IL-22, TFG-β, and ARG-1 in Keloid Scars. Immunobiology 2018, 223, 812–817. [Google Scholar] [CrossRef]
- Ngo, V.L.; Abo, H.; Maxim, E.; Harusato, A.; Geem, D.; Medina-Contreras, O.; Merlin, D.; Gewirtz, A.T.; Nusrat, A.; Denning, T.L. A Cytokine Network Involving IL-36γ, IL-23, and IL-22 Promotes Antimicrobial Defense and Recovery from Intestinal Barrier Damage. Proc. Natl. Acad. Sci. USA 2018, 115, E5076–E5085. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Bai, J.; Yang, M. Interleukin-22 Attenuates Acute Pancreatitis-Associated Intestinal Mucosa Injury in Mice via STAT3 Activation. Gut Liver 2021, 15, 771. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Lee, H.-Y.; Zhao, X.; Han, J.; Su, Y.; Sun, Q.; Shao, J.; Ge, J.; Zhao, Y.; Bai, X.; et al. Interleukin-17D Regulates Group 3 Innate Lymphoid Cell Function through Its Receptor CD93. Immunity 2021, 54, 673–686.e4. [Google Scholar] [CrossRef] [PubMed]
- Udomsopagit, T.; Miwa, A.; Seki, M.; Shimbori, E.; Kadota, Y.; Tochio, T.; Sonoyama, K. Intestinal Microbiota Transplantation Reveals the Role of Microbiota in Dietary Regulation of RegIIIβ and RegIIIγ Expression in Mouse Intestine. Biochem. Biophys. Res. Commun. 2020, 529, 64–69. [Google Scholar] [CrossRef]
- Datta, S.K. IL-22: Scavenging beyond the Barrier. Sci. Immunol. 2017, 2, eaam7039. [Google Scholar] [CrossRef]
- Noyama, Y.; Okano, M.; Fujiwara, T.; Kariya, S.; Higaki, T.; Haruna, T.; Makihara, S.-I.; Kanai, K.; Koyama, T.; Taniguchi, M.; et al. IL-22/IL-22R1 Signaling Regulates the Pathophysiology of Chronic Rhinosinusitis with Nasal Polyps via Alteration of MUC1 Expression. Allergol. Int. 2017, 66, 42–51. [Google Scholar] [CrossRef]
- Breugelmans, T.; Arras, W.; Oosterlinck, B.; Jauregui-Amezaga, A.; Somers, M.; Cuypers, B.; Laukens, K.; De Man, J.G.; De Schepper, H.U.; De Winter, B.Y.; et al. IL-22-Activated MUC13 Impacts on Colonic Barrier Function through JAK1/STAT3, SNAI1/ZEB1 and ROCK2/MAPK Signaling. Cells 2023, 12, 1224. [Google Scholar] [CrossRef]
- Xiao, Z.; Liu, L.; Jin, Y.; Pei, X.; Sun, W.; Wang, M. Clostridium Tyrobutyricum Protects against LPS-Induced Colonic Inflammation via IL-22 Signaling in Mice. Nutrients 2021, 13, 215. [Google Scholar] [CrossRef]
- Okamura, T.; Hamaguchi, M.; Hasegawa, Y.; Hashimoto, Y.; Majima, S.; Senmaru, T.; Ushigome, E.; Nakanishi, N.; Asano, M.; Yamazaki, M.; et al. Oral Exposure to Polystyrene Microplastics of Mice on a Normal or High-Fat Diet and Intestinal and Metabolic Outcomes. Environ. Health Perspect. 2023, 131, 27006. [Google Scholar] [CrossRef]
- Sakamoto, K.; Kim, Y.G.; Hara, H.; Kamada, N.; Caballero-Flores, G.; Tolosano, E.; Soares, M.P.; Puente, J.L.; Inohara, N.; Núñez, G. IL-22 Controls Iron-Dependent Nutritional Immunity against Systemic Bacterial Infections. Sci. Immunol. 2017, 2, eaai8371. [Google Scholar] [CrossRef]
- Trevejo-Nunez, G.; Elsegeiny, W.; Aggor, F.E.Y.; Tweedle, J.L.; Kaplan, Z.; Gandhi, P.; Castillo, P.; Ferguson, A.; Alcorn, J.F.; Chen, K.; et al. Interleukin-22 (IL-22) Binding Protein Constrains IL-22 Activity, Host Defense, and Oxidative Phosphorylation Genes during Pneumococcal Pneumonia. Infect. Immun. 2019, 87, e00550-19. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, J.P.; Kolls, J.K.; McCombs, J.E. Regulation and Function of ILC3s in Pulmonary Infections. Front. Immunol. 2021, 12, 672523. [Google Scholar] [CrossRef] [PubMed]
- Bjerre, R.D.; Bandier, J.; Skov, L.; Engstrand, L.; Johansen, J.D. The Role of the Skin Microbiome in Atopic Dermatitis: A Systematic Review. Br. J. Dermatol. 2017, 177, 1272–1278. [Google Scholar] [CrossRef]
- Shi, B.; Leung, D.Y.M.; Taylor, P.A.; Li, H. Methicillin-Resistant Staphylococcus Aureus Colonization Is Associated with Decreased Skin Commensal Bacteria in Atopic Dermatitis. J. Investig. Dermatol. 2018, 138, 1668–1671. [Google Scholar] [CrossRef] [PubMed]
- Brauweiler, A.M.; Hall, C.F.; Goleva, E.; Leung, D.Y.M. Staphylococcus Aureus Lipoteichoic Acid Inhibits Keratinocyte Differentiation through a P63-Mediated Pathway. J. Investig. Dermatol. 2017, 137, 2030–2033. [Google Scholar] [CrossRef]
- Abood, R.N.; McHugh, K.J.; Rich, H.E.; Ortiz, M.A.; Tobin, J.M.; Ramanan, K.; Robinson, K.M.; Bomberger, J.M.; Kolls, J.K.; Manni, M.L.; et al. IL-22 Binding Protein Exacerbates Influenza, Bacterial Super-Infection. Mucosal Immunol. 2019, 12, 1231. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Li, Y.; Wu, H.; Zhao, S.; Yu, Q. Protecting Intestinal Epithelial Cells against Deoxynivalenol and E. coli Damage by Recombinant Porcine IL-22. Vet. Microbiol. 2019, 231, 154. [Google Scholar] [CrossRef]
- Forbester, J.L.; Lees, E.A.; Goulding, D.; Forrest, S.; Yeung, A.; Speak, A.; Clare, S.; Coomber, E.L.; Mukhopadhyay, S.; Kraiczy, J.; et al. Interleukin-22 Promotes Phagolysosomal Fusion to Induce Protection against Salmonella Enterica Typhimurium in Human Epithelial Cells. Proc. Natl. Acad. Sci. USA 2018, 115, 10118–10123. [Google Scholar] [CrossRef]
- Tsai, P.Y.; Zhang, B.; He, W.Q.; Zha, J.M.; Odenwald, M.A.; Singh, G.; Tamura, A.; Shen, L.; Sailer, A.; Yeruva, S.; et al. IL-22 Upregulates Epithelial Claudin-2 to Drive Diarrhea and Enteric Pathogen Clearance. Cell Host Microbe 2017, 21, 671. [Google Scholar] [CrossRef]
- Ong, M.L.D.M.; Yeruva, S.; Sailer, A.; Nilsen, S.P.; Turner, J.R. Differential Regulation of Claudin-2 and Claudin-15 Expression in Children and Adults with Malabsorptive Disease. Lab. Investig. 2020, 100, 483–490. [Google Scholar] [CrossRef]
- Bugălă, N.M.; Carsote, M.; Stoica, L.E.; Albulescu, D.M.; Ţuculină, M.J.; Preda, S.A.; Boicea, A.R.; Alexandru, D.O. New Approach to Addison Disease: Oral Manifestations Due to Endocrine Dysfunction and Comorbidity Burden. Diagnostics 2022, 12, 2080. [Google Scholar] [CrossRef] [PubMed]
- Kappagoda, S.; Deresinski, S. Anticytokine Autoantibodies and Fungal Infections. J. Fungi 2023, 9, 782. [Google Scholar] [CrossRef] [PubMed]
- Puel, A.; Bastard, P.; Bustamante, J.; Casanova, J.L. Human Autoantibodies Underlying Infectious Diseases. J. Exp. Med. 2022, 219, e20211387. [Google Scholar] [CrossRef] [PubMed]
- Aggor, F.E.Y.; Break, T.J.; Trevejo-Nuñez, G.; Whibley, N.; Coleman, B.M.; Bailey, R.D.; Kaplan, D.H.; Naglik, J.R.; Shan, W.; Shetty, A.C.; et al. Oral Epithelial IL-22/STAT3 Signaling Licenses IL-17-Mediated Immunity to Oral Mucosal Candidiasis. Sci. Immunol. 2020, 5, eaba0570. [Google Scholar] [CrossRef]
- Bichele, R.; Kärner, J.; Truusalu, K.; Smidt, I.; Mändar, R.; Conti, H.R.; Gaffen, S.L.; Peterson, P.; Laan, M.; Kisand, K. IL-22 Neutralizing Autoantibodies Impair Fungal Clearance in Murine Oropharyngeal Candidiasis Model. Eur. J. Immunol. 2018, 48, 464–470. [Google Scholar] [CrossRef]
- McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of Hepatocellular Carcinoma. Hepatology 2021, 73 (Suppl. 1), 4–13. [Google Scholar] [CrossRef]
- Yi, P.; Liang, Y.; Yuan, D.M.K.; Jie, Z.; Kwota, Z.; Chen, Y.; Cong, Y.; Fan, X.; Sun, J. A Tightly Regulated IL-22 Response Maintains Immune Functions and Homeostasis in Systemic Viral Infection. Sci. Rep. 2017, 7, 3857. [Google Scholar] [CrossRef]
- Wu, Y.; Min, J.; Ge, C.; Shu, J.; Tian, D.; Yuan, Y.; Zhou, D. Interleukin 22 in Liver Injury, Inflammation and Cancer. Int. J. Biol. Sci. 2020, 16, 2405. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Z.; Liu, L.; Huang, M.; Huang, Y. Th22/IL-22 Mediates the Progression of HBV-Related Hepatocellular Carcinoma via STAT3. Cytotechnology 2022, 74, 203. [Google Scholar] [CrossRef]
- Shi, J.; Wang, Y.; Wang, F.; Zhu, Z.; Gao, Y.; Zhang, Q.; Du, Z. Interleukin 22 Is Related to Development and Poor Prognosis of Hepatocellular Carcinoma. Clin. Res. Hepatol. Gastroenterol. 2020, 44, 855–864. [Google Scholar] [CrossRef]
- Kim, B.E.; Leung, D.Y.M. Significance of Skin Barrier Dysfunction in Atopic Dermatitis. Allergy Asthma Immunol. Res. 2018, 10, 207–215. [Google Scholar] [CrossRef]
- Yu, L.; Li, L. Potential Biomarkers of Atopic Dermatitis. Front. Med. 2022, 9, 1028694. [Google Scholar] [CrossRef] [PubMed]
- Brunner, P.M.; Leung, D.Y.M.; Guttman-Yassky, E. Immunologic, Microbial, and Epithelial Interactions in Atopic Dermatitis. Ann. Allergy Asthma Immunol. 2018, 120, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Guttman-Yassky, E.; Krueger, J.G.; Lebwohl, M.G. Systemic Immune Mechanisms in Atopic Dermatitis and Psoriasis with Implications for Treatment. Exp. Dermatol. 2018, 27, 409–417. [Google Scholar] [CrossRef]
- Frempah, B.; Luckett-Chastain, L.R.; Gallucci, R.M. IL-6 Negatively Regulates IL-22Rα Expression on Epidermal Keratinocytes: Implications for Irritant Contact Dermatitis. J. Immunol. Res. 2019, 2019, 6276254. [Google Scholar] [CrossRef]
- Guttman-Yassky, E.; Bissonnette, R.; Ungar, B.; Suárez-Fariñas, M.; Ardeleanu, M.; Esaki, H.; Suprun, M.; Estrada, Y.; Xu, H.; Peng, X.; et al. Dupilumab Progressively Improves Systemic and Cutaneous Abnormalities in Patients with Atopic Dermatitis. J. Allergy Clin. Immunol. 2019, 143, 155–172. [Google Scholar] [CrossRef] [PubMed]
- Lou, H.; Lu, J.; Choi, E.B.; Oh, M.H.; Jeong, M.; Barmettler, S.; Zhu, Z.; Zheng, T. Expression of IL-22 in the Skin Causes Th2-Biased Immunity, Epidermal Barrier Dysfunction, and Pruritus via Stimulating Epithelial Th2 Cytokines and the GRP Pathway. J. Immunol. 2017, 198, 2543–2555. [Google Scholar] [CrossRef]
- Mollanazar, N.K.; Smith, P.K.; Yosipovitch, G. Mediators of Chronic Pruritus in Atopic Dermatitis: Getting the Itch Out? Clin. Rev. Allergy Immunol. 2016, 51, 263–292. [Google Scholar] [CrossRef]
- Barry, D.M.; Liu, X.T.; Liu, B.; Liu, X.Y.; Gao, F.; Zeng, X.; Liu, J.; Yang, Q.; Wilhelm, S.; Yin, J.; et al. Exploration of Sensory and Spinal Neurons Expressing Gastrin-Releasing Peptide in Itch and Pain Related Behaviors. Nat. Commun. 2020, 11, 1397. [Google Scholar] [CrossRef]
- Peng, S.; Zhan, Y.; Zhang, D.; Ren, L.; Chen, A.; Chen, Z.F.; Zhang, H. Structures of Human Gastrin-Releasing Peptide Receptors Bound to Antagonist and Agonist for Cancer and Itch Therapy. Proc. Natl. Acad. Sci. USA 2023, 120, e2216230120. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, X.; Jiang, S.; Liu, Y.; Dong, C.; Chi, H.; Mao, C. Zhenxin Anshen Formula (镇心安神方) Ameliorates Atopic Der-Matitis-like Skin Dysfunction in Mice and in Vitro via Regulation of Transient Receptor Potential Vanilloid 1 and Transient Receptor Potential Ankyrin 1 in Neural Pathways. J. Tradit. Chin. Med. 2023, 43, 887. [Google Scholar] [CrossRef]
- Lowes, M.A.; Suárez-Fariñas, M.; Krueger, J.G. Immunology of Psoriasis. Annu. Rev. Immunol. 2014, 32, 227. [Google Scholar] [CrossRef]
- Nestle, F.O.; Kaplan, D.H.; Barker, J. Psoriasis. N. Engl. J. Med. 2009, 361, 496–509. [Google Scholar] [CrossRef]
- Wawrzycki, B.; Pietrzak, A.; Grywalska, E.; Krasowska, D.; Chodorowska, G.; Roliński, J. Interleukin-22 and Its Correlation with Disease Activity in Plaque Psoriasis. Arch. Immunol. Ther. Exp. 2019, 67, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Cordoro, K.M.; Hitraya-Low, M.; Taravati, K.; Sandoval, P.M.; Kim, E.; Sugarman, J.; Pauli, M.L.; Liao, W.; Rosenblum, M.D. Skin-Infiltrating, Interleukin-22—Producing T Cells Differentiate Pediatric Psoriasis from Adult Psoriasis. J. Am. Acad. Dermatol. 2017, 77, 417. [Google Scholar] [CrossRef]
- Ricciardi, L.; Minciullo, P.L.; Saitta, S.; Trombetta, D.; Saija, A.; Gangemi, S. Increased Serum Levels of IL-22 in Patients with Nickel Contact Dermatitis. Contact Dermat. 2009, 60, 57–58. [Google Scholar] [CrossRef] [PubMed]
- Dyring-Andersen, B.; Skov, L.; Løvendorf, M.B.; Bzorek, M.; Søndergaard, K.; Lauritsen, J.P.H.; Dabelsteen, S.; Geisler, C.; Menné Bonefeld, C. CD4(+) T Cells Producing Interleukin (IL)-17, IL-22 and Interferon-γ Are Major Effector T Cells in Nickel Allergy. Contact Dermat. 2013, 68, 339–347. [Google Scholar] [CrossRef]
- Larsen, J.M.; Bonefeld, C.M.; Poulsen, S.S.; Geisler, C.; Skov, L. IL-23 and T(H)17-Mediated Inflammation in Human Allergic Contact Dermatitis. J. Allergy Clin. Immunol. 2009, 123, 486–492. [Google Scholar] [CrossRef]
- Robb, C.T.; McSorley, H.J.; Lee, J.; Aoki, T.; Yu, C.; Crittenden, S.; Astier, A.; Felton, J.M.; Parkinson, N.; Ayele, A.; et al. Prostaglandin E2 Stimulates Adaptive IL-22 Production and Promotes Allergic Contact Dermatitis. J. Allergy Clin. Immunol. 2018, 141, 152–162. [Google Scholar] [CrossRef]
- Atwa, M.A.; Youssef, N.; Bayoumy, N.M. T-Helper 17 Cytokines (Interleukins 17, 21, 22, and 6, and Tumor Necrosis Factor-α) in Patients with Alopecia Areata: Association with Clinical Type and Severity. Int. J. Dermatol. 2016, 55, 666–672. [Google Scholar] [CrossRef]
- Waśkiel-Burnat, A.; Osińska, M.; Salińska, A.; Blicharz, L.; Goldust, M.; Olszewska, M.; Rudnicka, L. The Role of Serum Th1, Th2, and Th17 Cytokines in Patients with Alopecia Areata: Clinical Implications. Cells 2021, 10, 3397. [Google Scholar] [CrossRef] [PubMed]
- Minokawa, Y.; Sawada, Y.; Nakamura, M. Lifestyle Factors Involved in the Pathogenesis of Alopecia Areata. Int. J. Mol. Sci. 2022, 23, 1038. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kroumpouzos, G.; Kassir, M.; Galadari, H.; Goren, A.; Grabbe, S.; Goldust, M. Rosacea Management: A Comprehensive Review. J. Cosmet. Dermatol. 2022, 21, 1895–1904. [Google Scholar] [CrossRef]
- Mylonas, A.; Hawerkamp, H.C.; Wang, Y.; Chen, J.; Messina, F.; Demaria, O.; Meller, S.; Homey, B.; Di Domizio, J.; Mazzolai, L.; et al. Type I IFNs Link Skin-Associated Dysbiotic Commensal Bacteria to Pathogenic Inflammation and Angiogenesis in Rosacea. JCI Insight 2023, 8, e151846. [Google Scholar] [CrossRef]
- Zhou, S.; Qi, F.; Gong, Y.; Zhang, J.; Zhu, B. Biological Therapies for Atopic Dermatitis: A Systematic Review. Dermatology 2021, 237, 542–552. [Google Scholar] [CrossRef]
- Uppal, S.K.; Kearns, D.G.; Chat, V.S.; Han, G.; Wu, J.J. Review and Analysis of Biologic Therapies Currently in Phase II and Phase III Clinical Trials for Atopic Dermatitis. J. Dermatol. Treat. 2022, 33, 626–636. [Google Scholar] [CrossRef]
- Guttman-Yassky, E.; Brunner, P.M.; Neumann, A.U.; Khattri, S.; Pavel, A.B.; Malik, K.; Singer, G.K.; Baum, D.; Gilleaudeau, P.; Sullivan-Whalen, M.; et al. Efficacy and Safety of Fezakinumab (an IL-22 Monoclonal Antibody) in Adults with Moderate-to-Severe Atopic Dermatitis Inadequately Controlled by Conventional Treatments: A Randomized, Double-Blind, Phase 2a Trial. J. Am. Acad. Dermatol. 2018, 78, 872–881.e6. [Google Scholar] [CrossRef] [PubMed]
- Brunner, P.M.; Pavel, A.B.; Khattri, S.; Leonard, A.; Malik, K.; Rose, S.; Jim On, S.; Vekaria, A.S.; Traidl-Hoffmann, C.; Singer, G.K.; et al. Baseline IL-22 Expression in Patients with Atopic Dermatitis Stratifies Tissue Responses to Fezakinumab. J. Allergy Clin. Immunol. 2019, 143, 142–154. [Google Scholar] [CrossRef]
- Guttman-Yassky, E.; Diaz, A.; Pavel, A.B.; Fernandes, M.; Lefferdink, R.; Erickson, T.; Canter, T.; Rangel, S.; Peng, X.; Li, R.; et al. Use of Tape Strips to Detect Immune and Barrier Abnormalities in the Skin of Children With Early-Onset Atopic Dermatitis. JAMA Dermatol. 2019, 155, 1358–1370. [Google Scholar] [CrossRef]
- Badi, Y.E.; Pavel, A.B.; Pavlidis, S.; Riley, J.H.; Bates, S.; Kermani, N.Z.; Knowles, R.; Kolmert, J.; Wheelock, C.E.; Worsley, S.; et al. Mapping Atopic Dermatitis and Anti-IL-22 Response Signatures to Type 2-Low Severe Neutrophilic Asthma. J. Allergy Clin. Immunol. 2022, 149, 89–101. [Google Scholar] [CrossRef]
- Foster, P.S.; Barnes, J.L.; Tay, H.L.; Gibson, P.G. Transcriptomic Drug-Response Gene Signatures Are Informative for the Stratification of Patients for Clinical Trials. J. Allergy Clin. Immunol. 2022, 149, 55–57. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Luan, J.; Bai, Y.; Xu, C.; Liu, F.; Chen, B.; Ju, D.; Xu, H. Interleukin-22 in Renal Protection and Its Pathological Role in Kidney Diseases. Front. Immunol. 2022, 13, 851818. [Google Scholar] [CrossRef]
- De Luca, A.; Zelante, T.; D’Angelo, C.; Zagarella, S.; Fallarino, F.; Spreca, A.; Iannitti, R.G.; Bonifazi, P.; Renauld, J.C.; Bistoni, F.; et al. IL-22 Defines a Novel Immune Pathway of Antifungal Resistance. Mucosal Immunol. 2010, 3, 361–373. [Google Scholar] [CrossRef] [PubMed]
- Narla, S.; Silverberg, J.I.; Simpson, E.L. Management of Inadequate Response and Adverse Effects to Dupilumab in Atopic Dermatitis. J. Am. Acad. Dermatol. 2022, 86, 628–636. [Google Scholar] [CrossRef]
- Seegräber, M.; Srour, J.; Walter, A.; Knop, M.; Wollenberg, A. Dupilumab for Treatment of Atopic Dermatitis. Expert. Rev. Clin. Pharmacol. 2018, 11, 467–474. [Google Scholar] [CrossRef] [PubMed]
- Wollenberg, A.; Weidinger, S.; Worm, M.; Bieber, T. Tralokinumab in Atopic Dermatitis. J. Dtsch. Dermatol. Ges. 2021, 19, 1435–1442. [Google Scholar] [CrossRef] [PubMed]
- Wollenberg, A.; Blauvelt, A.; Guttman-Yassky, E.; Worm, M.; Lynde, C.; Lacour, J.P.; Spelman, L.; Katoh, N.; Saeki, H.; Poulin, Y.; et al. Tralokinumab for Moderate-to-Severe Atopic Dermatitis: Results from Two 52-Week, Randomized, Double-Blind, Multicentre, Placebo-Controlled Phase III Trials (ECZTRA 1 and ECZTRA 2). Br. J. Dermatol. 2021, 184, 437–449. [Google Scholar] [CrossRef]
- Silverberg, J.I.; Toth, D.; Bieber, T.; Alexis, A.F.; Elewski, B.E.; Pink, A.E.; Hijnen, D.; Jensen, T.N.; Bang, B.; Olsen, C.K.; et al. Tralokinumab plus Topical Corticosteroids for the Treatment of Moderate-to-Severe Atopic Dermatitis: Results from the Double-Blind, Randomized, Multicentre, Placebo-Controlled Phase III ECZTRA 3 Trial. Br. J. Dermatol. 2021, 184, 450–463. [Google Scholar] [CrossRef]
- Silverberg, J.I.; Adam, D.N.; Zirwas, M.; Kalia, S.; Gutermuth, J.; Pinter, A.; Pink, A.E.; Chiricozzi, A.; Barbarot, S.; Mark, T.; et al. Tralokinumab Plus Topical Corticosteroids as Needed Provides Progressive and Sustained Efficacy in Adults with Moderate-to-Severe Atopic Dermatitis Over a 32-Week Period: An ECZTRA 3 Post Hoc Analysis. Am. J. Clin. Dermatol. 2022, 23, 547–559. [Google Scholar] [CrossRef]
- Guttman-Yassky, E.; Zirwas, M.; Kabashima, K.; Staumont-Sallé, D.; Amoudruz, P.; Røpke, M.; Pavel, A. Neutralizing Interleukin-13 with Tralokinumab Shifts the Molecular Phenotype of Lesional Skin towards That of Non-Lesional Skin and Restores Skin Barrier Abnormalities. Revolutionizing Atopic Dermatitis (RAD) 2021. Available online: https://djbpnesxepydt.cloudfront.net/radv/June-2021/448_Guttman-Yassky-et-al_Skin-Biomarkers_Abstract_1623269646997.pdf (accessed on 19 August 2024).
- Labib, A.; Ju, T.; Yosipovitch, G. Managing Atopic Dermatitis with Lebrikizumab—The Evidence to Date. Clin. Cosmet. Investig. Dermatol. 2022, 15, 1065–1072. [Google Scholar] [CrossRef]
- Silverberg, J.I.; Guttman-Yassky, E.; Thaçi, D.; Irvine, A.D.; Stein Gold, L.; Blauvelt, A.; Simpson, E.L.; Chu, C.-Y.; Liu, Z.; Gontijo Lima, R.; et al. Two Phase 3 Trials of Lebrikizumab for Moderate-to-Severe Atopic Dermatitis. N. Engl. J. Med. 2023, 388, 1080–1091. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, S.; Kabata, H.; Kabashima, K.; Asano, K. Anti-TSLP Antibodies: Targeting a Master Regulator of Type 2 Immune Responses. Allergol. Int. 2020, 69, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Simpson, E.L.; Parnes, J.R.; She, D.; Crouch, S.; Rees, W.; Mo, M.; van der Merwe, R. Tezepelumab, an Anti-Thymic Stromal Lymphopoietin Monoclonal Antibody, in the Treatment of Moderate to Severe Atopic Dermatitis: A Randomized Phase 2a Clinical Trial. J. Am. Acad. Dermatol. 2019, 80, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Serra-Baldrich, E.; Santamaría-Babí, L.F.; Francisco Silvestre, J. Nemolizumab: An Innovative Biologic Treatment to Control Interleukin 31, a Key Mediator in Atopic Dermatitis and Prurigo Nodularis. Actas Dermosifiliogr. 2022, 113, 674–684. [Google Scholar] [CrossRef] [PubMed]
- Kabashima, K.; Matsumura, T.; Komazaki, H.; Kawashima, M. Trial of Nemolizumab and Topical Agents for Atopic Dermatitis with Pruritus. N. Engl. J. Med. 2020, 383, 141–150. [Google Scholar] [CrossRef]
- Tidwell, W.J.; Fowler, J.F. T-Cell Inhibitors for Atopic Dermatitis. J. Am. Acad. Dermatol. 2018, 78, S67–S70. [Google Scholar] [CrossRef]
- Guttman-Yassky, E.; Pavel, A.B.; Zhou, L.; Estrada, Y.D.; Zhang, N.; Xu, H.; Peng, X.; Wen, H.C.; Govas, P.; Gudi, G.; et al. GBR 830, an Anti-OX40, Improves Skin Gene Signatures and Clinical Scores in Patients with Atopic Dermatitis. J. Allergy Clin. Immunol. 2019, 144, 482–493.e7. [Google Scholar] [CrossRef]
- Munera-Campos, M.; Carrascosa, J.M. Janus Kinase Inhibitors in Atopic Dermatitis: New Perspectives. Actas Dermosifiliogr. 2023, 114, 680–707. [Google Scholar] [CrossRef]
- Chovatiya, R.; Paller, A.S. JAK Inhibitors in the Treatment of Atopic Dermatitis. J. Allergy Clin. Immunol. 2021, 148, 927–940. [Google Scholar] [CrossRef]
- Miyano, T.; Irvine, A.D.; Tanaka, R.J. A Mathematical Model to Identify Optimal Combinations of Drug Targets for Dupilumab Poor Responders in Atopic Dermatitis. Allergy 2022, 77, 582–594. [Google Scholar] [CrossRef]
Drug | Mechanism of Action | Dose | Response to Treatment | Ref. |
---|---|---|---|---|
Fezakinumab | binds to IL-22 and prevents the formation of the IL-22/IL-22 receptor complex (IL-22R1) | loading dose of 600 mg at baseline (day 0), followed by 300 mg at weeks 2, 4, 6, 8, and 10 (last dose) | decrease in SCORAD baseline as compared to the placebo group; reversal of the genomic profile of AD; significant suppression involving genes representing mediators of general inflammation, T-cell activation, innate immune responses and molecules related to Th1 lymphocytes, Th17 lymphocytes, and activation of Th17/Th22 lymphocytes | [140,141] |
Dupilumab | blocks IL-4/IL-13 signaling and inhibits receptor signaling | weekly subcutaneous injections of 200 mg of dupilumab after a 400 mg loading dose on day 1 | improvement of symptoms of AD; improvements in AD transcriptome; reduced expression of genes involved in type 2 inflammation, epidermal hyperplasia, T cells, dendritic cells, TH17/TH22 activity, and lesional epidermal thickness; increased expression of epidermal differentiation, barrier, and lipid metabolism genes | [116,145] |
Tralokinumab | binds to IL-13 and inhibits it | 300 mg every 2 weeks | improvement in pruritus, sleep interference, DLQI, SCORAD, and POEM were observed from the first post-baseline measurements | [147,148,149] |
Lebrikizumab | binds to IL-13 and inhibits it | 250 mg every 2 weeks (loading dose of 500 mg at baseline and week 2) | a higher percentage of patients had an EASI-75 response in the lebrikizumab group than in the placebo group; reduced itch and itch interference with sleep | [152] |
Tezepelumab | anti-TSLP antibody that prevents TSLP–TSLPR interactions | 280 mg every 2 weeks plus class 3 TCS | a higher percentage of patients achieved EASI-50 versus placebo plus TCS | [154] |
Nemolizumab | blocks the α subunit of the IL-31 receptor (IL-31α) | 60 mg | reduction in pruritus | [155,156] |
GBR 830 | blocks OX40 (CD134) | 10 mg/kg intravenous GBR 830 on day 1 (baseline) and day 29 | improvement in EASI; significant progressive reductions in TH1 (IFN-γ/CXCL10), TH2 (IL-31/CCL11/CCL17), and TH17/TH22 (IL-23p19/IL-8/S100A12) mRNA expression in lesional skin; higher reductions in hyperplasia measures than placebo | [158] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laska, J.; Tota, M.; Łacwik, J.; Sędek, Ł.; Gomułka, K. IL-22 in Atopic Dermatitis. Cells 2024, 13, 1398. https://doi.org/10.3390/cells13161398
Laska J, Tota M, Łacwik J, Sędek Ł, Gomułka K. IL-22 in Atopic Dermatitis. Cells. 2024; 13(16):1398. https://doi.org/10.3390/cells13161398
Chicago/Turabian StyleLaska, Julia, Maciej Tota, Julia Łacwik, Łukasz Sędek, and Krzysztof Gomułka. 2024. "IL-22 in Atopic Dermatitis" Cells 13, no. 16: 1398. https://doi.org/10.3390/cells13161398
APA StyleLaska, J., Tota, M., Łacwik, J., Sędek, Ł., & Gomułka, K. (2024). IL-22 in Atopic Dermatitis. Cells, 13(16), 1398. https://doi.org/10.3390/cells13161398