Proteomic Dynamics of Multidrug Resistance Mechanisms in Lucena 1 Cell Line
Abstract
:1. Introduction
2. Methods
2.1. Cell Lines and Culture Conditions
2.2. Sample Preparation and In-Solution Digestion
2.3. Proteomic Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating Morphologic, Clinical, and Genomic Data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef]
- Weinberg, O.K.; Porwit, A.; Orazi, A.; Hasserjian, R.P.; Foucar, K.; Duncavage, E.J.; Arber, D.A. The International Consensus Classification of Acute Myeloid Leukemia. Virchows Arch. 2023, 482, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and Management of AML in Adults: 2022 Recommendations from an International Expert Panel on Behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef] [PubMed]
- Sekeres, M.A.; Taylor, J. Diagnosis and Treatment of Myelodysplastic Syndromes: A Review. JAMA 2022, 328, 872–880. [Google Scholar] [CrossRef] [PubMed]
- Branford, S.; Apperley, J.F. Measurable Residual Disease in Chronic Myeloid Leukemia. Haematologica 2022, 107, 2794–2809. [Google Scholar] [CrossRef]
- Sands, W.A.; Copland, M.; Wheadon, H. Targeting Self-Renewal Pathways in Myeloid Malignancies. Cell Commun. Signal. 2013, 11, 33. [Google Scholar] [CrossRef]
- Camacho, V.; McClearn, V.; Patel, S.; Welner, R.S. Regulation of Normal and Leukemic Stem Cells through Cytokine Signaling and the Microenvironment. Int. J. Hematol. 2017, 105, 566–577. [Google Scholar] [CrossRef]
- Daflon-Yunes, N.; Pinto-Silva, F.E.; Vidal, R.S.; Novis, B.F.; Berguetti, T.; Lopes, R.R.S.; Polycarpo, C.; Rumjanek, V.M. Characterization of a Multidrug-Resistant Chronic Myeloid Leukemia Cell Line Presenting Multiple Resistance Mechanisms. Mol. Cell Biochem. 2013, 383, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Rumjanek, V.M.; Trindade, G.S.; Wagner-Souza, K.; Meletti-De-Oliveira, M.C.; Marques-Santos, L.F.; Maia, R.C.; Capella, M.A.M. Multidrug Resistance in Tumour Cells: Characterisation of the Multidrug Resistant Cell Line K562-Lucena 1. An. Acad. Bras. Cienc. 2001, 73, 57–69. [Google Scholar] [CrossRef]
- Rumjanek, V.M.; Vidal, R.S.; Maia, R.C. Multidrug Resistance in Chronic Myeloid Leukaemia: How Much Can We Learn from MDR-CML Cell Lines? Biosci. Rep. 2013, 33, 81. [Google Scholar] [CrossRef]
- Benderra, Z.; Faussat, A.M.; Sayada, L.; Perrot, J.Y.; Tang, R.; Chaoui, D.; Morjani, H.; Marzac, C.; Marie, J.P.; Legrand, O. MRP3, BCRP, and P-Glycoprotein Activities Are Prognostic Factors in Adult Acute Myeloid Leukemia. Clin. Cancer Res. 2005, 11, 7764–7772. [Google Scholar] [CrossRef]
- Tsimberidou, A.M.; Paterakis, G.; Androutsos, G.; Anagnostopoulos, N.; Galanopoulos, A.; Kalmantis, T.; Meletis, J.; Rombos, Y.; Sagriotis, A.; Symeonidis, A.; et al. Evaluation of the Clinical Relevance of the Expression and Function of P-Glycoprotein, Multidrug Resistance Protein and Lung Resistance Protein in Patients with Primary Acute Myelogenous Leukemia. Leuk. Res. 2002, 26, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Moreira, M.A.M.; Bagni, C.; de Pinho, M.B.; Mac-Cormick, T.M.; dos Santos Mota, M.; Pinto-Silva, F.E.; Daflon-Yunes, N.; Rumjanek, V.M. Changes in Gene Expression Profile in Two Multidrug Resistant Cell Lines Derived from a Same Drug Sensitive Cell Line. Leuk. Res. 2014, 38, 983–987. [Google Scholar] [CrossRef] [PubMed]
- Cole, S.P.C.; Bhardwaj, G.; Gerlach, J.H.; Mackie, J.E.; Grant, C.E.; Almquist, K.C.; Stewart, A.J.; Kurz, E.U.; Duncan, A.M.V.; Deeley, R.G. Overexpression of a Transporter Gene in a Multidrug-Resistant Human Lung Cancer Cell Line. Science 1992, 258, 1650–1654. [Google Scholar] [CrossRef]
- Maia, R.C.; Vasconcelos, F.C.; Souza, P.S.; Rumjanek, V.M. Towards Comprehension of the ABCB1/P-Glycoprotein Role in Chronic Myeloid Leukemia. Molecules 2018, 23, 119. [Google Scholar] [CrossRef]
- Gottesman, M.M.; Lavi, O.; Hall, M.D.; Gillet, J.P. Toward a Better Understanding of the Complexity of Cancer Drug Resistance. Annu. Rev. Pharmacol. Toxicol. 2016, 56, 85–102. [Google Scholar] [CrossRef]
- Seelig, A. P-Glycoprotein: One Mechanism, Many Tasks and the Consequences for Pharmacotherapy of Cancers. Front. Oncol. 2020, 10, 576559. [Google Scholar] [CrossRef]
- Giddings, E.L.; Champagne, D.P.; Wu, M.H.; Laffin, J.M.; Thornton, T.M.; Valenca-Pereira, F.; Culp-Hill, R.; Fortner, K.A.; Romero, N.; East, J.; et al. Mitochondrial ATP Fuels ABC Transporter-Mediated Drug Efflux in Cancer Chemoresistance. Nat. Commun. 2021, 12, 2804. [Google Scholar] [CrossRef] [PubMed]
- Masud, S.N.; Chandrashekhar, M.; Aregger, M.; Tan, G.; Zhang, X.; Mero, P.; Pirman, D.A.; Zaslaver, O.; Smolen, G.A.; Lin, Z.Y.; et al. Chemical Genomics with Pyrvinium Identifies C1orf115 as a Regulator of Drug Efflux. Nat. Chem. Biol. 2022, 18, 1370–1379. [Google Scholar] [CrossRef]
- Škubník, J.; Pavlíčková, V.S.; Ruml, T.; Rimpelová, S. Vincristine in Combination Therapy of Cancer: Emerging Trends in Clinics. Biology 2021, 10, 849. [Google Scholar] [CrossRef]
- Correia, J.J. Effects of Antimitotic Agents on Tubulin-Nucleotide Interactions. Pharmacol. Ther. 1991, 52, 127–147. [Google Scholar] [CrossRef] [PubMed]
- Himes, R.H. Interactions of the Catharanthus (Vinca) Alkaloids with Tubulin and Microtubules. Pharmacol. Ther. 1991, 51, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Banyal, A.; Tiwari, S.; Sharma, A.; Chanana, I.; Patel, S.K.S.; Kulshrestha, S.; Kumar, P. Vinca Alkaloids as a Potential Cancer Therapeutics: Recent Update and Future Challenges. 3 Biotech 2023, 13, 211. [Google Scholar] [CrossRef] [PubMed]
- Béraud-Dufour, S.; Gautier, R.; Albiges-Rizo, C.; Chardin, P.; Faurobert, E. Krit 1 Interactions with Microtubules and Membranes Are Regulated by Rap1 and Integrin Cytoplasmic Domain Associated Protein-1. FEBS J. 2007, 274, 5518–5532. [Google Scholar] [CrossRef]
- Liu, B.; Liao, J.; Rao, X.; Kushner, S.A.; Chung, C.D.; Chang, D.D.; Shuai, K.E. Inhibition of Stat1-Mediated Gene Activation by PIAS1. Proc. Natl. Acad. Sci. USA 1998, 95, 10626–10631. [Google Scholar] [CrossRef]
- Kusmartsev, S.; Gabrilovich, D.I. STAT1 Signaling Regulates Tumor-Associated Macrophage-Mediated T Cell Deletion. J. Immunol. 2005, 174, 4880–4891. [Google Scholar] [CrossRef] [PubMed]
- Lesinski, G.B.; Anghelina, M.; Zimmerer, J.; Bakalakos, T.; Badgwell, B.; Parihar, R.; Hu, Y.; Becknell, B.; Abood, G.; Chaudhury, A.R.; et al. The Antitumor Effects of IFN-α Are Abrogated in a STAT1-Deficient Mouse. J. Clin. Investig. 2003, 112, 170–180. [Google Scholar] [CrossRef]
- Badgwell, B.; Lesinski, G.B.; Magro, C.; Abood, G.; Skaf, A.; Carson, W. The Antitumor Effects of Interferon-Alpha Are Maintained in Mice Challenged with a STAT1-Deficient Murine Melanoma Cell Line 1. J. Surg. Res. 2004, 116, 129–136. [Google Scholar] [CrossRef]
- Kovacic, B.; Stoiber, D.; Moriggl, R.; Weisz, E.; Ott, R.G.; Kreibich, R.; Levy, D.E.; Beug, H.; Freissmuth, M.; Sexl, V. STAT1 Acts as a Tumor Promoter for Leukemia Development. Cancer Cell 2006, 10, 77–87. [Google Scholar] [CrossRef]
- Lee, S.H.; Griffiths, J.R. How and Why Are Cancers Acidic? Carbonic Anhydrase IX and the Homeostatic Control of Tumour Extracellular PH. Cancers 2020, 12, 1616. [Google Scholar] [CrossRef]
- Banerjee, S. Aldo Keto Reductases AKR1B1 and AKR1B10 in Cancer: Molecular Mechanisms and Signaling Networks. Adv. Exp. Med. Biol. 2021, 1347, 65–82. [Google Scholar] [CrossRef]
- Vogelstein, B.; Lane, D.; Levine, A.J. Surfing the P53 Network. Nature 2000, 408, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Bech-Otschir, D.; Kraft, R.; Huang, X.; Henklein, P.; Kapelari, B.; Pollmann, C.; Dubiel, W. COP9 Signalosome-Specific Phosphorylation Targets P53 to Degradation by the Ubiquitin System. EMBO J. 2001, 20, 1630–1639. [Google Scholar] [CrossRef] [PubMed]
- Hunt, T.L.; Tzanis, E.; Bai, S.; Manley, A.; Chitra, S.; McGovern, P.C. The Effect of Verapamil, a P-Gp Inhibitor, on the Pharmacokinetics, Safety, and Tolerability of Omadacycline in Healthy Adults: A Phase I, Open-Label, Single-Sequence Study. Eur. J. Drug Metab. Pharmacokinet. 2021, 46, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Vidal, R.S.; Quarti, J.; Rumjanek, F.D.; Rumjanek, V.M. Metabolic Reprogramming during Multidrug Resistance in Leukemias. Front. Oncol. 2018, 8, 340766. [Google Scholar] [CrossRef]
Accession | −10lgP | Peptides | Unique | Description |
---|---|---|---|---|
A6NNZ2 | 163.21 | 22 | 0 | Tubulin beta 8B |
P00915 | 158.22 | 17 | 15 | Carbonic anhydrase 1 |
Q58FF8 | 153.51 | 24 | 0 | Putative heat shock protein HSP 90-beta 2 |
P63267 | 147.82 | 19 | 1 | Actin, gamma-enteric smooth muscle |
P62736 | 147.82 | 19 | 1 | Actin, aortic smooth muscle |
P08183 | 147.56 | 29 | 23 | ATP-dependent translocase ABCB1 |
Q8N257 | 130.83 | 18 | 1 | Histone H2B type 3-B |
Q02952 | 126.10 | 13 | 13 | A-kinase anchor protein 12 |
P09960 | 125.99 | 19 | 18 | Leukotriene A-4 hydrolase |
Q6FI13 | 124.98 | 11 | 1 | Histone H2A type 2-A |
Q16777 | 124.98 | 11 | 1 | Histone H2A type 2-C |
P13929 | 123.72 | 13 | 1 | Beta-enolase |
P62140 | 121.09 | 11 | 1 | Serine/threonine-protein phosphatase PP1-beta catalytic subunit |
P42330 | 119.37 | 16 | 2 | Aldo-keto reductase family 1 member C3 |
Q92597 | 116.56 | 7 | 6 | Protein NDRG1 |
P0DMV1 | 114.95 | 10 | 9 | Cancer/testis antigen family 45 member A8 |
P0DMV2 | 114.95 | 10 | 9 | Cancer/testis antigen family 45 member A9 |
Q5DJT8 | 114.95 | 10 | 9 | Cancer/testis antigen family 45 member A2 |
P42224 | 114.80 | 11 | 10 | Signal transducer and activator of transcription 1-alpha/beta |
P52895 | 114.13 | 20 | 2 | Aldo-keto reductase family 1 member C2 |
Q32MZ4 | 112.01 | 10 | 7 | Leucine-rich repeat flightless-interacting protein 1 |
Q96L21 | 110.23 | 13 | 1 | 60S ribosomal protein L10-like |
Q9BYX7 | 110.10 | 8 | 0 | Putative beta-actin-like protein 3 |
P67775 | 107.30 | 11 | 10 | Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform |
P48741 | 106.13 | 10 | 1 | Putative heat shock 70 kDa protein 7 |
P29966 | 106.09 | 7 | 7 | Myristoylated alanine-rich C-kinase substrate |
Q92905 | 104.65 | 8 | 8 | COP9 signalosome complex subunit 5 |
P12235 | 102.26 | 12 | 1 | ADP/ATP translocase 1 |
P68871 | 100.08 | 11 | 3 | Hemoglobin subunit beta |
P13637 | 95.17 | 11 | 1 | Sodium/potassium-transporting ATPase subunit alpha-3 |
P00918 | 94.77 | 7 | 6 | Carbonic anhydrase 2 |
Q92526 | 94.17 | 9 | 1 | T-complex protein 1 subunit zeta-2 |
P78540 | 93.28 | 6 | 6 | Arginase-2, mitochondrial |
P35609 | 93.05 | 9 | 0 | Alpha-actinin-2 |
P11310 | 92.23 | 8 | 7 | Medium-chain specific acyl-CoA dehydrogenase, mitochondrial |
P62834 | 92.19 | 10 | 2 | Ras-related protein Rap-1A |
Accession | Description | K562 | Lucena 1 | ||||
---|---|---|---|---|---|---|---|
−10lgP | Peptides | Unique | −10lgP | Peptides | Unique | ||
Q9BSJ2 | Gamma-tubulin complex component 2 | 39.48 | 4 | 0 | - | ||
Q96RT7 | Gamma-tubulin complex component 6 | - | 31.55 | 3 | 0 | ||
Q5TCY1 | Tau-tubulin kinase 1 | 35.75 | 3 | 0 | - | ||
Q71U36 | Tubulin alpha-1A chain | 218.38 | 36 | 0 | 184.98 | 36 | 0 |
P68363 | Tubulin alpha-1B chain | 220.29 | 37 | 0 | 185.86 | 36 | 0 |
Q9BQE3 | Tubulin alpha-1C chain | 213.37 | 36 | 4 | 187.45 | 38 | 5 |
P68366 | Tubulin alpha-4A chain | 204.77 | 32 | 2 | 174.66 | 28 | 0 |
Q9NY65 | Tubulin alpha-8 chain | 173.82 | 20 | 0 | 157.81 | 19 | 1 |
A6NHL2 | Tubulin alpha chain-like 3 | - | 73.80 | 6 | 0 | ||
P07437 | Tubulin beta chain | 236.39 | 37 | 5 | 207.07 | 45 | 4 |
Q9H4B7 | Tubulin beta-1 chain | 88.50 | 7 | 0 | 95.06 | 9 | 0 |
Q13885 | Tubulin beta-2A chain | 210.40 | 30 | 1 | 189.20 | 39 | 1 |
Q9BVA1 | Tubulin beta-2B chain | 211.00 | 31 | 1 | 189.08 | 40 | 1 |
Q13509 | Tubulin beta-3 chain | 177.54 | 20 | 0 | 168.44 | 27 | 0 |
P04350 | Tubulin beta-4A chain | 224.07 | 32 | 0 | - | ||
P68371 | Tubulin beta-4B chain | 232.14 | 36 | 1 | 203.80 | 45 | 3 |
Q9BUF5 | Tubulin beta-6 chain | 179.35 | 26 | 7 | 163.04 | 29 | 6 |
A6NNZ2 | Tubulin beta 8B | - | 163.21 | 22 | 0 | ||
Q14679 | Tubulin monoglutamylase TTLL4 | 30.73 | 3 | 0 | 31.13 | 2 | 0 |
Q6EMB2 | Tubulin polyglutamylase TTLL5 | 26.06 | 2 | 0 | - | ||
Q99426 | Tubulin-folding cofactor B | 37.43 | 2 | 2 | - | ||
O75347 | Tubulin-specific chaperone A | 97.98 | 8 | 7 | 106.78 | 9 | 9 |
Q9BTW9 | Tubulin-specific chaperone D | 51.27 | 3 | 1 | 66.97 | 6 | 2 |
Q14166 | Tubulin--tyrosine ligase-like protein 12 | 97.81 | 9 | 7 | 106.83 | 14 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beraldo-Neto, E.; Amador, F.C.; Fernandes, K.R.; Justo, G.Z.; Lacerda, J.T.; Juliano, M.A. Proteomic Dynamics of Multidrug Resistance Mechanisms in Lucena 1 Cell Line. Cells 2024, 13, 1427. https://doi.org/10.3390/cells13171427
Beraldo-Neto E, Amador FC, Fernandes KR, Justo GZ, Lacerda JT, Juliano MA. Proteomic Dynamics of Multidrug Resistance Mechanisms in Lucena 1 Cell Line. Cells. 2024; 13(17):1427. https://doi.org/10.3390/cells13171427
Chicago/Turabian StyleBeraldo-Neto, Emidio, Fernanda Cardoso Amador, Karolina Rosa Fernandes, Giselle Zenker Justo, José Thalles Lacerda, and Maria A. Juliano. 2024. "Proteomic Dynamics of Multidrug Resistance Mechanisms in Lucena 1 Cell Line" Cells 13, no. 17: 1427. https://doi.org/10.3390/cells13171427
APA StyleBeraldo-Neto, E., Amador, F. C., Fernandes, K. R., Justo, G. Z., Lacerda, J. T., & Juliano, M. A. (2024). Proteomic Dynamics of Multidrug Resistance Mechanisms in Lucena 1 Cell Line. Cells, 13(17), 1427. https://doi.org/10.3390/cells13171427