PAK4 Is Involved in the Stabilization of PD-L1 and the Resistance to Doxorubicin in Osteosarcoma and Predicts the Survival of Diagnosed Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Osteosarcoma Specimens and Tissue Samples
2.2. Immunohistochemical Staining and Scoring in the Tissue Microarray
2.3. Cell Lines, Transfection, and Reagents
2.4. Cell Proliferation Assay
2.5. In Vitro Trans-Chamber Migration and Invasion Assays
2.6. Western Blotting, Ubiquitination Analysis, and Immunoprecipitation
2.7. Immunofluorescence Staining
2.8. Quantitative Real-Time PCR with Reverse-Transcription Analysis
2.9. Tumorigenic Assay
2.10. Statistical Analysis
3. Results
3.1. The Expression of PAK4 and PD-L1 Are Associated with Shorter Survival of Osteosarcoma Patients
3.2. PAK4 Expression Is Associated with the Activity of Proliferation and Invasiveness of Osteosarcoma Cells
3.3. PAK4 Is Involved in Resistance to Doxorubicin of Osteosarcoma Cells
3.4. PAK4 Is Involved in the Stabilization of PD-L1
3.5. PAK4 Expression Is Associated with the Infiltration of Immune Cells in Tumor-Bearing Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, R.; Sanawar, R.; Li, X.; Li, F. Structure, biochemistry, and biology of PAK kinases. Gene 2017, 605, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Radu, M.; Semenova, G.; Kosoff, R.; Chernoff, J. PAK signalling during the development and progression of cancer. Nat. Rev. Cancer 2014, 14, 13–25. [Google Scholar] [CrossRef]
- Naїja, A.; Merhi, M.; Inchakalody, V.; Fernandes, Q.; Mestiri, S.; Prabhu, K.S.; Uddin, S.; Dermime, S. The role of PAK4 in the immune system and its potential implication in cancer immunotherapy. Cell Immunol. 2021, 367, 104408. [Google Scholar] [CrossRef]
- Shi, M.Y.; Yu, H.C.; Han, C.Y.; Bang, I.H.; Park, H.S.; Jang, K.Y.; Lee, S.; Son, J.B.; Kim, N.D.; Park, B.H.; et al. p21-activated kinase 4 suppresses fatty acid beta-oxidation and ketogenesis by phosphorylating NCoR1. Nat. Commun. 2023, 14, 4987. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, A.; Sierra, L.; Tsang, S.V.; Kurenbekova, L.; Patel, T.; Rajapakse, K.; Shuck, R.L.; Rainusso, N.; Landesman, Y.; Unger, T.; et al. Targeting PAK4 Inhibits Ras-Mediated Signaling and Multiple Oncogenic Pathways in High-Risk Rhabdomyosarcoma. Cancer Res. 2021, 81, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Qasim, S.L.; Sierra, L.; Shuck, R.; Kurenbekova, L.; Patel, T.D.; Rajapakshe, K.; Wulff, J.; Nakahata, K.; Kim, H.R.; Landesman, Y.; et al. p21-activated kinases as viable therapeutic targets for the treatment of high-risk Ewing sarcoma. Oncogene 2021, 40, 1176–1190. [Google Scholar] [CrossRef]
- Su, S.; You, S.; Wang, Y.; Tamukong, P.; Quist, M.J.; Grasso, C.S.; Kim, H.L. PAK4 inhibition improves PD1 blockade immunotherapy in prostate cancer by increasing immune infiltration. Cancer Lett. 2023, 555, 216034. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Wu, H.X.; Xu, R.H. Advancing to the era of cancer immunotherapy. Cancer Commun. 2021, 41, 803–829. [Google Scholar] [CrossRef]
- Wu, M.; Huang, Q.; Xie, Y.; Wu, X.; Ma, H.; Zhang, Y.; Xia, Y. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation. J. Hematol. Oncol. 2022, 15, 24. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, H.; Li, D.; Li, Y.; Lin, F.; Wang, Y.; Song, H.; Liu, X.; Li, F.; Zhang, J. PAK4 in cancer development: Emerging player and therapeutic opportunities. Cancer Lett. 2022, 545, 215813. [Google Scholar] [CrossRef]
- Abril-Rodriguez, G.; Torrejon, D.Y.; Liu, W.; Zaretsky, J.M.; Nowicki, T.S.; Tsoi, J.; Puig-Saus, C.; Baselga-Carretero, I.; Medina, E.; Quist, M.J.; et al. PAK4 inhibition improves PD-1 blockade immunotherapy. Nat. Cancer 2020, 1, 46–58. [Google Scholar] [CrossRef] [PubMed]
- WHO Classification of Tumours Editorial Board. Soft Tissue and Bone Tumours, 5th ed.; International Agency for Research on Cancer: Lyon, France, 2020. [Google Scholar]
- Amin, M.B. American Joint Committee on Cancer; American Cancer Society. AJCC Cancer Staging Manual, 8th ed.; American Joint Committee on Cancer, Springer: Chicago, IL, USA, 2017. [Google Scholar]
- Allred, D.; Harvey, J.M.; Berardo, M.; Clark, G.M. Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod. Pathol. 1998, 11, 155–168. [Google Scholar]
- Kim, J.R.; Moon, Y.J.; Kwon, K.S.; Bae, J.S.; Wagle, S.; Kim, K.M.; Park, H.S.; Lee, H.; Moon, W.S.; Chung, M.J.; et al. Tumor infiltrating PD1-positive lymphocytes and the expression of PD-L1 predict poor prognosis of soft tissue sarcomas. PLoS ONE 2013, 8, e82870. [Google Scholar] [CrossRef]
- DeLong, E.R.; DeLong, D.M.; Clarke-Pearson, D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
- Siu, M.K.; Chan, H.Y.; Kong, D.S.; Wong, E.S.; Wong, O.G.; Ngan, H.Y.; Tam, K.F.; Zhang, H.; Li, Z.; Chan, Q.K.; et al. p21-activated kinase 4 regulates ovarian cancer cell proliferation, migration, and invasion and contributes to poor prognosis in patients. Proc. Natl. Acad. Sci. USA 2010, 107, 18622–18627. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lu, Y.; Feng, W.; Chen, Q.; Guo, H.; Sun, X.; Bao, Y. A two kinase-gene signature model using CDK2 and PAK4 expression predicts poor outcome in non-small cell lung cancers. Neoplasma 2016, 63, 322–329. [Google Scholar] [CrossRef]
- Park, J.J.; Park, M.H.; Oh, E.H.; Soung, N.K.; Lee, S.J.; Jung, J.K.; Lee, O.J.; Yun, S.J.; Kim, W.J.; Shin, E.Y.; et al. The p21-activated kinase 4-Slug transcription factor axis promotes epithelial-mesenchymal transition and worsens prognosis in prostate cancer. Oncogene 2018, 37, 5147–5159. [Google Scholar] [CrossRef]
- Nomi, T.; Sho, M.; Akahori, T.; Hamada, K.; Kubo, A.; Kanehiro, H.; Nakamura, S.; Enomoto, K.; Yagita, H.; Azuma, M.; et al. Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin. Cancer Res. 2007, 13, 2151–2157. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Zhu, Y.; Jiang, J.; Zhao, J.; Zhang, X.G.; Xu, N. Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochem. 2006, 108, 19–24. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, X.Y.; Qiu, S.J.; Yamato, I.; Sho, M.; Nakajima, Y.; Zhou, J.; Li, B.Z.; Shi, Y.H.; Xiao, Y.S.; et al. Overexpression of PD-L1 significantly associates with tumor aggressiveness and postoperative recurrence in human hepatocellular carcinoma. Clin. Cancer Res. 2009, 15, 971–979. [Google Scholar] [CrossRef]
- Wang, F.; Yu, T.; Ma, C.; Yuan, H.; Zhang, H.; Zhang, Z. Prognostic Value of Programmed Cell Death 1 Ligand-1 in Patients with Bone and Soft Tissue Sarcomas: A Systemic and Comprehensive Meta-Analysis Based on 3,680 Patients. Front. Oncol. 2020, 10, 749. [Google Scholar] [CrossRef] [PubMed]
- Abd Elmoneim, H.M.; Huwait, H.F.; Nafady-Hego, H.; Mohamed, F.A. Prognostic Implications of Pd-L1 Expression and Loss of Pten in Patients with Rhabdomyosarcoma, Ewing’s Sarcoma and Osteosarcoma. Exp. Oncol. 2023, 45, 337–350. [Google Scholar] [CrossRef]
- Li, Z.F.; Yao, Y.D.; Zhao, Y.Y.; Liu, Y.; Liu, Z.H.; Hu, P.; Zhu, Z.R. Effects of PAK4/LIMK1/Cofilin-1 signaling pathway on proliferation, invasion, and migration of human osteosarcoma cells. J Clin Lab Anal 2020, 34, e23362. [Google Scholar] [CrossRef] [PubMed]
- Dongre, A.; Weinberg, R.A. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 2019, 20, 69–84. [Google Scholar] [CrossRef]
- Kim, K.M.; Hussein, U.K.; Park, S.H.; Kang, M.A.; Moon, Y.J.; Zhang, Z.; Song, Y.; Park, H.S.; Bae, J.S.; Park, B.H.; et al. FAM83H is involved in stabilization of beta-catenin and progression of osteosarcomas. J. Exp. Clin. Cancer Res. 2019, 38, 267. [Google Scholar] [CrossRef]
- Sannino, G.; Marchetto, A.; Kirchner, T.; Grunewald, T.G.P. Epithelial-to-Mesenchymal and Mesenchymal-to-Epithelial Transition in Mesenchymal Tumors: A Paradox in Sarcomas? Cancer Res. 2017, 77, 4556–4561. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Wang, X.; Li, Y.; Zhao, X.; Zhou, J.; Ma, X.; An, D.; Jiang, H. PAK4 enhances TGF-beta1-induced epithelial-mesenchymal transition through activating beta-catenin signaling pathway in renal tubular epithelial cells. Int. J. Clin. Exp. Pathol. 2018, 11, 3026–3035. [Google Scholar] [PubMed]
- Liu, S.; Yang, P.; Wang, L.; Zou, X.; Zhang, D.; Chen, W.; Hu, C.; Xiao, D.; Ren, H.; Zhang, H.; et al. Targeting PAK4 reverses cisplatin resistance in NSCLC by modulating ER stress. Cell Death Discov. 2024, 10, 36. [Google Scholar] [CrossRef]
- He, H.; Dumesny, C.; Ang, C.S.; Dong, L.; Ma, Y.; Zeng, J.; Nikfarjam, M. A novel PAK4 inhibitor suppresses pancreatic cancer growth and enhances the inhibitory effect of gemcitabine. Transl. Oncol. 2022, 16, 101329. [Google Scholar] [CrossRef]
- Wang, K.; Huynh, N.; Wang, X.; Pajic, M.; Parkin, A.; Man, J.; Baldwin, G.S.; Nikfarjam, M.; He, H. PAK inhibition by PF-3758309 enhanced the sensitivity of multiple chemotherapeutic reagents in patient-derived pancreatic cancer cell lines. Am. J. Transl. Res. 2019, 11, 3353–3364. [Google Scholar]
- Akhtar, M.; Rashid, S.; Al-Bozom, I.A. PD-L1 immunostaining: What pathologists need to know. Diagn. Pathol. 2021, 16, 94. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Feng, L.; Huang, Y.; Wu, Y.; Xie, N. Mechanisms and Strategies to Overcome PD-1/PD-L1 Blockade Resistance in Triple-Negative Breast Cancer. Cancers 2022, 15, 104. [Google Scholar] [CrossRef] [PubMed]
- Lussier, D.M.; Johnson, J.L.; Hingorani, P.; Blattman, J.N. Combination immunotherapy with alpha-CTLA-4 and alpha-PD-L1 antibody blockade prevents immune escape and leads to complete control of metastatic osteosarcoma. J. Immunother. Cancer 2015, 3, 21. [Google Scholar] [CrossRef] [PubMed]
- Lussier, D.M.; O’Neill, L.; Nieves, L.M.; McAfee, M.S.; Holechek, S.A.; Collins, A.W.; Dickman, P.; Jacobsen, J.; Hingorani, P.; Blattman, J.N. Enhanced T-cell immunity to osteosarcoma through antibody blockade of PD-1/PD-L1 interactions. J. Immunother. 2015, 38, 96–106. [Google Scholar] [CrossRef]
- Biswas, P.; Dai, Y.; Stuehr, D.J. Indoleamine dioxygenase and tryptophan dioxygenase activities are regulated through GAPDH- and Hsp90-dependent control of their heme levels. Free Radic. Biol. Med. 2022, 180, 179–190. [Google Scholar] [CrossRef]
- Biswas, P.; Stuehr, D.J. Indoleamine dioxygenase and tryptophan dioxygenase activities are regulated through control of cell heme allocation by nitric oxide. J. Biol. Chem. 2023, 299, 104753. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Kato, S.; Nishizaki, D.; Miyashita, H.; Lee, S.; Nesline, M.K.; Conroy, J.M.; DePietro, P.; Pabla, S.; Lippman, S.M.; et al. High indoleamine 2,3-dioxygenase transcript levels predict better outcome after front-line cancer immunotherapy. iScience 2024, 27, 109632. [Google Scholar] [CrossRef]
- Rosenbaum, M.W.; Gigliotti, B.J.; Pai, S.I.; Parangi, S.; Wachtel, H.; Mino-Kenudson, M.; Gunda, V.; Faquin, W.C. PD-L1 and IDO1 Are Expressed in Poorly Differentiated Thyroid Carcinoma. Endocr. Pathol. 2018, 29, 59–67. [Google Scholar] [CrossRef]
- Spranger, S.; Spaapen, R.M.; Zha, Y.; Williams, J.; Meng, Y.; Ha, T.T.; Gajewski, T.F. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci. Transl. Med. 2013, 5, 200ra116. [Google Scholar] [CrossRef]
- Wu, R.Y.; Kong, P.F.; Xia, L.P.; Huang, Y.; Li, Z.L.; Tang, Y.Y.; Chen, Y.H.; Li, X.; Senthilkumar, R.; Zhang, H.L.; et al. Regorafenib Promotes Antitumor Immunity via Inhibiting PD-L1 and IDO1 Expression in Melanoma. Clin. Cancer Res. 2019, 25, 4530–4541. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Kato, S.; Nesline, M.K.; Conroy, J.M.; DePietro, P.; Pabla, S.; Kurzrock, R. Indoleamine 2,3-dioxygenase (IDO) inhibitors and cancer immunotherapy. Cancer Treat. Rev. 2022, 110, 102461. [Google Scholar] [CrossRef] [PubMed]
Gene | Primer Sequence | Product Size | Accession Number | |
---|---|---|---|---|
PAK4 | forward | 5′-GGACATCAAGAGCGACTCGAT-3′ | 113 | NM_001014831.3 |
reverse | 5′-CGACCAGCGACTTCCTTCG-3′ | |||
PD-L1 | forward | 5′-GGACAAGCAGTGACCATCAAG-3′ | 235 | NM_001267706.2 |
reverse | 5′-CCCAGAATTACCAAGTGAGTCCT-3′ | |||
FOXO3 | forward | 5′-CGGACAAACGGCTCACTCT-3′ | 150 | NM_001455 |
reverse | 5′-GGACCCGCATGAATCGACTAT-3′ | |||
CCND1 (Cyclin D1) | forward | 5′-GAGGAAGAGGAGGAGGAGGA-3′ | 236 | NM_053056.2 |
reverse | 5′-GAGATGGAAGGGGGAAAGAG-3′ | |||
P27 | forward | 5′-TCTACTGCGTGGCTTGTCAG-3′ | 240 | AB001740.1 |
reverse | 5′-CTGTATTTGGAGGCACAGCA-3′ | |||
BAX | forward | 5′-CCCGAGAGGTCTTTTTCCGAG-3′ | 155 | NM_138763 |
reverse | 5′-CCAGCCCATGATGGTTCTGAT-3′ | |||
BCL2 | forward | 5′-GGTGGGGTCATGTGTGTGG-3′ | 89 | NM_000657 |
reverse | 5′-CGGTTCAGGTACTCAGTCATCC-3′ | |||
SNAL1 (Snail) | forward | 5′-ACCCCACATCCTTCTCACTG-3′ | 217 | NM_005985.3 |
reverse | 5′-TACAAAAACCCACGCAGACA-3′ | |||
TGF-β1 | forward | 5′-CCCACAACGAAATCTATGACAA-3′ | 246 | NM_000660.7 |
reverse | 5′-AAGATAACCACTCTGGCGAGTG-3′ | |||
MMP2 | forward | 5′-GATACCCCTTTGACGGTAAGGA-3′ | 112 | NM_004530 |
reverse | 5′-CCTTCTCCCAAGGTCCATAGC-3′ | |||
MMP9 | forward | 5′-TGTACCGCTATGGTTACACTCG-3′ | 97 | NM_004994 |
reverse | 5′-GGCAGGGACAGTTGCTTCT-3′ | |||
GAPDH | forward | 5′-AACAGCGACACCCACTCCTC-3′ | 258 | NM_001256799.1 |
reverse | 5′-GGAGGGGAGATTCAGTGTGGT-3′ |
Characteristics | No. | PAK4 | PD-L1 | |||
---|---|---|---|---|---|---|
Positive | p | Positive | p | |||
Age, years | <30 | 24 | 12 (50%) | 0.217 | 9 (38%) | 0.533 |
≥30 | 8 | 6 (75%) | 4 (50%) | |||
Sex | Male | 20 | 13 (65%) | 0.198 | 8 (40%) | 0.926 |
Female | 12 | 5 (42%) | 5 (42%) | |||
TNM stage | IIA | 15 | 8 (53%) | 0.755 | 5 (33%) | 0.430 |
IIB, III, IV | 17 | 10 (59%) | 8 (47%) | |||
T category | T1 | 16 | 8 (50%) | 0.476 | 5 (31%) | 0.280 |
T2, T3 | 16 | 10 (63%) | 8 (50%) | |||
N category | N0 | 30 | 17 (57%) | 0.854 | 12 (40%) | 0.780 |
N1 | 2 | 1 (50%) | 1 (50%) | |||
M category | M0 | 27 | 15 (56%) | 0.854 | 11 (41%) | 0.975 |
M1 | 5 | 3 (60%) | 2 (40%) | |||
PD-L1 | Negative | 19 | 7 (37%) | 0.007 | ||
Positive | 13 | 11 (85%) |
Characteristics | No. | OS | RFS | ||
---|---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | ||
Age, years, ≥30 (vs. <30) | 8/32 | 3.071 (1.105–8.532) | 0.031 | 3.139 (1.128–8.739) | 0.029 |
Sex, male (vs. female) | 20/32 | 0.874 (0.298–2.567) | 0.807 | 0.768 (0.263–2.246) | 0.630 |
TNM stage, ≥IIB (vs. IIA) | 17/32 | 2.865 (0.983–8.349) | 0.054 | 2.912 (0.997–8.507) | 0.051 |
T category, T2 and T3 (vs. T1) | 16/32 | 3.009 (1.035–8.750) | 0.043 | 3.142 (1.079–9.150) | 0.036 |
N category, N1 (vs. N0) | 2/32 | 3.830 (0.441–33.245) | 0.223 | 2.047 (0.255–16.465) | 0.501 |
M category, M1 (vs. M0) | 5/32 | 3.297 (0.904–12.025) | 0.071 | 2.553 (0.703–9.277) | 0.155 |
PAK4, positive (vs. negative) | 18/32 | 7.646 (1.726–33.875) | 0.007 | 7.981 (1.801–35.369) | 0.006 |
PD–L1, positive (vs. negative) | 13/32 | 5.195 (1.768–15.260) | 0.003 | 5.157 (1.768–15.039) | 0.003 |
Characteristics | OS | RFS | ||
---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | |
Age, years, ≥30 (vs. <30) | 3.502 (1.221–10.045) | 0.020 | ||
M category, M1 (vs. M0) | 8.491 (1.622–44.448) | 0.011 | ||
PAK4, positive (vs. negative) | 6.888 (1.237–38.367) | 0.028 | ||
PD-L1, positive (vs. negative) | 2.978 (0.902–9.835) | 0.073 | 5.512 (1.863–16.309) | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Song, Y.; Ahn, A.-R.; Park, H.S.; Park, S.-H.; Moon, Y.J.; Kim, K.M.; Jang, K.Y. PAK4 Is Involved in the Stabilization of PD-L1 and the Resistance to Doxorubicin in Osteosarcoma and Predicts the Survival of Diagnosed Patients. Cells 2024, 13, 1444. https://doi.org/10.3390/cells13171444
Zhang J, Song Y, Ahn A-R, Park HS, Park S-H, Moon YJ, Kim KM, Jang KY. PAK4 Is Involved in the Stabilization of PD-L1 and the Resistance to Doxorubicin in Osteosarcoma and Predicts the Survival of Diagnosed Patients. Cells. 2024; 13(17):1444. https://doi.org/10.3390/cells13171444
Chicago/Turabian StyleZhang, Junyue, Yiping Song, Ae-Ri Ahn, Ho Sung Park, See-Hyoung Park, Young Jae Moon, Kyoung Min Kim, and Kyu Yun Jang. 2024. "PAK4 Is Involved in the Stabilization of PD-L1 and the Resistance to Doxorubicin in Osteosarcoma and Predicts the Survival of Diagnosed Patients" Cells 13, no. 17: 1444. https://doi.org/10.3390/cells13171444
APA StyleZhang, J., Song, Y., Ahn, A. -R., Park, H. S., Park, S. -H., Moon, Y. J., Kim, K. M., & Jang, K. Y. (2024). PAK4 Is Involved in the Stabilization of PD-L1 and the Resistance to Doxorubicin in Osteosarcoma and Predicts the Survival of Diagnosed Patients. Cells, 13(17), 1444. https://doi.org/10.3390/cells13171444