CD47 in Osteosarcoma: Correlation with Metastasis and Macrophage-Mediated Phagocytosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. CD47 Expression in Osteosarcoma Samples
2.2. Cell Viability and Apoptosis Assay
2.3. Wound-Healing Assay
2.4. Flow Cytometry Analysis
2.5. Macrophage Differentiation from Peripheral Blood
2.6. In Vitro Macrophage-Mediated Phagocytosis Assay
2.7. Statistical Analysis
3. Results
3.1. CD47 Expression and Clinical Characteristics
Case No. | Sex/Age (y) | Tumor Location | Tumor Size (cm) | Meta at Dx/Site | TNR | CD47+ | Event/Time (mo) | FU (mo) | Current Status |
---|---|---|---|---|---|---|---|---|---|
1 | F/10.2 | Distal femur | 6.5 × 5.5 × 3 | − | 97% | 165 | CDF | ||
2 | M/13.0 | Humerus shaft | 16 | − | 40% | 157 | CDF | ||
3 | F/14.0 | Proximal humerus | 4.5 × 4.5 × 3.0 | − | 95% | 143 | CDF | ||
4 | M/18.8 | Distal femur | 11.4 × 8.4 | − | 95% | 123 | CDF | ||
5 | M/16.3 | Proximal tibia | 4.2 × 1.0 × 1.0 | +/lung | 95% | lung meta/14.1 | 33 | DOD | |
6 | M/14.7 | Distal femur | 11.8 × 8.0 × 3.9 | − | 100% | 115 | CDF | ||
7 | F/16.1 | Distal femur | 6.3 × 5.0 × 4.5 | − | 95% | 107 | CDF | ||
8 | M/13.9 | Distal femur | 9.0 × 3.1 × 3.0 | +/bone | 99% | lung meta/25.6 | 63 | DOD | |
9 | M/17.7 | Proximal tibia | 5.2 × 3.0 × 2.6 | − | 95% | + | lung meta/16.8 | 57 | DOD |
10 | M/15.9 | Distal tibia | 6.0 × 4.0 × 3.7 | − | 99% | 94 | CDF | ||
11 | F/17.6 | Distal radius | 4.4 × 2.6 × 2.3 | − | 95% | local recur/18.0 | 98 | NED | |
12 | M/17.7 | Distal femur | 10.5 × 5.2 × 5.0 | − | 70% | 71 | CDF | ||
13 | M/24.5 | Distal femur | 13.3 × 5.2 × 3.8 | − | 60% | + | lung meta/16.7 bon meta/41 | 66 | DOD |
14 | M/20.3 | Humerus shaft | 23 | +/lung | 95% | 67 | CDF | ||
15 | M/18.3 | Humerus shaft | 5.7 × 7.2 × 10 | +/lung | 100% | + | 51 | CDF | |
16 | M/17.4 | Proximal tibia | 2.6 × 3.6 × 4.6 | 100% | 47 | CDF | |||
17 | F/12.4 | Proximal tibia | 4.8 × 6.6 × 5.8 | − | 40% | lung meta/4.5 | 44 | AWD | |
18 | F/14 | Proximal tibia | 3.7 × 4.1 × 6.9 | − | 70% | + | 44 | CDF | |
19 | M/21.9 | Proximal fibula | 4.9 × 5.1 × 9.0 | − | 80% | local recur/15.5 | 41 | NED | |
20 | F/11.0 | Distal femur | 11.8 | − | 95% | 40 | CDF | ||
21 | M/15.1 | Distal femur | 5.2 × 7.6 × 5.6 | − | 95% | 30 | CDF | ||
22 | M/15.7 | Distal femur | 21.6 | − | 10% | lung meta/12 | 31 | NED | |
23 | M/15.9 | Proximal tibia | 15.3 × 6.9 × 6.4 | +/lung, bone | 60% | lung meta/11 bone meta/14 | 27 | DOD | |
24 | F/7.8 | Distal femur | 13 | +/lung | 50% | + | lung meta/7 | 17 | DOD |
3.2. Effect of CD47 Antibody on Osteosarcoma Cells
3.3. Effect of CD47 Antibody on the Phagocytic Activity of MDMs Toward Osteosarcoma Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, H.; Cao, J.; Li, B.; Nice, E.C.; Mao, H.; Zhang, Y.; Huang, C. Managing the immune microenvironment of osteosarcoma: The outlook for osteosarcoma treatment. Bone Res. 2023, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Supra, R.; Agrawal, D.K. Immunotherapeutic Strategies in the Management of Osteosarcoma. Orthop. J. Sports Med. 2023, 5, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, J.; Chen, Y.; Kang, Y.; Liao, Z.; He, Y.; Zhang, C. Novel immunotherapies for osteosarcoma. Front. Oncol. 2022, 12, 830546. [Google Scholar] [CrossRef]
- Miwa, S.; Shirai, T.; Yamamoto, N.; Hayashi, K.; Takeuchi, A.; Igarashi, K.; Tsuchiya, H. Current and emerging targets in immunotherapy for osteosarcoma. J. Oncol. 2019, 2019, 7035045. [Google Scholar] [CrossRef]
- Meyers, P.A. Muramyl tripeptide-phosphatidyl ethanolamine encapsulated in liposomes (L-MTP-PE) in the treatment of osteosarcoma. Adv. Exp. Med. Biol. 2020, 1257, 133–139. [Google Scholar] [CrossRef]
- Barnes, D.J.; Dutton, P.; Bruland, Ø.; Gelderblom, H.; Faleti, A.; Bühnemann, C.; van Maldegem, A.; Johnson, H.; Poulton, L.; Love, S.; et al. Outcomes from a mechanistic biomarker multi-arm and randomised study of liposomal MTP-PE (Mifamurtide) in metastatic and/or recurrent osteosarcoma (EuroSarc-Memos trial). BMC Cancer 2022, 22, 629. [Google Scholar] [CrossRef]
- Wojtukiewicz, M.Z.; Rek, M.M.; Karpowicz, K.; Górska, M.; Polityńska, B.; Wojtukiewicz, A.M.; Moniuszko, M.; Radziwon, P.; Tucker, S.C.; Honn, K.V. Inhibitors of immune checkpoints-PD-1, PD-L1, CTLA-4-new opportunities for cancer patients and a new challenge for internists and general practitioners. Cancer Metastasis Rev. 2021, 40, 949–982. [Google Scholar] [CrossRef]
- Shiravand, Y.; Khodadadi, F.; Kashani, S.M.A.; Hosseini-Fard, S.R.; Hosseini, S.; Sadeghirad, H.; Ladwa, R.; O’Byrne, K.; Kulasinghe, A. Immune checkpoint inhibitors in cancer therapy. Curr. Oncol. 2022, 29, 3044–3060. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Khan, F.; Qari, H.A.; Upadhyay, T.K.; Alkhateeb, A.F.; Oves, M. Revolutionization in cancer therapeutics via targeting major immune checkpoints PD-1, PD-L1 and CTLA-4. Pharmaceuticals 2022, 15, 335. [Google Scholar] [CrossRef]
- Seidel, J.A.; Otsuka, A.; Kabashima, K. Anti-PD-1 and Anti-CTLA-4 therapies in cancer: Mechanisms of action, efficacy, and limitations. Front. Oncol. 2018, 8, 86. [Google Scholar] [CrossRef]
- Yiong, C.S.; Lin, T.P.; Lim, V.Y.; Toh, T.B.; Yang, V.S. Biomarkers for immune checkpoint inhibition in sarcomas—are we close to clinical implementation? Biomark. Res. 2023, 11, 75. [Google Scholar] [CrossRef] [PubMed]
- Florou, V.; Wilky, B.A. Emerging mechanisms of immunotherapy resistance in sarcomas. Cancer Drug Resist. 2022, 5, 199–213. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.M.T.; Shenasa, E.; Nielsen, T.O. Sarcomas: Immune biomarker expression and checkpoint inhibitor trials. Cancer Treat. Rev. 2020, 91, 102115. [Google Scholar] [CrossRef]
- Jiang, W.; He, Y.; He, W.; Wu, G.; Zhou, X.; Sheng, Q.; Zhong, W.; Lu, Y.; Ding, Y.; Lu, Q.; et al. Exhausted CD8+T cells in the tumor immune microenvironment: New pathways to therapy. Front. Immunol. 2020, 11, 622509. [Google Scholar] [CrossRef]
- Kim, G.B.; Riley, J.L.; Levine, B.L. Engineering T cells to survive and thrive in the hostile tumor microenvironment. Curr. Opin. Biomed. Eng. 2022, 21, 100360. [Google Scholar] [CrossRef]
- De Visser, K.E.; Joyce, J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell 2023, 41, 374–403. [Google Scholar] [CrossRef] [PubMed]
- Baghban, R.; Roshangar, L.; Jahanban-Esfahlan, R.; Seidi, K.; Ebrahimi-Kalan, A.; Jaymand, M.; Kolahian, S.; Javaheri, T.; Zare, P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal 2020, 18, 59. [Google Scholar] [CrossRef]
- Dancsok, A.R.; Gao, D.; Lee, A.F.; Steigen, S.E.; Blay, J.Y.; Thomas, D.M.; Maki, R.G.; Nielsen, T.O.; Demicco, E.G. Tumor-associated macrophages and macrophage-related immune checkpoint expression in sarcomas. Oncoimmunology 2020, 9, 1747340. [Google Scholar] [CrossRef]
- Chou, A.J.; Kleinerman, E.S.; Krailo, M.D.; Chen, Z.; Betcher, D.L.; Healey, J.H.; Conrad, E.U., 3rd; Nieder, M.L.; Weiner, M.A.; Wells, R.J.; et al. Addition of muramyl tripeptide to chemotherapy for patients with newly diagnosed metastatic osteosarcoma: A report from the Children’s Oncology Group. Cancer 2009, 115, 5339–5348. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Yang, Y.; Weng, L.; Wu, Q.; Zhang, J.; Zhao, P.; Fang, L.; Shi, Y.; Wang, P. Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct. Target. Ther. 2023, 8, 104. [Google Scholar] [CrossRef]
- Huang, J.; Liu, F.; Li, C.; Liang, X.; Li, C.; Liu, Y.; Yi, Z.; Zhang, L.; Fu, S.; Zeng, Y. Role of CD47 in tumor immunity: A potential target for combination therapy. Sci. Rep. 2022, 12, 9803. [Google Scholar] [CrossRef] [PubMed]
- Chao, M.P.; Takimoto, C.H.; Feng, D.D.; McKenna, K.; Gip, P.; Liu, J.; Volkmer, J.P.; Weissman, I.L.; Majeti, R. Therapeutic targeting of the macrophage immune checkpoint CD47 in myeloid malignancies. Front. Oncol. 2019, 9, 1380. [Google Scholar] [CrossRef]
- Yang, H.; Xun, Y.; You, H. The landscape overview of CD47-based immunotherapy for hematological malignancies. Biomark. Res. 2023, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Shen, Y.; Huang, W.; Bao, Y.; Mo, J.; Yao, L.; Yuan, L. Blocking CD47-sirpα signal axis as promising immunotherapy in ovarian cancer. Cancer Control 2023, 30, 10732748231159706. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Gu, Y.; Jin, K.; Fang, H.; Chen, Y.; Cao, Y.; Liu, X.; Lv, K.; He, X.; Lin, C.; et al. CD47 expression in gastric cancer clinical correlates and association with macrophage infiltration. Cancer Immunol. Immunother. 2021, 70, 1831–1840. [Google Scholar] [CrossRef]
- Suarez-Arnedo, A.; Torres Figueroa, F.; Clavijo, C.; Arbeláez, P.; Cruz, J.C.; Muñoz-Camargo, C. An Image J plugin for the high throughput image analysis of in vitro scratch wound healing assays. PLoS ONE 2020, 15, e0232565. [Google Scholar] [CrossRef] [PubMed]
- Gardner, M.; Turner, J.E.; Youssef, O.A.; Cheshier, S. In vitro macrophage-mediated phagocytosis assay of brain tumors. Cureus 2020, 12, e10964. [Google Scholar] [CrossRef]
- Peng, Y.; Qiu, B.; Tan, F.; Xu, J.; Bie, F.; He, H.; Liu, L.; Tian, H.; Bai, G.; Zhou, B.; et al. TIGIT/CD47 dual high expression predicts prognosis and is associated with immunotherapy response in lung squamous cell carcinoma. Thorac. Cancer 2022, 13, 2014–2023. [Google Scholar] [CrossRef]
- Oh, H.H.; Park, Y.L.; Park, S.Y.; Myung, E.; Im, C.M.; Yu, H.J.; Han, B.; Seo, Y.J.; Kim, K.H.; Myung, D.S.; et al. CD47 mediates the progression of colorectal cancer by inducing tumor cell apoptosis and angiogenesis. Pathol. Res. Pr. 2022, 240, 154220. [Google Scholar] [CrossRef]
- Yoshida, K.; Tsujimoto, H.; Matsumura, K.; Kinoshita, M.; Takahata, R.; Matsumoto, Y.; Hiraki, S.; Ono, S.; Seki, S.; Yamamoto, J.; et al. CD47 is an adverse prognostic factor and a therapeutic target in gastric cancer. Cancer Med. 2015, 4, 1322–1333. [Google Scholar] [CrossRef]
- Liu, R.; Wei, H.; Gao, P.; Yu, H.; Wang, K.; Fu, Z.; Ju, B.; Zhao, M.; Dong, S.; Li, Z.; et al. CD47 promotes ovarian cancer progression by inhibiting macrophage phagocytosis. Oncotarget 2017, 8, 39021–39032. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Chung, H.; Banan, B.; Manning, P.T.; Ott, K.C.; Lin, S.; Capoccia, B.J.; Subramanian, V.; Hiebsch, R.R.; Upadhya, G.A.; et al. Antibody mediated therapy targeting CD47 inhibits tumor progression of hepatocellular carcinoma. Cancer Lett. 2015, 360, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wang, J.; Kong, X.; Li, E.; Liu, Y.; Du, X.; Kang, Z.; Tang, Y.; Kuang, Y.; Yang, Z.; et al. CD47 Promotes tumor invasion and metastasis in non-small cell lung cancer. Sci. Rep. 2016, 6, 29719. [Google Scholar] [CrossRef] [PubMed]
- Nirala, B.K.; Yamamichi, T.; Petrescu, D.I.; Shafin, T.N.; Yustein, J.T. Decoding the Impact of Tumor Microenvironment in Osteosarcoma Progression and Metastasis. Cancers 2023, 15, 5108. [Google Scholar] [CrossRef]
- Corre, I.; Verrecchia, F.; Crenn, V.; Redini, F.; Trichet, V. The ssteosarcoma microenvironment: A complex but targetable ecosystem. Cells 2020, 9, 976. [Google Scholar] [CrossRef]
- Zhu, T.; Han, J.; Yang, L.; Cai, Z.; Sun, W.; Hua, Y.; Xu, J. Immune Microenvironment in Osteosarcoma: Components, Therapeutic Strategies and Clinical Applications. Front. Immunol. 2022, 13, 907550. [Google Scholar] [CrossRef]
- Muntjewerff, E.M.; Meesters, L.D.; van den Bogaart, G. Antigen cross-presentation by macrophages. Front. Immunol. 2020, 11, 1276. [Google Scholar] [CrossRef]
- Stopforth, R.J.; Ward, E.S. The role of antigen presentation in tumor-associated macrophages. Crit. Rev. Immunol. 2020, 40, 205–224. [Google Scholar] [CrossRef]
- Bouwstra, R.; van Meerten, T.; Bremer, E. CD47-SIRPα blocking-based immunotherapy: Current and prospective therapeutic strategies. CTM 2022, 12, e943. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, P.; Xu, Z.; Ye, H. Opportunities and challenges for anti-CD47 antibodies in hematological malignancies. Front. Immunol. 2024, 15, 1348852. [Google Scholar] [CrossRef]
- Maute, R.; Xu, J.; Weissman, I.L. CD47–SIRPα-targeted therapeutics: Status and prospects. Immunooncol Technol. 2022, 13, 100070. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, S.-Q.; Du, Y.-X.; Sun, D.-D.; Liu, C.; Liu, S.; Sun, Y.-Y.; Wang, H.-L.; Zhang, C.-S.; Liu, H.-L.; et al. Gentulizumab, a novel anti-CD47 antibody with potent antitumor activity and demonstrates a favorable safety profile. J. Transl. Med. 2024, 22, 220. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Staves, J.; Storry, J.R.; Dinoso, J.; Renard, C.; Doshi, P.; Johnson, L.D.S.; Westhoff, C.M.; Murphy, M.F. Transfusion management in the era of magrolimab (Hu5F9-G4), an anti-CD47 monoclonal antibody therapy. Transfusion 2023, 63, 2377–2383. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.; Jeong, Y.H.; Seo, J.H.; Lee, J.A. Development of a Bioluminescent Human Osteosarcoma Model in Humanized NSG Mice: A Pilot Study. In Vivo 2021, 35, 2151–2157. [Google Scholar] [CrossRef]
CD47-Positive (n = 5) | CD47-Negative (n = 19) | p-Value | |
---|---|---|---|
Age (y) | 16.5 ± 6.2 | 15.7 ± 3.0 | 0.07 |
Sex | 3 M, 2 F | 13 M, 6 F | 0.72 |
Metastasis at diagnosis | 3/5 (60.0%) | 3/19 (15.8%) | 0.04 |
Tumor length > 8 cm (AJCC T2) | 3/5 (60.0%) | 10/19 (52.6%) | 0.77 |
Good response to preoperative chemotherapy (<10% residual viable tumor) | 2/5 (40.0%) | 13/19 (68.4%) | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ko, Y.; Park, S.-Y.; Park, J.W.; Kim, J.H.; Kang, H.G.; Lee, J.A. CD47 in Osteosarcoma: Correlation with Metastasis and Macrophage-Mediated Phagocytosis. Cells 2024, 13, 1862. https://doi.org/10.3390/cells13221862
Ko Y, Park S-Y, Park JW, Kim JH, Kang HG, Lee JA. CD47 in Osteosarcoma: Correlation with Metastasis and Macrophage-Mediated Phagocytosis. Cells. 2024; 13(22):1862. https://doi.org/10.3390/cells13221862
Chicago/Turabian StyleKo, Yunmi, Seog-Yun Park, Jong Woong Park, June Hyuk Kim, Hyun Guy Kang, and Jun Ah Lee. 2024. "CD47 in Osteosarcoma: Correlation with Metastasis and Macrophage-Mediated Phagocytosis" Cells 13, no. 22: 1862. https://doi.org/10.3390/cells13221862
APA StyleKo, Y., Park, S. -Y., Park, J. W., Kim, J. H., Kang, H. G., & Lee, J. A. (2024). CD47 in Osteosarcoma: Correlation with Metastasis and Macrophage-Mediated Phagocytosis. Cells, 13(22), 1862. https://doi.org/10.3390/cells13221862