Unlocking Potential: A Comprehensive Overview of Cell Culture Banks and Their Impact on Biomedical Research
Abstract
:1. Introduction
2. Expected Services of a Cell Bank Repository
2.1. Cell Line Catalog
2.2. Authentication of Cell Lines
2.3. Contamination and Quality Control
2.4. General Documentation
2.5. Cryopreservation Services
2.6. Ethical Compliance
2.7. Training Resources
2.8. Services Offered for Depositing New Cell Lines in a Cell Bank Repository
2.9. Customization Options for Bespoke Cell Lines
2.10. Collaboration Opportunities for Enhanced Research Initiatives
2.11. Shipping and Handling Protocols for Biological Materials
3. Cell Culture Banks
3.1. Overview of Notable Cell Bank Repositories Worldwide
3.2. Pricing Structures and Terms of Use for Cell Lines from Repositories
3.3. Balancing Quality and Accessibility in Cell Bank Practices: The Impact of Selling Cells and Redistribution Restrictions
3.4. Enhancing Cell Bank Services: Opportunities for Improvement and Addressing Limitations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wrigley, J.D.; McCall, E.J.; Bannaghan, C.L.; Liggins, L.; Kendrick, C.; Griffen, A.; Hicks, R.; Fröderberg-Roth, L. Cell banking for pharmaceutical research. Drug Discov. Today 2014, 19, 1518–1529. [Google Scholar] [CrossRef] [PubMed]
- Hay, R.J. Human cells and cell cultures: Availability, authentication and future prospects. Hum. Cell 1996, 9, 143–152. [Google Scholar] [PubMed]
- Brown, K.S.; Rao, M.S.; Brown, H.L. The future state of newborn stem cell banking. J. Clin. Med. 2019, 8, 117. [Google Scholar] [CrossRef] [PubMed]
- Isasi, R.M.; Knoppers, B.M. Governing stem cell banks and registries: Emerging issues. Stem Cell Res. 2009, 3, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Geraghty, R.J.; Capes-Davis, A.; Davis, J.M.; Downward, J.; Freshney, R.I.; Knezevic, I.; Lovell-Badge, R.; Masters, J.R.; Meredith, J.; Cancer Research UK; et al. Guidelines for the use of cell lines in biomedical research. Br. J. Cancer 2014, 111, 1021–1046. [Google Scholar] [CrossRef] [PubMed]
- Ellul, B.; Galea, G. Ethical and regulatory aspects of cell and tissue banking. In Essentials of Tissue and Cells Banking; Galea, G., Turner, M., Zahra, S., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Barnes, C.; Aboy, M.R.; Minssen, T.; Allen, J.W.; Earp, B.D.; Savulescu, J.; Mann, S.P. Enabling demonstrated consent for biobanking with blockchain and generative AI. Am. J. Bioeth. 2024; Online ahead of print. [Google Scholar] [CrossRef]
- Ortiz-Lizcano, M.I.; Arias-Antunez, E.; Hernández Bravo, Á.; Caminero, M.B.; Rojo Guillen, T.; Nam Cha, S.H. Increasing the security and traceability of biological samples in biobanks by blockchain technology. Comput. Methods Programs Biomed. 2023, 231, 107379. [Google Scholar] [CrossRef]
- Tong, L.; Corrigan, A.; Kumar, N.R.; Hallbrook, K.; Orme, J.; Wang, Y.; Zhou, H. An automated cell line authentication method for AstraZeneca global cell bank using deep neural networks on brightfield images. Sci. Rep. 2022, 12, 7894. [Google Scholar] [CrossRef]
- Hashizume, T.; Ozawa, Y.; Ying, B.W. Employing active learning in the optimization of culture medium for mammalian cells. NPJ Syst. Biol. Appl. 2023, 9, 20. [Google Scholar] [CrossRef]
- Hashizume, T.; Ying, B.W. Challenges in developing cell culture media using machine learning. Biotechnol. Adv. 2024, 70, 108293. [Google Scholar] [CrossRef]
- Goldrick, S.; Alosert, H.; Lovelady, C.; Bond, N.J.; Senussi, T.; Hatton, D.; Klein, J.; Cheeks, M.; Turner, R.; Savery, J.; et al. Next-generation cell line selection methodology leveraging data lakes, natural language generation and advanced data analytics. Front. Bioeng. Biotechnol. 2023, 11, 1160223. [Google Scholar] [CrossRef]
- Almeida, J.L.; Korch, C.T. Authentication of Human and Mouse Cell Lines by Short Tandem Repeat (STR) DNA Genotype Analysis. In Assay Guidance Manual; Markossian, S., Grossman, A., Arkin, M., Auld, D., Austin, C., Baell, J., Brimacombe, K., Chung, T.D.Y., Coussens, N.P., Dahlin, J.L., et al., Eds.; Eli Lilly & Company: Indianapolis, IN, USA; The National Center for Advancing Translational Sciences: Bethesda, MD, USA, 2023. [Google Scholar] [PubMed]
- Weiskirchen, S.; Schröder, S.K.; Buhl, E.M.; Weiskirchen, R. A beginner’s guide to cell culture: Practical advice for preventing needless problems. Cells 2023, 12, 682. [Google Scholar] [CrossRef] [PubMed]
- Robin, T.; Capes-Davis, A.; Bairoch, A. CLASTR: The Cellosaurus STR similarity search tool—A precious help for cell line authentication. Int. J. Cancer 2020, 146, 1299–1306. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.L.; Cole, K.D.; Plant, A.L. Standards for cell line authentication and beyond. PLoS Biol. 2016, 14, e1002476. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.L.; Dakic, A.; Kindig, K.; Kone, M.; Letham, D.L.D.; Langdon, S.; Peat, R.; Holding-Pillai, J.; Hall, E.M.; Ladd, M.; et al. Interlaboratory study to validate a STR profiling method for intraspecies identification of mouse cell lines. PLoS ONE 2019, 14, e0218412. [Google Scholar] [CrossRef] [PubMed]
- ANSI/ATCC ASN-0002-2022; Authentication of Human Cell Lines: Standardization of Short Tandem Repeat (STR) Profiling—Revised 2022. American National Standards Institute: Washington, DC, USA, 2022. Available online: https://webstore.ansi.org/standards/atcc/ansiatccasn00022022 (accessed on 9 November 2024).
- Guo, B.; Han, X.; Wu, Z.; Da, W.; Zhu, H. Spectral karyotyping: An unique technique for the detection of complex genomic rearrangements in leukemia. Transl. Pediatr. 2014, 3, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Imataka, G.; Arisaka, O. Chromosome analysis using spectral karyotyping (SKY). Cell Biochem. Biophys. 2012, 62, 13–17. [Google Scholar] [CrossRef]
- Huang, X.; Yu, M.; Wang, B.; Zhang, Y.; Xue, J.; Fu, Y.; Wang, X. Prevention, diagnosis and eradication of mycoplasma contamination in cell culture. J. Biol. Methods 2023, 10, e99010005. [Google Scholar] [CrossRef]
- Corral-Vázquez, C.; Aguilar-Quesada, R.; Catalina, P.; Lucena-Aguilar, G.; Ligero, G.; Miranda, B.; Carrillo-Ávila, J.A. Cell lines authentication and mycoplasma detection as minimun quality control of cell lines in biobanking. Cell Tissue Bank. 2017, 18, 271–280. [Google Scholar] [CrossRef]
- Harasawa, R.; Mizusawa, H.; Nozawa, K.; Nakagawa, T.; Asada, K.; Kato, I. Detection and tentative identification of dominant mycoplasma species in cell cultures by restriction analysis of the 16S-23S rRNA intergenic spacer regions. Res. Microbiol. 1993, 144, 489–493. [Google Scholar] [CrossRef]
- van Kuppeveld, F.J.; van der Logt, J.T.; Angulo, A.F.; van Zoest, M.J.; Quint, W.G.; Niesters, H.G.; Galama, J.M.; Melchers, W.J. Genus- and species-specific identification of mycoplasmas by 16S rRNA amplification. Appl. Environ. Microbiol. 1992, 58, 2606–2615, Erratum in Appl. Environ. Microbiol. 1993, 59, 655. [Google Scholar] [CrossRef]
- Harasawa, R.; Mizusawa, H.; Fujii, M.; Yamamoto, J.; Mukai, H.; Uemori, T.; Asada, K.; Kato, I. Rapid detection and differentiation of the major mycoplasma contaminants in cell cultures using real-time PCR with SYBR Green I and melting curve analysis. Microbiol. Immunol. 2005, 49, 859–863. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Kang, S.H.; Bae, Y.J.; Hong, J.T.; Chung, Y.B.; Lee, C.K.; Song, S. PCR-based detection of Mycoplasma species. J. Microbiol. 2006, 44, 42–49. [Google Scholar] [PubMed]
- Chen, T.R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp. Cell Res. 1977, 104, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Calus, D.; Maes, D.; Vranckx, K.; Villareal, I.; Pasmans, F.; Haesebrouck, F. Validation of ATP luminometry for rapid and accurate titration of Mycoplasma hyopneumoniae in Friis medium and a comparison with the color changing units assay. J. Microbiol. Methods 2010, 83, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Falagan-Lotsch, P.; Lopes, T.S.; Ferreira, N.; Balthazar, N.; Monteiro, A.M.; Borojevic, R.; Granjeiro, J.M. Performance of PCR-based and bioluminescent assays for mycoplasma detection. J. Microbiol. Methods 2015, 118, 31–36. [Google Scholar] [CrossRef]
- Merten, O.W. Virus contaminations of cell cultures—A biotechnological view. Cytotechnology 2002, 39, 91–116. [Google Scholar] [CrossRef]
- Felten, M.; Adamek, M.; Gebert, M.; Rakers, S.; Steinhagen, D. The influence of viral infection on cell line characteristics: Lessons learned from working with new cell lines from common carp. J. Fish Dis. 2022, 45, 1767–1780. [Google Scholar] [CrossRef]
- Uphoff, C.C.; Pommerenke, C.; Denkmann, S.A.; Drexler, H.G. Screening human cell lines for viral infections applying RNA-Seq data analysis. PLoS ONE 2019, 14, e0210404. [Google Scholar] [CrossRef]
- Shioda, S.; Kasai, F.; Watanabe, K.; Kawakami, K.; Ohtani, A.; Iemura, M.; Ozawa, M.; Arakawa, A.; Hirayama, N.; Kawaguchi, E.; et al. Screening for 15 pathogenic viruses in human cell lines registered at the JCRB Cell Bank: Characterization of in vitro human cells by viral infection. R. Soc. Open Sci. 2018, 5, 172472. [Google Scholar] [CrossRef]
- Nowakowski, S.E.; Kressin, K.R.; Deick, S.D. A flexible system to capture sample vials in a storage box—The box vial scanner. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2009, 2009, 1718–1721. [Google Scholar] [CrossRef]
- Bauer, N.; Oberist, C.; Poth, M.; Stingele, J.; Popp, O.; Ausländer, S. Genomic barcoding for clonal diversity monitoring and control in cell-based complex antibody production. Sci. Rep. 2024, 14, 14587. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Qian, W.; Song, Z.; Li, Q.X.; Guo, S. Authentication, characterization and contamination detection of cell lines, xenografts and organoids by barcode deep NGS sequencing. NAR Genom. Bioinform. 2020, 2, lqaa060. [Google Scholar] [CrossRef] [PubMed]
- Whaley, D.; Damyar, K.; Witek, R.P.; Mendoza, A.; Alexander, M.; Lakey, J.R. Cryopreservation: An overview of principles and cell-specific considerations. Cell Transplant. 2021, 30, 963689721999617. [Google Scholar] [CrossRef] [PubMed]
- Hubrecht, R.C.; Carter, E. The 3Rs and humane experimental technique: Implementing change. Animals 2019, 9, 754. [Google Scholar] [CrossRef]
- Friedman, S.L.; Weiskirchen, R. Working with immortalized hepatic stellate cell lines. Methods Mol. Biol. 2023, 2669, 129–162. [Google Scholar] [CrossRef]
- ISO 21973:2020; Biotechnology—General Requirements for Transportation of Cells for Therapeutic Use. ISO: Geneva, Switzerland, 2020. Available online: https://www.iso.org/standard/72326.html (accessed on 9 November 2024).
- ISO 9001:2015; Quality Management Systems—Requirements. ISO: Geneva, Switzerland, 2015. Available online: https://www.iso.org/standard/62085.html (accessed on 9 November 2024).
- ISO 13485:2016; Medical Devices—Quality Management Systems—Requirements for Regulatory Purposes. ISO: Geneva, Switzerland, 2016. Available online: https://www.iso.org/standard/59752.html (accessed on 9 November 2024).
- ISO/IEC 17025:2018-03; General Requirements for the Competence of Testing and Calibration Laboratories. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/publication/PUB100424.html (accessed on 9 November 2024).
- ISO 17034:2016; General Requirements for the Competence of Reference Material Producers. ISO: Geneva, Switzerland, 2016. Available online: https://www.iso.org/standard/29357.html (accessed on 9 November 2024).
- McCorma, S.J. An Industry Perspective: Development of an MTA Harmonious with a Microbial Research Commons. In Designing the Microbial Research Commons: Proceedings of an International Symposium; National Research Council (US) Board on Research Data and Information, Uhlir, P.F., Eds.; National Academies Press: Washington, DC, USA, 2011. Available online: https://www.ncbi.nlm.nih.gov/books/NBK92741/ (accessed on 9 November 2024).
- National Research Council (US) Committee on Responsibilities of Authorship in the Biological Sciences. Sharing Materials Integral to Published Findings. In Sharing Publication-Related Data and Materials: Responsibilities of Authorship in the Life Sciences; National Academies Press: Washington, DC, USA, 2003. Available online: https://www.ncbi.nlm.nih.gov/books/NBK97159/ (accessed on 9 November 2024).
- Kahl, L.; Molloy, J.; Patron, N.; Matthewman, C.; Haseloff, J.; Grewal, D.; Johnson, R.; Endy, D. Opening options for material transfer. Nat. Biotechnol. 2018, 36, 923–927. [Google Scholar] [CrossRef]
- Stacey, G.; Hunt, C.J. The UK Stem Cell Bank: A UK government-funded, international resource center for stem cell research. Regen. Med. 2006, 1, 139–142. [Google Scholar] [CrossRef]
- Kaminski, A.; Gut, G.; Uhrynowska-Tyszkiewicz, I.; Olender, E. Tissue banking training courses: Polish experience. Cell Tissue Bank. 2013, 14, 141–145. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Committee on Resource Sharing in Biomedical Research; Berns, K.I.; Bond, E.C.; Manning, F.J. (Eds.) The American Type Culture Collection. In Resource Sharing in Biomedical Research; National Academies Press: Washington, DC, USA, 1996. Available online: https://www.ncbi.nlm.nih.gov/books/NBK209072/ (accessed on 9 November 2024).
Cell Bank Name | Location | Type of Cell Lines Offered | MTA | Quality Assurance Standards | Collaboration Opportunities | Contact Information 1 |
---|---|---|---|---|---|---|
ATCC | USA | >4000 human and animal cell lines | required | ISO 9001 [41] 2 ISO 13485 [42] 3, ISO/IEC 17025 [43] 4 ISO 17034 [44] 5 | Partnership with several companies and institutes (InSphero, USP, Synthgo, Qiagen, One Codex, NIST, and LGC Standards) | 10801 University Boulevard, Manassas, Virginia 20110-2209, USA Phone: (703) 365-2700 http://www.atcc.org 8 Email via contact form |
ECACC | UK | >1100 cell lines from over 45 species | required | ISO 9001 [41] ISO/IEC 17025 [43] | Partnerships with many local distributors (Merck, KAC, and Cell Bank Australia) | UK Health Security Agency, Porton Down, Salisbury, SP4 0JG, UK Phone: +44 (0)1980 612512 https://www.culturecollections.org.uk/ 8 Email: [email protected] |
JCRB 6 | Japan | 1642 cell lines, of which 1111 are of human origin | request and agreement form required | Testing for bacteria, fungi, mycoplasma, and viruses; performing species identification, cell identification, and chromosome analysis | Teamed up with the National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN) | 7-6-8 Saito-Asagi, Ibaraki Osaka 567-0085, Japan https://cellbank.nibiohn.go.jp/english 8 Email: [email protected] |
DSMZ | Germany | >900 from various species | required | Testing for growth characteristics, bacteria (notably mycoplasms), fungi, yeast, and human pathogenic viruses; species identification and authentication | Member of several national and international organizations, networks, and projects | Inhoffenstraße 7B 38124 Braunschweig Science Campus Braunschweig-Süd, Germany Phone: +49 (0)531 2616-0 https://www.dsmz.de/ 8 Email via contact form |
KCLB | South Korea | 423 cell lines from various human tissues (gastric, colon, lung, cervical, ovarian, pancreas, breast, and other cancer cell lines) | required | Scientific quality control including STR profiles | Contract research organization service, hands-on workshops | Cancer Research Institute, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, Republic of Korea, 03080 Phone: +82-02-3668-7915 Email: [email protected] https://cellbank.snu.ac.kr/eng/ 8 |
BCRJ 7 | Brazil | Primary cells and immortalized cell lines | NN | Several services including cell storage, screening for mycoplasma, toxicity tests, cell immortalization, and cell authentication | Offers courses in basic and good practices in cell culture | Av. N. S. das Gracas, 50, Prédio 32, Parque Tecnológica de Xerém Duque de Caxias, Rio de Janeiro, Brazil Phone: +55 21 2145-3337 https://bcrj.org.br/ 8 [email protected] |
Cytion | Germany | >800 human and animal cells, stem cells, and primary cells | not required | ISO 9001 [41] Mycoplasma testing via colorimetric assay and a PCR-based method, STR analysis, and testing for viral/bacteria/fungi contaminants | Collaborations with industry and academic institutions | CLS Cell Lines Service GmbH Dr.-Eckener-Str. 8 69214 Eppelheim, Germany https://www.cytion.com/ 8 Phone: +49 (0)6221 405780 Email: [email protected] |
RCCC | Russia | ~150 mammalian cell lines (mouse, dog, rabbit, rat, monkey, pig, and hamster; human primary and cancer cells | NN | Cells are tested for contamination; STR profile | Associated with the Koltzov Institute of Development Biology which offers Doctoral/PhD programs | Koltzov Institute of Developmental Biology of the Russian Academy of Sciences 26 Vavilov Street, Moscow Phone: +7 (499) 135-33-22 Email via contact form |
RIKEN BRC | Japan | NN | required, some cells with restrictions | ISO 9001 [41] Provides validation reports on request; started with cell verification testing service | Provides annual technical training course for researchers, students, and technicians; offers cooperation (e.g., deposition of cells) | Riken BioResource Center 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan https://cell.brc.riken.jp/en/ 8 Email: [email protected] |
CellBank Australia | Australia | >1300; distributes cell lines from ECACC and JCRB. In addition, several mouse and human cancer cell lines are distributed | required | ISO 9001 [41] ISO/IEC 17025 [43] | Partnership with ECACC and JCRB | Children’s Medical Research Institute 214 Hawkesbury Road Westmead NSW 2145 Locked Bag 23 Phone: +612 8865 2850 https://www.cellbankaustralia.com/ 8 Email: [email protected] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weiskirchen, S.; Monteiro, A.M.; Borojevic, R.; Weiskirchen, R. Unlocking Potential: A Comprehensive Overview of Cell Culture Banks and Their Impact on Biomedical Research. Cells 2024, 13, 1861. https://doi.org/10.3390/cells13221861
Weiskirchen S, Monteiro AM, Borojevic R, Weiskirchen R. Unlocking Potential: A Comprehensive Overview of Cell Culture Banks and Their Impact on Biomedical Research. Cells. 2024; 13(22):1861. https://doi.org/10.3390/cells13221861
Chicago/Turabian StyleWeiskirchen, Sabine, Antonio M. Monteiro, Radovan Borojevic, and Ralf Weiskirchen. 2024. "Unlocking Potential: A Comprehensive Overview of Cell Culture Banks and Their Impact on Biomedical Research" Cells 13, no. 22: 1861. https://doi.org/10.3390/cells13221861
APA StyleWeiskirchen, S., Monteiro, A. M., Borojevic, R., & Weiskirchen, R. (2024). Unlocking Potential: A Comprehensive Overview of Cell Culture Banks and Their Impact on Biomedical Research. Cells, 13(22), 1861. https://doi.org/10.3390/cells13221861