High-Dose Chemotherapy and Autologous or Allogeneic Transplantation in Aggressive B-Cell Lymphoma—Is There Still a Role?
Abstract
:1. Introduction
2. Autologous Stem Cell Transplant
3. Autologous Stem Cell Transplant for Relapsed/Refractory DLBCL and in Consolidation Treatment of High-Risk Lymphoma—Before CAR-T
4. Autologous Transplant in Relapsed Systemic DLBCL in the CAR-T Era
5. Autologous Transplant in Primary CNS Lymphoma
6. Autologous Transplant in Mantle Cell Lymphoma
7. Autologous Transplant in Classical Hodgkin Lymphoma
8. Allogeneic Stem Cell Transplant
9. Conditioning for Allogeneic Stem Cell Transplant
10. Allogeneic Transplant in Classical Hodgkin Lymphoma
11. CAR-T Failures and Allogeneic Transplant
12. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- National Cancer Institute: Surveillance, Epidemiology, and End Results Program. Cancer Stat Facts: Non-Hodgkin Lymphoma. 2024. Available online: https://seer.cancer.gov/statfacts/html/nhl.html (accessed on 9 May 2024).
- Tilly, H.; Morschhauser, F.; Sehn, L.H.; Friedberg, J.W.; Trněný, M.; Sharman, J.P.; Herbaux, C.; Burke, J.M.; Matasar, M.; Rai, S.; et al. Polatuzumab Vedotin in Previously Untreated Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2022, 386, 351–363. [Google Scholar] [CrossRef] [PubMed]
- Coiffier, B.; Lepage, E.; Brière, J.; Herbrecht, R.; Tilly, H.; Bouabdallah, R.; Morel, P.; Van Den Neste, E.; Salles, G.; Gaulard, P.; et al. CHOP Chemotherapy plus Rituximab Compared with CHOP Alone in Elderly Patients with Diffuse Large-B-Cell Lymphoma. N. Engl. J. Med. 2002, 346, 235–242. [Google Scholar] [CrossRef] [PubMed]
- McFarland, W.; Granville, N.B.; Dameshek, W. Autologous Bone Marrow Infusion as an Adjunct in Therapy of Malignant Disease. Blood 1959, 14, 503–521. [Google Scholar] [CrossRef] [PubMed]
- Peter Clifford, R.A.C.; Duff, J. Nitrogen-mustard therapy combined with autologous marrow infusion. Lancet 1961, 277, 687–690. [Google Scholar] [CrossRef]
- Kurnick, N.B. Autologous and Isologous Bone Marrow Storage and Infusion in the Treatment of Myelo-Suppression. Transfusion 1962, 2, 178–187. [Google Scholar] [CrossRef]
- Frei, E.; Canellos, G.P. Dose: A critical factor in cancer chemotherapy. Am. J. Med. 1980, 69, 585–594. [Google Scholar] [CrossRef]
- Soiffer, R.J.; Freedman, A.S.; Neuberg, D.; Fisher, D.C.; Alyea, E.P.; Gribben, J.; Schlossman, R.L.; Bartlett-Pandite, L.; Kuhlman, C.; Murray, C.; et al. CD6+ T cell-depleted allogeneic bone marrow transplantation for non-Hodgkin’s lymphoma. Bone Marrow Transplant. 1998, 21, 1177–1181. [Google Scholar] [CrossRef]
- Bierman, P.J.; Sweetenham, J.W.; Loberiza, F.R.; Taghipour, G.; Lazarus, H.M.; Rizzo, J.D.; Schmitz, N.; van Besien, K.; Vose, J.M.; Horowitz, M.; et al. Syngeneic hematopoietic stem-cell transplantation for Non-Hodgkin’s lymphoma: A comparison with allogeneic and autologous transplantation—The lymphoma working committee of the International Bone Marrow Transplant Registry and the European Group for Blood and Marrow Transplantation. J. Clin. Oncol. 2003, 21, 3744–3753. [Google Scholar]
- Lazarevic, V.L.; Hägglund, H.; Remberger, M.; Wahlin, A.; Hallböök, H.; Juliusson, G.; Kimby, E.; Malm, C.; Omar, H.; Johansson, J.-E. Long-term survival following allogeneic or syngeneic stem cell transplant for follicular lymphoma in Sweden. Leuk. Lymphoma 2011, 52, 69–71. [Google Scholar] [CrossRef]
- Hoerr, A.L.; Gao, F.; Hidalgo, J.; Tiwari, D.; Blum, K.A.; Mathews, V.; Adkins, D.R.; Blum, W.; Devine, S.; Vij, R.; et al. Effects of Pretransplantation Treatment With Rituximab on Outcomes of Autologous Stem-Cell Transplantation for Non-Hodgkin’s Lymphoma. J. Clin. Oncol. 2004, 22, 4561–4566. [Google Scholar] [CrossRef]
- Belhadj, K.; Delfau-Larue, M.-H.; Elgnaoui, T.; Beaujean, F.; Beaumont, J.-L.; Pautas, C.; Gaillard, I.; Kirova, Y.; Allain, A.; Gaulard, P.; et al. Efficiency of in vivo purging with rituximab prior to autologous peripheral blood progenitor cell transplantation in B-cellnon-Hodgkin’s lymphoma: A single institution study. Ann. Oncol. 2004, 15, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Melillo, L.; Cascavilla, N.; Lerma, E.; Corsetti, M.T.; Carella, A.M. The Significance of Minimal Residual Disease in Stem Cell Grafts and the Role of Purging: Is It Better to Purge in vivo or in vitro? Acta Haematol. 2005, 114, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, E.; Freedman, A. B-cell purging in autologous stem-cell transplantation for non-Hodgkin lymphoma. Lancet Oncol. 2004, 5, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Philip, T.; Guglielmi, C.; Hagenbeek, A.; Somers, R.; Van Der Lelie, H.; Bron, D.; Sonneveld, P.; Gisselbrecht, C.; Cahn, J.-Y.; Harousseau, J.-L.; et al. Autologous bone marrow transplantation as compared with salvage chemotherapy in relapses of chemotherapy-sensitive non-Hodgkin’s lymphoma. N. Engl. J. Med. 1995, 333, 1540–1545. [Google Scholar] [CrossRef]
- Verdonck, L.F.; van Putten, W.L.J.; Hagenbeek, A.; Schouten, H.C.; Sonneveld, P.; van Imhoff, G.W.; Kluin-Nelemans, H.C.; Raemaekers, J.M.M.; van Oers, R.H.J.; Haak, H.L.; et al. Comparison of CHOP Chemotherapy with Autologous Bone Marrow Transplantation for Slowly Responding Patients with Aggressive Non-Hodgkin’ Lymphoma. N. Engl. J. Med. 1995, 332, 1045–1051. [Google Scholar] [CrossRef]
- Gisselbrecht, C.; Glass, B.; Mounier, N.; Gill, D.S.; Linch, D.C.; Trneny, M.; Bosly, A.; Ketterer, N.; Shpilberg, O.; Hagberg, H.; et al. Salvage Regimens With Autologous Transplantation for Relapsed Large B-Cell Lymphoma in the Rituximab Era. J. Clin. Oncol. 2010, 28, 4184–4190. [Google Scholar] [CrossRef]
- Gisselbrecht, C.; Schmitz, N.; Mounier, N.; Gill, D.S.; Linch, D.C.; Trneny, M.; Bosly, A.; Milpied, N.J.; Radford, J.; Ketterer, N.; et al. Rituximab Maintenance Therapy After Autologous Stem-Cell Transplantation in Patients With Relapsed CD20+ Diffuse Large B-Cell Lymphoma: Final Analysis of the Collaborative Trial in Relapsed Aggressive Lymphoma. J. Clin. Oncol. 2012, 30, 4462–4469. [Google Scholar] [CrossRef]
- Gaspard, M.H.; Maraninchi, D.; Stoppa, A.M.; Gastaut, J.A.; Michel, G.; Tubiana, N.; Blaise, D.; Novakovitch, G.; Rossi, J.F.; Weiller, P.J.; et al. Intensive chemotherapy with high doses of BCNU, etoposide, cytosine arabinoside, and melphalan (BEAM) followed by autologous bone marrow transplantation: Toxicity and antitumor activity in 26 patients with poor-risk malignancies. Cancer Chemother. Pharmacol. 1988, 22, 256–262. [Google Scholar] [CrossRef]
- Wadhwa, P.D.; Fu, P.; Koc, O.N.; Cooper, B.W.; Fox, R.M.; Creger, R.J.; Bajor, D.L.; Bedi, T.; Laughlin, M.J.; Payne, J.; et al. High-dose carmustine, etoposide, and cisplatin for autologous stem cell transplantation with or without involved-field radiation for relapsed/refractory lymphoma: An effective regimen with low morbidity and mortality. Biol. Blood Marrow Transplant. 2005, 11, 13–22. [Google Scholar] [CrossRef]
- Chen, Y.-B.; Lane, A.A.; Logan, B.R.; Zhu, X.; Akpek, G.; Aljurf, M.D.; Artz, A.S.; Bredeson, C.N.; Cooke, K.R.; Ho, V.T.; et al. Impact of Conditioning Regimen on Outcomes for Patients with Lymphoma Undergoing High-Dose Therapy with Autologous Hematopoietic Cell Transplantation. Biol. Blood Marrow Transplant. 2015, 21, 1046–1053. [Google Scholar] [CrossRef]
- Hosing, C.; Munsell, M.; Yazji, S.; Andersson, B.; Couriel, D.; de Lima, M.; Donato, M.; Gajewski, J.; Giralt, S.; Körbling, M.; et al. Risk of therapy-related myelodysplastic syndrome/acute leukemia following high-dose therapy and autologous bone marrow transplantation for non-Hodgkin’s lymphoma. Ann. Oncol. 2002, 13, 450–459. [Google Scholar] [CrossRef] [PubMed]
- Milligan, D.W.; de Elvira, M.C.R.; Kolb, H.; Goldstone, A.H.; Meloni, G.; Rohatiner, A.Z.; Colombat, P.; Schmitz, N. Secondary leukaemia and myelodysplasia after autografting for lymphoma: Results from the EBMT. Br. J. Haematol. 1999, 106, 1020–1026. [Google Scholar] [CrossRef] [PubMed]
- Ulrickson, M.; Aldridge, J.; Kim, H.T.; Hochberg, E.P.; Hammerman, P.; Dube, C.; Attar, E.; Ballen, K.K.; Dey, B.R.; McAfee, S.L.; et al. Busulfan and Cyclophosphamide (Bu/Cy) as a Preparative Regimen for Autologous Stem Cell Transplantation in Patients with Non-Hodgkin Lymphoma: A Single-Institution Experience. Biol. Blood Marrow Transplant. 2009, 15, 1447–1454. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.G.; Sohn, S.K.; Chae, Y.S.; Yang, D.H.; Lee, J.-J.; Kim, H.-J.; Shin, H.J.; Jung, J.S.; Kim, W.S.; Kim, D.H.; et al. Multicenter study of intravenous busulfan, cyclophosphamide, and etoposide (i.v. Bu/Cy/E) as conditioning regimen for autologous stem cell transplantation in patients with non-Hodgkin’s lymphoma. Bone Marrow Transplant. 2007, 40, 919–924. [Google Scholar] [CrossRef]
- Kebriaei, P.; Madden, T.; Kazerooni, R.; Wang, X.; Thall, P.F.; Ledesma, C.; Nieto, Y.; Shpall, E.J.; Hosing, C.; Qazilbash, M.; et al. Andersson. Intravenous Busulfan Plus Melphalan Is a Highly Effective, Well-Tolerated Preparative Regimen for Autologous Stem Cell Transplantation in Patients with Advanced Lymphoid Malignancies. Biol. Blood Marrow Transplant. 2011, 17, 412–420. [Google Scholar] [CrossRef]
- Schuler, U.; Ehrsam, M.; Schneider, A.; Schmidt, H.; Deeg, J.; Ehninger, G. Pharmacokinetics of intravenous busulfan and evaluation of the bioavailability of the oral formulation in conditioning for haematopoietic stem cell transplantation. Bone Marrow Transplant. 1998, 22, 241–244. [Google Scholar] [CrossRef]
- Shin, H.-J.; Lee, W.-S.; Lee, H.-S.; Kim, H.; Lee, G.-W.; Song, M.-K.; Kim, J.S.; Yhim, H.-Y.; Chung, J.S. Busulfan-containing conditioning regimens are optimal preparative regimens for autologous stem cell transplant in patients with diffuse large B-cell lymphoma. Leuk. Lymphoma 2014, 55, 2490–2496. [Google Scholar] [CrossRef]
- Shi, Y.; Zhou, S.; Yang, J.; Han, X.; He, X.; Zhang, C.; Gui, L.; Qin, Y.; Yang, S.; Zhao, L.; et al. Comparison of CBV, BEAM and BEAC high-dose chemotherapy followed by autologous hematopoietic stem cell transplantation in non-Hodgkin lymphoma: Efficacy and toxicity. Asia-Pac. J. Clin. Oncol. 2017, 13, e423–e429. [Google Scholar] [CrossRef]
- Haioun, C.; Lepage, E.; Gisselbrecht, C.; Bastion, Y.; Coiffier, B.; Brice, P.; Bosly, A.; Dupriez, B.; Nouvel, C.; Tilly, H.; et al. Benefit of autologous bone marrow transplantation over sequential chemotherapy in poor-risk aggressive non-Hodgkin’s lymphoma: Updated results of the prospective study LNH87-2. Groupe d’Etude des Lymphomes de l’Adulte. JCO 1997, 15, 1131–1137. [Google Scholar] [CrossRef]
- Nademanee, A.; Molina, A.; O’Donnell, M.R.; Dagis, A.; Snyder, D.S.; Parker, P.; Stein, A.; Smith, E.; Plana, I.; Kashyap, A.; et al. Results of High-Dose Therapy and Autologous Bone Marrow/Stem Cell Transplantation During Remission in Poor-Risk Intermediate- and High-Grade Lymphoma: International Index High and High-Intermediate Risk Group. Blood 1997, 90, 3844–3852. [Google Scholar] [CrossRef]
- Freedman, A.S.; Takvorian, T.; Neuberg, D.; Mauch, P.; Rabinowe, S.N.; Anderson, K.C.; Soiffer, R.J.; Spector, N.; Grossbard, M.; Robertson, M.J. Autologous bone marrow transplantation in poor-prognosis intermediate-grade and high-grade B-cell non-Hodgkin’s lymphoma in first remission: A pilot study. J. Clin. Oncol. 2016, 11, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Gianni, A.M.; Bregni, M.; Siena, S.; Brambilla, C.; Di Nicola, M.; Lombardi, F.; Gandola, L.; Tarella, C.; Pileri, A.; Ravagnani, F.; et al. High-Dose Chemotherapy and Autologous Bone Marrow Transplantation Compared with MACOP-B in Aggressive B-Cell Lymphoma. N. Engl. J. Med. 1997, 336, 1290–1298. [Google Scholar] [CrossRef] [PubMed]
- Milpied, N.; Deconinck, E.; Gaillard, F.; Delwail, V.; Foussard, C.; Berthou, C.; Gressin, R.; Lucas, V.; Colombat, P.; Harousseau, J.-L. Initial Treatment of Aggressive Lymphoma with High-Dose Chemotherapy and Autologous Stem-Cell Support. N. Engl. J. Med. 2004, 350, 1287–1295. [Google Scholar] [CrossRef] [PubMed]
- Kluin-Nelemans, H.C.; Zagonel, V.; Anastasopoulou, A.; Bron, D.; Roozendaal, K.J.; Noordijk, E.M.; Musson, H.; Teodorovic, I.; Maes, B.; Carbone, A.; et al. Standard Chemotherapy With or Without High-Dose Chemotherapy for Aggressive Non-Hodgkin’s Lymphoma: Randomized Phase III EORTC Study. JNCI J. Natl. Cancer Inst. 2001, 93, 22–30. [Google Scholar] [CrossRef]
- Betticher, D.C.; Radford, J.A.; Kaufmann, M.; Dyer, M.J.S.; Kaiser, U.; Aulitzky, W.E.; Beck, J.; von Rohr, A.; Kovascovics, T.; Cogliatti, S.B.; et al. Sequential high dose chemotherapy as initial treatment for aggressive sub-types of Non-Hodgkin Lymphoma: Results of the international randomized phase III trial (MISTRAL). Ann. Oncol. 2006, 17, 1546–1552. [Google Scholar] [CrossRef]
- Martelli, M.; Gherlinzoni, F.; De Renzo, A.; Zinzani, P.L.; De Vivo, A.; Cantonetti, M.; Falini, B.; Storti, S.; Meloni, G.; Rizzo, M.; et al. Early Autologous Stem-Cell Transplantation Versus Conventional Chemotherapy as Front-Line Therapy in High-Risk, Aggressive Non-Hodgkin’s Lymphoma: An Italian Multicenter Randomized Trial. J. Clin. Oncol. 2016, 21, 1255–1262. [Google Scholar] [CrossRef]
- Gisselbrecht, C.; Lepage, E.; Molina, T.; Quesnel, B.; Fillet, G.; Lederlin, P.; Coiffier, B.; Tilly, H.; Gabarre, J.; Guilmin, F.; et al. Shortened First-Line High-Dose Chemotherapy for Patients With Poor-Prognosis Aggressive Lymphoma. J. Clin. Oncol. 2016, 20, 2472–2479. [Google Scholar] [CrossRef]
- Santini, G.; Salvagno, L.; Leoni, P.; Chisesi, T.; De Souza, C.; Sertoli, M.R.; Rubagotti, A.; Congiu, A.M.; Centurioni, R.; Olivieri, A.; et al. VACOP-B versus VACOP-B plus autologous bone marrow transplantation for advanced diffuse non-Hodgkin’s lymphoma: Results of a prospective randomized trial by the non-Hodgkin’s Lymphoma Cooperative Study Group. J. Clin. Oncol. 2016, 16, 2796–2802. [Google Scholar] [CrossRef]
- Stiff, P.J.; Unger, J.M.; Cook, J.R.; Constine, L.S.; Couban, S.; Stewart, D.A.; Shea, T.C.; Porcu, P.; Winter, J.N.; Kahl, B.S.; et al. Autologous Transplantation as Consolidation for Aggressive Non-Hodgkin’s Lymphoma. N. Engl. J. Med. 2013, 369, 1681–1690. [Google Scholar] [CrossRef]
- Locke, F.L.; Miklos, D.B.; Jacobson, C.A.; Perales, M.-A.; Kersten, M.-J.; Oluwole, O.O.; Ghobadi, A.; Rapoport, A.P.; McGuirk, J.; Pagel, J.M.; et al. Axicabtagene Ciloleucel as Second-Line Therapy for Large B-Cell Lymphoma. N. Engl. J. Med. 2022, 386, 640–654. [Google Scholar] [CrossRef]
- Kamdar, M.; Solomon, S.R.; Arnason, J.; Johnston, P.B.; Glass, B.; Bachanova, V.; Ibrahimi, S.; Mielke, S.; Mutsaers, P.; Hernandez-Ilizaliturri, F.; et al. Lisocabtagene maraleucel versus standard of care with salvage chemotherapy followed by autologous stem cell transplantation as second-line treatment in patients with relapsed or refractory large B-cell lymphoma (TRANSFORM): Results from an interim analysis of an open-label, randomised, phase 3 trial. Lancet 2022, 399, 2294–2308. [Google Scholar] [PubMed]
- Abramson, J.S.; Solomon, S.R.; Arnason, J.; Johnston, P.B.; Glass, B.; Bachanova, V.; Ibrahimi, S.; Mielke, S.; Mutsaers, P.; Hernandez-Ilizaliturri, F.; et al. Lisocabtagene maraleucel as second-line therapy for large B-cell lymphoma: Primary analysis of the phase 3 TRANSFORM study. Blood 2023, 141, 1675–1684. [Google Scholar] [CrossRef] [PubMed]
- Bishop, M.R.; Dickinson, M.; Purtill, D.; Barba, P.; Santoro, A.; Hamad, N.; Kato, K.; Sureda, A.; Greil, R.; Thieblemont, C.; et al. Second-Line Tisagenlecleucel or Standard Care in Aggressive B-Cell Lymphoma. N. Engl. J. Med. 2022, 386, 629–639. [Google Scholar] [CrossRef]
- Neelapu, S.S.; Dickinson, M.; Munoz, J.; Ulrickson, M.L.; Thieblemont, C.; Oluwole, O.O.; Herrera, A.F.; Ujjani, C.S.; Lin, Y.; Riedell, P.A.; et al. Axicabtagene ciloleucel as first-line therapy in high-risk large B-cell lymphoma: The phase 2 ZUMA-12 trial. Nat. Med. 2022, 28, 735–742. [Google Scholar] [CrossRef]
- Cordeiro, A.; Bezerra, E.D.; Hirayama, A.V.; Hill, J.A.; Wu, Q.V.; Voutsinas, J.; Sorror, M.L.; Turtle, C.J.; Maloney, D.G.; Bar, M. Late Events after Treatment with CD19-Targeted Chimeric Antigen Receptor Modified T Cells. Biol. Blood Marrow Transplant. 2020, 26. [Google Scholar] [CrossRef]
- Elsallab, M.; Ellithi, M.; Lunning, M.A.; D’angelo, C.; Ma, J.; Perales, M.-A.; Frigault, M.J.; Maus, M.V. Second primary malignancies after commercial CAR T-cell therapy: Analysis of the FDA Adverse Events Reporting System. Blood 2024, 143, 2099–2105. [Google Scholar] [CrossRef]
- Hill, J.A.; Li, D.; Hay, K.A.; Green, M.L.; Cherian, S.; Chen, X.; Riddell, S.R.; Maloney, D.G.; Boeckh, M.; Turtle, C.J. Infectious complications of CD19-targeted chimeric antigen receptor–modified T-cell immunotherapy. Blood 2018, 131, 121–130. [Google Scholar] [CrossRef]
- Metayer, C.; Curtis, R.E.; Vose, J.; Sobocinski, K.A.; Horowitz, M.M.; Bhatia, S.; Fay, J.W.; Freytes, C.O.; Goldstein, S.C.; Herzig, R.H.; et al. Myelodysplastic syndrome and acute myeloid leukemia after autotransplantation for lymphoma: A multicenter case-control study. Blood 2003, 101, 2015–2023. [Google Scholar] [CrossRef]
- Krishnan, A.; Bhatia, S.; Slovak, M.L.; Arber, D.A.; Niland, J.C.; Nademanee, A.; Fung, H.; Bhatia, R.; Kashyap, A.; Molina, A.; et al. Predictors of therapy-related leukemia and myelodysplasia following autologous transplantation for lymphoma: An assessment of risk factors. Blood 2000, 95, 1588–1593. [Google Scholar] [CrossRef]
- Tarella, C.; Passera, R.; Magni, M.; Benedetti, F.; Rossi, A.; Gueli, A.; Patti, C.; Parvis, G.; Ciceri, F.; Gallamini, A.; et al. Risk Factors for the Development of Secondary Malignancy After High-Dose Chemotherapy and Autograft, With or Without Rituximab: A 20-Year Retrospective Follow-Up Study in Patients With Lymphoma. J. Clin. Oncol. 2010, 29. [Google Scholar] [CrossRef]
- Locke, F.L.; Ghobadi, A.; Jacobson, C.A.; Miklos, D.B.; Lekakis, L.J.; Oluwole, O.O.; Lin, Y.; Braunschweig, I.; Hill, B.T.; Timmerman, J.M.; et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): A single-arm, multicentre, phase 1–2 trial. Lancet Oncol. 2019, 20, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Nahas, G.R.; Komanduri, K.V.; Pereira, D.; Goodman, M.; Jimenez, A.M.; Beitinjaneh, A.; Wang, T.P.; Lekakis, L.J. Incidence and risk factors associated with a syndrome of persistent cytopenias after CAR-T cell therapy (PCTT). Leuk. Lymphoma 2020, 61, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Strati, P.; Varma, A.; Adkins, S.; Nastoupil, L.J.; Westin, J.; Hagemeister, F.B.; Fowler, N.H.; Lee, H.J.; Fayad, L.E.; Samaniego, F.; et al. Hematopoietic recovery and immune reconstitution after axicabtagene ciloleucel in patients with large B-cell lymphoma. Haematologica 2021, 106, 2667. [Google Scholar] [CrossRef] [PubMed]
- Bethge, W.A.; Martus, P.; Schmitt, M.; Holtick, U.; Subklewe, M.; von Tresckow, B.; Ayuk, F.; Wagner-Drouet, E.M.; Wulf, G.G.; Marks, R.; et al. GLA/DRST real-world outcome analysis of CAR T-cell therapies for large B-cell lymphoma in Germany. Blood 2022, 140, 349–358. [Google Scholar] [CrossRef]
- Griffin, G.K.; Weirather, J.L.; Roemer, M.G.M.; Lipschitz, M.; Kelley, A.; Chen, P.-H.; Gusenleitner, D.; Jeter, E.; Pak, C.; Gjini, E.; et al. Spatial signatures identify immune escape via PD-1 as a defining feature of T-cell/histiocyte-rich large B-cell lymphoma. Blood 2021, 137, 1353–1364. [Google Scholar] [CrossRef]
- Trujillo, J.A.; Godfrey, J.; Hu, Y.; Huang, J.; Smith, S.M.; Frigault, M.J.; DeFilipp, Z.; Appelbaum, D.; Pu, Y.; Feinberg, N.; et al. Primary resistance to CD19-directed chimeric antigen receptor T-cell therapy in T-cell/histiocyte-rich large B-cell lymphoma. Blood 2021, 137, 3454–3459. [Google Scholar] [CrossRef]
- Ferreri, A.J.M.; Cwynarski, K.; Pulczynski, E.; Fox, C.P.; Schorb, E.; Celico, C.; Falautano, M.; Nonis, A.; La Rosée, P.; Binder, M.; et al. Long-term efficacy, safety and neurotolerability of MATRix regimen followed by autologous transplant in primary CNS lymphoma: 7-year results of the IELSG32 randomized trial-PubMed. Leukemia 2022, 36, 1870–1878. [Google Scholar] [CrossRef]
- Houillier, C.; Dureau, S.; Taillandier, L.; Houot, R.; Chinot, O.; Moluçon-Chabrot, C.; Schmitt, A.; Gressin, R.; Choquet, S.; Damaj, G.; et al. Radiotherapy or Autologous Stem-Cell Transplantation for Primary CNS Lymphoma in Patients Age 60 Years and Younger: Long-Term Results of the Randomized Phase II PRECIS Study. J. Clin. Oncol. 2022, 40, 3692–3698. [Google Scholar] [CrossRef]
- Lesueur, P.; Damaj, G.; Hoang-Xuan, K.; Roland, V.; Schmitt, A.; Chinot, O.; Fabbro, M.; Agapé, P.; Moluçon-Chabrot, C.; Chebrek, S.; et al. Reduced-dose WBRT as consolidation treatment for patients with primary CNS lymphoma: An LOC network study. Blood Adv. 2022, 6, 4807–4815. [Google Scholar] [CrossRef]
- Morris, P.G.; Correa, D.D.; Yahalom, J.; Raizer, J.J.; Schiff, D.; Grant, B.; Grimm, S.; Lai, R.K.; Reiner, A.S.; Panageas, K.; et al. Rituximab, Methotrexate, Procarbazine, and Vincristine Followed by Consolidation Reduced-Dose Whole-Brain Radiotherapy and Cytarabine in Newly Diagnosed Primary CNS Lymphoma: Final Results and Long-Term Outcome. J. Clin. Oncol. 2013, 31, 3971–3979. [Google Scholar] [CrossRef]
- Scordo, M.; Wang, T.P.; Ahn, K.W.; Chen, Y.; Ahmed, S.; Awan, F.T.; Beitinjaneh, A.; Chen, A.; Chow, V.A.; Dholaria, B.; et al. Outcomes Associated With Thiotepa-Based Conditioning in Patients With Primary Central Nervous System Lymphoma. JAMA Oncol. 2021, 7, 993–1003. [Google Scholar] [CrossRef] [PubMed]
- Zoellner, A.-K.; Unterhalt, M.; Stilgenbauer, S.; Hübel, K.; Thieblemont, C.; Metzner, B.; Topp, M.; Truemper, L.; Schmidt, C.; Bouabdallah, K.; et al. Long-term survival of patients with mantle cell lymphoma after autologous haematopoietic stem-cell transplantation in first remission: A post-hoc analysis of an open-label, multicentre, randomised, phase 3 trial. Lancet Haematol. 2021, 8, e648–e657. [Google Scholar] [CrossRef] [PubMed]
- Abrahamsson, A.; Albertsson-Lindblad, A.; Brown, P.N.; Baumgartner-Wennerholm, S.; Pedersen, L.M.; D’amore, F.; Nilsson-Ehle, H.; Jensen, P.; Pedersen, M.; Geisler, C.H.; et al. Real world data on primary treatment for mantle cell lymphoma: A Nordic Lymphoma Group observational study. Blood 2014, 124, 1288–1295. [Google Scholar] [CrossRef] [PubMed]
- Le Gouill, S.; Thieblemont, C.; Oberic, L.; Moreau, A.; Bouabdallah, K.; Dartigeas, C.; Damaj, G.; Gastinne, T.; Ribrag, V.; Feugier, P.; et al. Rituximab after Autologous Stem-Cell Transplantation in Mantle-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 1250–1260. [Google Scholar] [CrossRef]
- Dreyling, M.; Doorduijn, J.; Giné, E.; Jerkeman, M.; Walewski, J.; Hutchings, M.; Mey, U.; Riise, J.; Trneny, M.; Vergote, V.; et al. Ibrutinib combined with immunochemotherapy with or without autologous stem-cell transplantation versus immunochemotherapy and autologous stem-cell transplantation in previously untreated patients with mantle cell lymphoma (TRIANGLE): A three-arm, randomised, open-label, phase 3 superiority trial of the European Mantle Cell Lymphoma Network. Lancet 2024, 403, 2293–2306. [Google Scholar]
- BP, N.S.; Sextro, M.; Sieber, M.; Carella, A.M.; Haenel, M.; Boissevain, F.; Zschaber, R.; Müller, P.; Kirchner, H.; Lohri, A.; et al. Aggressive conventional chemotherapy compared with high-dose chemotherapy with autologous haemopoietic stem-cell transplantation for relapsed chemosensitive Hodgkin’s disease: A randomised trial. Lancet 2002, 359, 2065–2071. [Google Scholar]
- Fermé, C.; Mounier, N.; Diviné, M.; Brice, P.; Stamatoullas, A.; Reman, O.; Voillat, L.; Jaubert, J.; Lederlin, P.; Colin, P.; et al. Intensive Salvage Therapy With High-Dose Chemotherapy for Patients With Advanced Hodgkin’s Disease in Relapse or Failure After Initial Chemotherapy: Results of the Groupe d’Études des Lymphomes de l’Adulte H89 Trial. J. Clin. Oncol. 2016, 20, 467–475. [Google Scholar]
- Josting, A.; Reiser, M.; Rueffer, U.; Salzberger, B.; Diehl, V.; Engert, A. Treatment of Primary Progressive Hodgkin’s and Aggressive Non-Hodgkin’s Lymphoma: Is There a Chance for Cure? J. Clin. Oncol. 2000, 18, 332. [Google Scholar] [CrossRef]
- Fenske, T.S.; Hamadani, M.; Cohen, J.B.; Costa, L.J.; Kahl, B.S.; Evens, A.M.; Hamlin, P.A.; Lazarus, H.M.; Petersdorf, E.; Bredeson, C. Allogeneic Hematopoietic Cell Transplantation as Curative Therapy for Patients with Non-Hodgkin Lymphoma: Increasingly Successful Application to Older Patients. Biol. Blood Marrow Transplant. 2016, 22, 1543–1551. [Google Scholar] [CrossRef]
- Bishop, M.R.; Dean, R.M.; Steinberg, S.M.; Odom, J.; Pollack, S.M.; Pavletic, S.Z.; Sportes, C.; Gress, R.E.; Fowler, D.H. Correlation of pretransplant and early post-transplant response assessment with outcomes after reduced-intensity allogeneic hematopoietic stem cell transplantation for non-Hodgkin’s lymphoma. Cancer 2010, 116, 852–862. [Google Scholar] [CrossRef]
- Corradini, P.; Dodero, A.; Farina, L.; Fanin, R.; Patriarca, F.; Miceli, R.; Matteucci, P.; Bregni, M.; Scimè, R.; Narni, F.; et al. Allogeneic stem cell transplantation following reduced-intensity conditioning can induce durable clinical and molecular remissions in relapsed lymphomas: Pre-transplant disease status and histotype heavily influence outcome. Leukemia 2007, 21, 2316–2323. [Google Scholar] [CrossRef] [PubMed]
- Dean, R.M.; Fowler, D.H.; Wilson, W.H.; Odom, J.; Steinberg, S.M.; Chow, C.; Kasten-Sportes, C.; Gress, R.E.; Bishop, M.R. Efficacy of reduced-intensity allogeneic stem cell transplantation in chemotherapy-refractory non-hodgkin lymphoma. Biol. Blood Marrow Transplant. 2005, 11, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Dhedin, N.; Giraudier, S.; Gaulard, P.; Esperou, H.; Ifrah, N.; Michallet, M.; Milpied, N.; Rio, B.; Cahn, J.Y.; Molina, L.; et al. Allogeneic bone marrow transplantation in aggressive non-Hodgkin’s lymphoma (excluding Burkitt and lymphoblastic lymphoma): A series of 73 patients from the SFGM database. Societ Francaise de Greffe de Moelle. Br. J. Haematol. 1999, 107, 154–161. [Google Scholar] [CrossRef]
- Doocey, R.T.; Toze, C.L.; Connors, J.M.; Nevill, T.J.; Gascoyne, R.D.; Barnett, M.J.; Forrest, D.L.; Hogge, D.E.; Lavoie, J.C.; Nantel, S.H.; et al. Allogeneic haematopoietic stem-cell transplantation for relapsed and refractory aggressive histology non-Hodgkin lymphoma. Br. J. Haematol. 2005, 131, 223–230. [Google Scholar] [CrossRef]
- Thomson, K.J.; Morris, E.C.; Bloor, A.; Cook, G.; Milligan, D.; Parker, A.; Clark, F.; Yung, L.; Linch, D.C.; Chakraverty, R.; et al. Favorable long-term survival after reduced-intensity allogeneic transplantation for multiple-relapse aggressive non-Hodgkin’s lymphoma. J. Clin. Oncol. 2009, 27, 426–432. [Google Scholar] [CrossRef]
- Sirvent, A.; Dhedin, N.; Michallet, M.; Mounier, N.; Faucher, C.; Yakoub-Agha, I.; Mohty, M.; Robin, M.; Tabrizi, R.; Clement, L.; et al. Low non-relapse mortality and prolonged long-term survival after reduced-intensity allogeneic stem cell transplantation for relapsed or refractory diffuse large B-cell lymphoma: Report of the Societe Francaise de Greffe de Moelle et de Therapie Cellulaire. Biol. Blood Marrow Transplant. 2010, 16, 78–85. [Google Scholar] [CrossRef]
- Lazarus, H.M.; Zhang, M.-J.; Carreras, J.; Hayes-Lattin, B.M.; Ataergin, A.S.; Bitran, J.D.; Bolwell, B.J.; Freytes, C.O.; Gale, R.P.; Goldstein, S.C.; et al. A Comparison of HLA-Identical Sibling Allogeneic versus Autologous Transplantation for Diffuse Large BCell Lymphoma: A Report from the CIBMTR. Biol. Blood Marrow Transplant. 2010, 16, 35–45. [Google Scholar] [CrossRef]
- van Kampen, R.J.; Canals, C.; Schouten, H.C.; Nagler, A.; Thomson, K.J.; Vernant, J.-P.; Buzyn, A.; Boogaerts, M.A.; Luan, J.-J.; Maury, S.; et al. Allogeneic stem-cell transplantation as salvage therapy for patients with diffuse large B-cell non-Hodgkin’s lymphoma relapsing after an autologous stem-cell transplantation: An analysis of the European Group for Blood and Marrow Transplantation Registry. J. Clin. Oncol. 2011, 29, 1342–1348. [Google Scholar] [CrossRef]
- Rigacci, L.; Puccini, B.; Dodero, A.; Iacopino, P.; Castagna, L.; Bramanti, S.; Ciceri, F.; Fanin, R.; Rambaldi, A.; Falda, M.; et al. Allogeneic hematopoietic stem cell transplantation in patients with diffuse large B cell lymphoma relapsed after autologous stem cell transplantation: A GITMO study. Ann. Hematol. 2012, 91, 931–939. [Google Scholar] [CrossRef]
- EK, U.B.; Le-Rademacher, J.; Carreras, J.; Armand, P.; Bishop, M.R.; Bredeson, C.N.; Cairo, M.S.; Fenske, T.S.; Freytes, C.O.; Gale, R.P.; et al. Conditioning regimens for allotransplants for diffuse large B-cell lymphoma: Myeloablative or reduced intensity? Blood 2012, 120, 4256–4262. [Google Scholar]
- Hamadani, M.; Saber, W.; Ahn, K.W.; Carreras, J.; Cairo, M.S.; Fenske, T.S.; Gale, R.P.; Gibson, J.; Hale, G.A.; Hari, P.N.; et al. Impact of Pretransplantation Conditioning Regimens on Outcomes of Allogeneic Transplantation for Chemotherapy-Unresponsive Diffuse Large B Cell Lymphoma and Grade III Follicular Lymphoma. Biol. Blood Marrow Transplant. 2013, 19, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Fenske, T.S.; Ahn, K.W.; Graff, T.M.; DiGilio, A.; Bashir, Q.; Kamble, R.T.; Ayala, E.; Bacher, U.; Brammer, J.E.; Cairo, M.; et al. Allogeneic Transplantation Provides Durable Remission in a Subset of DLBCL Patients Relapsing after Autologous Transplantation. Br. J. Haematol. 2016, 174, 235–248. [Google Scholar] [CrossRef] [PubMed]
- Ratanatharathorn, V.; Uberti, J.; Karanes, C.; Abella, E.; Lum, L.G.; Momin, F.; Cummings, G.; Sensenbrenner, L.L. Prospective comparative trial of autologous versus allogeneic bone marrow transplantation in patients with non-Hodgkin’s lymphoma. Blood 1994, 84, 1050–1055. [Google Scholar] [CrossRef] [PubMed]
- Schimmer, A.; Jamal, S.; Messner, H.; Keating, A.; Meharchand, J.; Huebsch, L.; Walker, I.; Benger, A.; Gluck, S.; Smith, A.; et al. Allogeneic or autologous bone marrow transplantation (BMT) for non-Hodgkin’s lymphoma (NHL): Results of a provincial strategy. Ontario BMT Network, Canada. Bone Marrow Transplant. 2000, 26, 859–864. [Google Scholar] [CrossRef]
- de Lima, M.; van Besien, K.; Giralt, S.; Khouri, I.; Mehra, R.; Andersson, B.; Przepiorka, D.; Gajewski, J.; Korbling, M.; Champlin, R. Bone marrow transplantation after failure of autologous transplant for non-Hodgkin’s lymphoma. Bone Marrow Transplant. 1997, 19, 121–127. [Google Scholar] [CrossRef]
- Kenkre, V.P.; Horowitz, S.; Artz, A.S.; Liao, C.; Cohen, K.S.; Godley, L.A.; Kline, J.P.; Smith, S.M.; Stock, W.; van Besien, K. T-cell-depleted allogeneic transplant without donor leukocyte infusions results in excellent long-term survival in patients with multiply relapsed Lymphoma. Predictors for survival after transplant relapse. Leuk. Lymphoma 2011, 52, 214–222. [Google Scholar] [CrossRef]
- Ghosh, N.; Ahmed, S.; Ahn, K.W.; Khanal, M.; Litovich, C.; Aljurf, M.; Bacher, V.U.; Bredeson, C.; Epperla, N.; Farhadfar, N.; et al. Association of Reduced-Intensity Conditioning Regimens With Overall Survival Among Patients With Non-Hodgkin Lymphoma Undergoing Allogeneic Transplant. JAMA Oncol. 2020, 6, 1011–1018. [Google Scholar] [CrossRef]
- Khouri, I.I. Allogeneic hematopoietic transplantation for mantle-cell lymphoma molecular remissions and evidence of graft-vers. Ann. Oncol. 1999, 10, 1293–1297. [Google Scholar] [CrossRef]
- Nagler, A.; Slavin, S.; Varadi, G.; Naparstek, E.; Samuel, S. ORR Allogeneic peripheral blood stem cell transplantation using a fludarabine-based low intensity conditioning regimen for malignant lymphoma. Bone Marrow Transplant. 2000, 25, 1021–1028. [Google Scholar] [CrossRef]
- Sorror, M.L.; Storer, B.E.; Maloney, D.G.; Sandmaier, B.M.; Martin, P.J.; Storb, R. Outcomes after allogeneic hematopoietic cell transplantation with nonmyeloablative or myeloablative conditioning regimens for treatment of lymphoma and chronic lymphocytic leukemia. Blood 2008, 111, 446–452. [Google Scholar] [CrossRef]
- Truelove, E.; Fox, C.; Robinson, S.; Pearce, R.; Perry, J.; Kirkland, K.; McQuaker, G.; Pagliuca, A.; Johnson, P.; Russell, N.; et al. Carmustine, etoposide, cytarabine, and melphalan (BEAM)-campath allogeneic stem cell transplantation for aggressive non-hodgkin lymphoma: An analysis of outcomes from the British Society of Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2015, 21, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Przepiorka, D.; van Besien, K.; Khouri, I.; Hagemeister, F.; Samuels, B.; Folloder, J.; Ueno, N.T.; Molldrem, J.; Mehra, R.; Körbling, M.; et al. Carmustine, etoposide, cytarabine and melphalan as a preparative regimen for allogeneic transplantation for high-risk malignant lymphoma. Ann. Oncol. 1999, 10, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Glass, B.; Hasenkamp, J.; Wulf, G.; Dreger, P.; Pfreundschuh, M.; Gramatzki, M.; Silling, G.; Wilhelm, C.; Zeis, M.; Görlitz, A.; et al. Rituximab after lymphoma-directed conditioning and allogeneic stem-cell transplantation for relapsed and refractory aggressive non-Hodgkin lymphoma (DSHNHL R3): An open-label, randomised, phase 2 trial. Lancet Oncol. 2014, 15, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Genadieva-Stavrik, S.; Boumendil, A.; Dreger, P.; Peggs, K.; Briones, J.; Corradini, P.; Bacigalupo, A.; Socié, G.; Bonifazi, F.; Finel, H.; et al. Myeloablative versus reduced intensity allogeneic stem cell transplantation for relapsed/refractory Hodgkin’s lymphoma in recent years: A retrospective analysis of the Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. Ann. Oncol. 2016, 27, 2251–2257. [Google Scholar] [CrossRef] [PubMed]
- Merryman, R.W.; Castagna, L.; Giordano, L.; Ho, V.T.; Corradini, P.; Guidetti, A.; Casadei, B.; Bond, D.A.; Jaglowski, S.; Spinner, M.A.; et al. Allogeneic transplantation after PD-1 blockade for classic Hodgkin lymphoma. Leukemia 2021, 35, 2672–2683. [Google Scholar] [CrossRef]
- Peniket, A.J.; de Elvira, M.C.R.; Taghipour, G.; Cordonnier, C.; Gluckman, E.; de Witte, T.; Santini, G.; Blaise, D.; Greinix, H.; Ferrant, A.; et al. An EBMT registry matched study of allogeneic stem cell transplants for lymphoma: Allogeneic transplantation is associated with a lower relapse rate but a higher procedure-related mortality rate than autologous transplantation. Bone Marrow Transplant. 2003, 31, 667–678. [Google Scholar] [CrossRef]
- Marty, F.M.; Ljungman, P.; Chemaly, R.F.; Maertens, J.; Dadwal, S.S.; Duarte, R.F.; Haider, S.; Ullmann, A.J.; Katayama, Y.; Brown, J.; et al. Letermovir Prophylaxis for Cytomegalovirus in Hematopoietic-Cell Transplantation. N. Engl. J. Med. 2017, 377, 2433–2444. [Google Scholar] [CrossRef]
- Gooley, T.A.; Chien, J.W.; Pergam, S.A.; Hingorani, S.; Sorror, M.L.; Boeckh, M.; Martin, P.J.; Sandmaier, B.M.; Marr, K.A.; Appelbaum, F.R.; et al. Reduced mortality after allogeneic hematopoietic cell transplantation. N. Engl. J. Med. 2010, 363, 2091–2101. [Google Scholar] [CrossRef]
- McDonald, G.B.; Sandmaier, B.M.; Mielcarek, M.; Sorror, M.; Pergam, S.A.; Cheng, G.S.; Hingorani, S.; Boeckh, M.; Flowers, M.D.; Lee, S.J.; et al. Survival, non-relapse mortality, and relapse-related mortality after allogeneic hematopoietic cell transplantation: Comparing 2003–2007 vs. 2013–2017 cohorts. Ann. Intern. Med. 2020, 172, 229–239. [Google Scholar] [CrossRef]
- Bolaños-Meade, J.; Hamadani, M.; Wu, J.; Al Malki, M.M.; Martens, M.J.; Runaas, L.; Elmariah, H.; Rezvani, A.R.; Gooptu, M.; Larkin, K.T.; et al. Post-Transplantation Cyclophosphamide-Based Graft-versus-Host Disease Prophylaxis. N. Engl. J. Med. 2023, 388, 2338–2348. [Google Scholar] [CrossRef]
- Lee, S.J.; Klein, J.; Haagenson, M.; Baxter-Lowe, L.A.; Confer, D.L.; Eapen, M.; Fernandez-Vina, M.; Flomenberg, N.; Horowitz, M.; Hurley, C.K.; et al. High-resolution donor-recipient HLA matching contributes to the success of unrelated donor marrow transplantation. Blood 2007, 110, 4576–4583. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.N.; Hamadani, M. Is There Still a Role for Allogeneic Transplantation in the Management of Lymphoma? J. Clin. Oncol. 2021, 39. [Google Scholar] [CrossRef]
- Lambert, J.R.; Bomanji, J.B.; Peggs, K.S.; Thomson, K.J.; Chakraverty, R.K.; Fielding, A.K.; Kottaridis, P.D.; Roughton, M.; Morris, E.C.; Goldstone, A.H.; et al. Prognostic role of PET scanning before and after reduced-intensity allogeneic stem cell transplantation for lymphoma. Blood 2010, 115, 2763–2768. [Google Scholar] [CrossRef] [PubMed]
- Armand, P.; Kim, H.T.; Ho, V.T.; Cutler, C.S.; Koreth, J.; Antin, J.H.; LaCasce, A.S.; Jacobsen, E.D.; Fisher, D.C.; Brown, J.R.; et al. Allogeneic transplantation with reduced-intensity conditioning for Hodgkin and non-Hodgkin lymphoma: Importance of histology for outcome. Biol Blood Marrow Transplant. 2008, 14, 418–425. [Google Scholar] [CrossRef]
- van Besien, K.; de Lima, M.; Giralt, S.; Jr, D.M.; Khouri, I.; Rondón, G.; Mehra, R.; Andersson, B.; Dyer, C.; Cleary, K.; et al. Management of lymphoma recurrence after allogeneic transplantation: The relevance of graft-versus-lymphoma effect. Bone Marrow Transplant. 1997, 19, 977–982. [Google Scholar] [CrossRef]
- Grigg, A.P.; Seymour, J.F. Graft versus Burkitt’s lymphoma effect after allogeneic marrow transplantation. Leuk. Lymphoma 2002, 43, 889–892. [Google Scholar] [CrossRef]
- Horowitz, M.M.; Gale, R.P.; Sondel, P.M.; Goldman, J.M.; Kersey, J.; Kolb, H.J.; Rimm, A.A.; Ringden, O.; Rozman, C.; Speck, B. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 1990, 75, 555–562. [Google Scholar] [CrossRef]
- Sureda, A.; Canals, C.; Arranz, R.; Caballero, D.; Ribera, J.M.; Brune, M.; Passweg, J.; Martino, R.; Valcárcel, D.; Besalduch, J.; et al. Allogeneic stem cell transplantation after reduced intensity conditioning in patients with relapsed or refractory Hodgkin’s lymphoma. Results of the HDR-ALLO study—A prospective clinical trial by the Grupo Español de Linfomas/Trasplante de Médula Osea (GEL/TAMO) and the Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. Haematologica 2012, 97, 310. [Google Scholar]
- Epperla, N.; Ahn, K.W.; Khanal, M.; Litovich, C.; Ahmed, S.; Ghosh, N.; Fenske, T.S.; Kharfan-Dabaja, M.A.; Sureda, A.; Hamadani, M. Impact of Reduced-Intensity Conditioning Regimens on Outcomes in Diffuse Large B Cell Lymphoma Undergoing Allogeneic Transplantation. Transplant. Cell. Ther. 2021, 27. [Google Scholar] [CrossRef]
- Jones, R.J.; Ambinder, R.F.; Piantadosi, S.; Santos, G.W. Evidence of a graft-versus-lymphoma effect associated with allogeneic bone marrow transplantation. Blood 1991, 77, 649–653. [Google Scholar] [CrossRef]
- Gajewski, J.L.; Phillips, G.L.; Sobocinski, K.A.; Armitage, J.O.; Gale, R.P.; Champlin, R.E.; Herzig, R.H.; Hurd, D.D.; Jagannath, S.; Klein, J.P.; et al. Bone marrow transplants from HLA-identical siblings in advanced Hodgkin’s disease. J. Clin. Oncol. 2016, 14, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Milpied, N.; Fielding, A.K.; Pearce, R.M.; Ernst, P.; Goldstone, A.H. Allogeneic bone marrow transplant is not better than autologous transplant for patients with relapsed Hodgkin’s disease. European Group for Blood and Bone Marrow Transplantation. J. Clin. Oncol. 2016, 14, 1291–1296. [Google Scholar] [CrossRef] [PubMed]
- Peggs, K.S.; Kayani, I.; Edwards, N.; Kottaridis, P.; Goldstone, A.H.; Linch, D.C.; Hough, R.; Morris, E.C.; Fielding, A.; Chakraverty, R.; et al. Donor Lymphocyte Infusions Modulate Relapse Risk in Mixed Chimeras and Induce Durable Salvage in Relapsed Patients After T-Cell–Depleted Allogeneic Transplantation for Hodgkin’s Lymphoma. J. Clin. Oncol. 2011, 29, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Thomson, K.J.; Kayani, I.; Ardeshna, K.; Morris, E.C.; Hough, R.; Virchis, A.; Goldstone, A.H.; Linch, D.C.; Peggs, K.S. A response-adjusted PET-based transplantation strategy in primary resistant and relapsed Hodgkin Lymphoma. Leukemia 2013, 27, 1419–1422. [Google Scholar] [CrossRef]
- Roemer, M.G.; Advani, R.H.; Ligon, A.H.; Natkunam, Y.; A Redd, R.; Homer, H.; Connelly, C.; Sun, H.H.; Daadi, S.E.; Chapuy, B.; et al. PD-L1 and PD-L2 Genetic Alterations Define Classical Hodgkin Lymphoma and Predict Outcome. J. Clin. Oncol. 2016, 34, 2690–2697. [Google Scholar] [CrossRef]
- Chen, R.; Zinzani, P.L.; Lee, H.J.; Armand, P.; Johnson, N.A.; Brice, P.; Radford, J.; Ribrag, V.; Molin, D.; Vassilakopoulos, T.P.; et al. Pembrolizumab in relapsed or refractory Hodgkin lymphoma: 2-year follow-up of KEYNOTE-087. Blood 2019, 134, 1144–1153. [Google Scholar] [CrossRef]
- Younes, A.; Santoro, A.; Shipp, M.; Zinzani, P.L.; Timmerman, J.M.; Ansell, S.; Armand, P.; Fanale, M.; Ratanatharathorn, V.; Kuruvilla, J.; et al. Nivolumab for classical Hodgkin lymphoma after autologous stem-cell transplantation and brentuximab vedotin failure: A prospective phase 2 multi-cohort study. Lancet Oncol. 2016, 17, 1283–1294. [Google Scholar] [CrossRef]
- Haverkos, B.M.; Abbott, D.; Hamadani, M.; Armand, P.; Flowers, M.E.; Merryman, R.; Kamdar, M.; Kanate, A.S.; Saad, A.; Mehta, A.; et al. PD-1 blockade for relapsed lymphoma post–allogeneic hematopoietic cell transplant: High response rate but frequent, GVHD. Blood 2017, 130, 221–228. [Google Scholar] [CrossRef]
- Schuster, S.J.; Svoboda, J.; Chong, E.A.; Nasta, S.D.; Mato, A.R.; Anak, Ö.; Brogdon, J.L.; Pruteanu-Malinici, I.; Bhoj, V.; Landsburg, D.; et al. Chimeric Antigen Receptor T Cells in Refractory B-Cell Lymphomas. N. Engl. J. Med. 2017, 377, 2545–2554. [Google Scholar] [CrossRef]
- Di Blasi, R.; Le Gouill, S.; Bachy, E.; Cartron, G.; Beauvais, D.; Le Bras, F.; Gros, F.-X.; Choquet, S.; Bories, P.; Feugier, P.; et al. Outcomes of patients with aggressive B-cell lymphoma after failure of anti-CD19 CAR T-cell therapy: A DESCAR-T analysis. Blood 2022, 140, 2584–2593. [Google Scholar] [CrossRef]
- Zurko, J.; Ramdial, J.; Shadman, M.; Ahmed, S.; Szabo, A.; Iovino, L.; Tomas, A.A.; Sauter, C.; Perales, M.-A.; Shah, N.N.; et al. Allogeneic transplant following CAR T-cell therapy for large B-cell lymphoma. Haematologica 2023, 108, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Fried, S.; Shouval, R.; Walji, M.; Flynn, J.R.; Yerushalmi, R.; Shem-Tov, N.; Danylesko, I.; Tomas, A.A.; Fein, J.A.; Devlin, S.M.; et al. Allogeneic Hematopoietic Cell Transplantation after Chimeric Antigen Receptor T Cell Therapy in Large B Cell Lymphoma. Transplant. Cell. Ther. 2023, 29, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, C.A.; Locke, F.L.; Ma, L.; Asubonteng, J.; Hu, Z.H.; Siddiqi, T.; Ahmed, S.; Ghobadi, A.; Miklos, D.B.; Lin, Y.; et al. Real-world Evidence of Axicabtagene Ciloleucel for the Treatment of Large B-Cell Lymphoma in the United States. Transplant. Cell. Ther. 2022, 28, 581.e1. [Google Scholar] [CrossRef] [PubMed]
- Ghilardi, G.; Fraietta, J.A.; Gerson, J.N.; Van Deerlin, V.M.; Morrissette, J.J.D.; Caponetti, G.C.; Paruzzo, L.; Harris, J.C.; Chong, E.A.; Adaniya, S.P.S.; et al. T cell lymphoma and secondary primary malignancy risk after commercial CAR T cell therapy. Nat. Med. 2024, 30, 984–989. [Google Scholar] [CrossRef]
- Rejeski, K.; Perez, A.; Sesques, P.; Hoster, E.; Berger, C.; Jentzsch, L.; Mougiakakos, D.; Frölich, L.; Ackermann, J.; Bücklein, V.; et al. CAR-HEMATOTOX: A model for CAR T-cell–related hematologic toxicity in relapsed/refractory large B-cell lymphoma. Blood 2021, 138, 2499–2513. [Google Scholar] [CrossRef]
- Rejeski, K.; Subklewe, M.; Aljurf, M.; Bachy, E.; Balduzzi, A.C.; Barba, P.; Bruno, B.; Benjamin, R.; Carrabba, M.G.; Chabannon, C.; et al. Immune effector cell–associated hematotoxicity: EHA/EBMT consensus grading and best practice recommendations. Blood 2023, 142, 865–877. [Google Scholar] [CrossRef]
Author (Year) | n | Subtype of Lymphoma | Conditioning | Median Age (Range) | NRM (%) (yrs) | Relapse (%) (yrs) | OS (%) (yrs) | Prior auto-SCT (%) | Chemo Sensitivity (%) | Poor Prognostic Factors |
---|---|---|---|---|---|---|---|---|---|---|
Thomson (2009) [76] | 48 | RIC (100%) | 46 (23–64) | 32 (4) | 33 (4) | 48 (4) | 69% | chemosensitive: 83% | 38% transformed from FL, median < 12 month relapse from ASCT | |
100% DLBCL | ||||||||||
Sirvent (2010) [77] | 68 | RIC (100%) | 48 (17–66) | 23% (1) | 41% (2) | 49% (2) | 79% | chemosensitive: 81% | 47% IPI > 1 | |
100% DLBCL | ||||||||||
Lazarus (2010) [78] | 79 | MA (100%) | 46 (21–59) | 43% (3) | 33% (3) | 26% (3) | 0% | chemosensitive: 58% | 80% stage III/IV, 71% high or high-int IPI, 44% KPS < 90 | |
100% DLBCL | ||||||||||
van Kampen (2011) [79] | 101 | MA (37%) | 46 (18–66) | 28% (3) | 30% (3) | 52% (3) | 100% | chemosensitive: 74% | 30% elevated LDH | |
100% DLBCL | RIC (63%) | |||||||||
Rigacci (2012) [80] | 165 | MA (30%) | 43 (16–65) | 19–32% (2) | NR | 39% (5) | 100% | chemosensitive: 67% | 50% remission duration < 12 month | |
100% DLBCL | RIC (70%) | |||||||||
Bacher (2012) [81] | 396 | MA (42%) | 54 (18–66) | 36–56% (5) | 26–40% (5) | 18–26% (5) | 32% | chemosensitive: 58% | 63% stage III/IV, 39% KPS < 90 | |
100% DLBCL | RIC (58%) | |||||||||
Hamadani (2013) [82] | 533 | MA (58%) | 49 (19–70) | 48% (3) | 31% (3) | 23% (3) | 25% | chemosensitive: 0% | 20% elevated LDH, 55% KPS < 90 | |
100% NHL | RIC (42%) | |||||||||
Fenske (2016) [83] | 503 | MA (25%) | 52 (19–72) | 31% (5) | 40% (5) | 34% (5) | 100% | chemosensitive: 74% | 54% stage III/IV, 34% elevated LDH | |
100% DLBCL | RIC (75%) | |||||||||
Ratanatharathorn (1994) [84] | 40 | MA (100%) | 40 (15–50) | 30% (1) | 20% (1) | 60% (1) | 0% | chemosensitive: 38% | 90% w/extranodal involvement | |
100% NHL | ||||||||||
Schimmer (2000) [85] | 44 | NR | 44 (20–55) | 23% (3) | 7% (3) | 72% (3) | 0% | chemosensitive: 100% | 55% w/aggressive histology | |
100% NHL | ||||||||||
de Lima (1997) [86] | 8 | MA (100%) | 40 (31–58) | 50% (1) | 13% (1) | 38% (1) | 100% | chemosensitive: 63% | 63% stage III/IV | |
100% NHL | ||||||||||
Kenkre (2011) [87] | 67 | 72% NHL | RIC (100%) | 54 (24–70) | 18% (3) | 40% (3) | 47% (3) | 28% | chemosensitive: 66% | 25% elevated LDH |
13% HL | ||||||||||
Ghosh (2020) [88] | 1823 | RIC (100%) | 55 (19–76) | 21% (4) * | 42% (4) ** | 55% (4) *** | 37% | chemosensitive: 85% | 34% with HCT-CI ≥3 | |
100% NHL | ||||||||||
Khouri (1999) [89] | 16 | MA (88%) | 52 (30–60) | 38% (3) | 6% (3) | 55% (3) | 6% | chemosensitive: 50% | 63% w/extranodal involvement | |
100% MCL | NMA (12%) | |||||||||
Nagler (2000) [90] | 23 | 83% NHL | RIC (100%) | 41 (13–63) | 30% (3) | 26% (3) | 40% (3) | 22% | chemosensitive: 48% | 96% stage III/IV |
17% HL | ||||||||||
Sorror (2008) [91] | 220 | 61% NHL | MA (69%) | 56 (10–70) | 28% (3) | NR | 51% (3) | 39% | chemosensitive: 40% | 62% w/aggressive disease (includes CLL w/Richters, HL except nodular lymphocyte-predominant) |
16% HL | RIC (31%) | |||||||||
Truelove (2015) [92] | 46 | RIC (100%) | 45 (18–59) | 11% (5) | 53% (5) | 42% (5) | 9% | chemosensitive: 74% | 80% stage III/IV, 50% elevated LDH, 58% high or high-int IPI | |
100% NHL | ||||||||||
Przepiorka (1999) [93] | 30 | MA (100%) | 41 (25–61) | NR | 23% (2) | 48% (2) | 3% | chemosensitive: 57% | 83% stage III/IV | |
100% NHL | ||||||||||
Glass (2014) [94] | 84 | 100% NHL | MA (100%) | 48 | 35% (1) | 29% (1) | 40% (4) | 54% | chemosensitive: 45% | 51% with aaIPI of 2+ |
Genadieva-Stavrik (2016) [95] | 312 | 100% HL | MA (20%) | 31 (25–40) | 13% (5) | 59% (5) | 45% (5) | 55% | chemosensitive: 51% | 20% PS ≥2, 13% matched-unrelated donor |
RIC (80%) | ||||||||||
Merryman (2021) [96] | 72 | 100% HL | RIC (58%) | 31 (17–68) | 14% (2) | 18% (2) | 82% (2) | 76% | chemosensitive: 90% | 100% treated with PD-1 mAb prior, 44% haploidentical donor, 27% matched-unrelated donor, 32% HCT-CI ≥3 |
NMA (34%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daunov, M.; van Besien, K. High-Dose Chemotherapy and Autologous or Allogeneic Transplantation in Aggressive B-Cell Lymphoma—Is There Still a Role? Cells 2024, 13, 1780. https://doi.org/10.3390/cells13211780
Daunov M, van Besien K. High-Dose Chemotherapy and Autologous or Allogeneic Transplantation in Aggressive B-Cell Lymphoma—Is There Still a Role? Cells. 2024; 13(21):1780. https://doi.org/10.3390/cells13211780
Chicago/Turabian StyleDaunov, Michael, and Koen van Besien. 2024. "High-Dose Chemotherapy and Autologous or Allogeneic Transplantation in Aggressive B-Cell Lymphoma—Is There Still a Role?" Cells 13, no. 21: 1780. https://doi.org/10.3390/cells13211780
APA StyleDaunov, M., & van Besien, K. (2024). High-Dose Chemotherapy and Autologous or Allogeneic Transplantation in Aggressive B-Cell Lymphoma—Is There Still a Role? Cells, 13(21), 1780. https://doi.org/10.3390/cells13211780