Stress Granule Assembly in Pulmonary Arterial Hypertension
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human IPAH and Control Samples
2.2. Animals and Experimental Models of Pulmonary Hypertension
2.3. Treatment Protocol
2.4. Hemodynamic Measurements
2.5. Rat Tissue Isolation
2.6. Immunohistochemistry
2.7. Cell Lines and Culture Conditions
2.8. Western Blot Analysis
2.9. WST-1 Proliferation Assay
2.10. siRNA Transfections
2.11. Antibodies and Reagents
2.12. Confocal Microscopy
2.13. Statistical Analysis
3. Results
3.1. SG Puncta and Upregulation of SG Components in Lungs from Animals with SU/Hx-Induced PH and Decrease in SG Components After ACTZ Treatment
3.2. Ribonucleoprotein (RNP) Granulopathy in Right Ventricles from Animals with SU/Hx-Induced PH Compared to ACTZ Treatment
3.3. RNP Granulopathy and Increased SG Markers in Soleus Muscles from Animals with SU/Hx-Induced PH and Decrease After ACTZ Treatment
3.4. Increased Number of SGs in PASMCs from Rats with SU/Hx-Induced PH and Decreased Number of SGs After ACTZ Treatment
3.5. ISRIB Treatment Results in Lower Number of SGs After Oxidative Stress and Restores the Contractile Phenotype of RPASMCs from SU/Hx Animals
3.6. G3BP1 Downregulation Increases Apoptosis and Inhibits Proliferation of PASMCs from Rats with SU/Hx-Induced PH
3.7. SG Protein Puncta in Lungs of Patients with PAH, Increased SGs in Human PAH-PASMCs, and Decreased Proliferation Upon Genetic Ablation of G3BP1
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACTZ | Acetazolamide |
Ars | Arsenite (NaAsO2) |
α-SMA | Alpha smooth muscle actin |
BW | Body weight |
Caprin1 | Cycle associated protein 1 |
DAPI | 4′,6-diamidino-2-phenylindole |
DMSO | Dimethyl sulfoxide |
G3BP1 | Ras-GAP SH3-domain-binding protein 1 |
GAPDH | Glyceraldehyde-3-Phosphate Dehydrogenase |
FAK | Focal adhesion kinase |
FBS | Fetal bovine serum |
FI | Fulton’s Index |
HPASMCs | Human pulmonary artery smooth muscle cells |
IPAH | Idiopathic pulmonary arterial hypertension |
ISRIB | Integrated stress response inhibitor |
LVSP | Left ventricular systolic pressure |
PAH | Pulmonary arterial hypertension |
PARP | Nuclear poly (ADP-ribose) polymerase |
PASMCs | Pulmonary artery smooth muscle cells |
p-eIF2α | Phospho-eukaryotic translation initiation factor 2A |
PHBI | Pulmonary Hypertension Breakthrough Initiative |
RBPs | RNA-binding proteins |
ROS | Reactive oxygen species |
RPASMCs | Rat pulmonary artery smooth muscle cells |
RV | Right ventricular weight |
RVH | Right ventricular hypertrophy |
RVSP | Right ventricular systolic pressure |
SG | Stress granule |
siRNA | Small interfering RNA |
SU/Hx | Sugen/Hypoxia |
TBST | Tris-buffered saline with Tween-20 |
WDM | Welander distal myopathy |
References
- Farber, H.W.; Loscalzo, J. Pulmonary arterial hypertension. N. Engl. J. Med. 2004, 351, 1655–1665. [Google Scholar] [CrossRef] [PubMed]
- Lechartier, B.; Berrebeh, N.; Huertas, A.; Humbert, M.; Guignabert, C.; Tu, L. Phenotypic Diversity of Vascular Smooth Muscle Cells in Pulmonary Arterial Hypertension: Implications for Therapy. Chest 2022, 161, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Hudalla, H.; Michael, Z.; Christodoulou, N.; Willis, G.R.; Fernandez-Gonzalez, A.; Filatava, E.J.; Dieffenbach, P.; Fredenburgh, L.E.; Stearman, R.S.; Geraci, M.W.; et al. Carbonic Anhydrase Inhibition Ameliorates Inflammation and Experimental Pulmonary Hypertension. Am. J. Respir. Cell Mol. Biol. 2019, 61, 512–524. [Google Scholar] [CrossRef] [PubMed]
- Kedersha, N.; Anderson, P. Mammalian stress granules and processing bodies. Methods Enzymol. 2007, 431, 61–81. [Google Scholar] [PubMed]
- Baymiller, M.; Moon, S.L. Stress Granules as Causes and Consequences of Translation Suppression. Antioxid. Redox Signal. 2023, 39, 390–409. [Google Scholar] [CrossRef]
- Kim, H.J.; Raphael, A.R.; LaDow, E.S.; McGurk, L.; Weber, R.A.; Trojanowski, J.Q.; Lee, V.M.; Finkbeiner, S.; Gitler, A.D.; Bonini, N.M. Therapeutic modulation of eIF2alpha phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. Nat. Genet. 2014, 46, 152–160. [Google Scholar] [CrossRef]
- Matsuki, H.; Takahashi, M.; Higuchi, M.; Makokha, G.N.; Oie, M.; Fujii, M. Both G3BP1 and G3BP2 contribute to stress granule formation. Genes. Cells 2013, 18, 135–146. [Google Scholar] [CrossRef]
- Yang, P.; Mathieu, C.; Kolaitis, R.M.; Zhang, P.; Messing, J.; Yurtsever, U.; Yang, Z.; Wu, J.; Li, Y.; Pan, Q.; et al. G3BP1 Is a Tunable Switch that Triggers Phase Separation to Assemble Stress Granules. Cell 2020, 181, 325–345.e28. [Google Scholar] [CrossRef]
- Tourriere, H.; Chebli, K.; Zekri, L.; Courselaud, B.; Blanchard, J.M.; Bertrand, E.; Tazi, J. The RasGAP-associated endoribonuclease G3BP mediates stress granule assembly. J. Cell Biol. 2023, 222, e200212128072023new. [Google Scholar] [CrossRef]
- Kedersha, N.; Panas, M.D.; Achorn, C.A.; Lyons, S.; Tisdale, S.; Hickman, T.; Thomas, M.; Lieberman, J.; McInerney, G.M.; Ivanov, P.; et al. G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits. J. Cell Biol. 2016, 212, 845–860. [Google Scholar] [CrossRef]
- El-Naggar, A.M.; Sorensen, P.H. Translational control of aberrant stress responses as a hallmark of cancer. J. Pathol. 2018, 244, 650–666. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lin, P.H.; Gupta, P.; Li, X.; Zhao, S.L.; Zhou, X.; Li, Z.; Wei, S.; Xu, L.; Han, R.; et al. MG53 suppresses tumor progression and stress granule formation by modulating G3BP2 activity in non-small cell lung cancer. Mol. Cancer 2021, 20, 118. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Huang, L.; Qin, H.; Mai, S. STRESS granule-associated RNA-binding protein CAPRIN1 drives cancer progression and regulates treatment response in nasopharyngeal carcinoma. Med. Oncol. 2022, 40, 47. [Google Scholar] [CrossRef] [PubMed]
- Kosmas, K.; Filippakis, H.; Khabibullin, D.; Turkiewicz, M.; Lam, H.C.; Yu, J.; Kedersha, N.L.; Anderson, P.J.; Henske, E.P. TSC2 Interacts with HDLBP/Vigilin and Regulates Stress Granule Formation. Mol. Cancer Res. 2021, 19, 1389–1397. [Google Scholar] [CrossRef] [PubMed]
- Nahm, M.; Lim, S.M.; Kim, Y.E.; Park, J.; Noh, M.Y.; Lee, S.; Roh, J.E.; Hwang, S.M.; Park, C.K.; Kim, Y.H.; et al. ANXA11 mutations in ALS cause dysregulation of calcium homeostasis and stress granule dynamics. Sci. Transl. Med. 2020, 12, eaax3993. [Google Scholar] [CrossRef] [PubMed]
- Becker, L.A.; Huang, B.; Bieri, G.; Ma, R.; Knowles, D.A.; Jafar-Nejad, P.; Messing, J.; Kim, H.J.; Soriano, A.; Auburger, G.; et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature 2017, 544, 367–371. [Google Scholar] [CrossRef]
- Spyropoulos, F.; Michael, Z.; Finander, B.; Vitali, S.; Kosmas, K.; Zymaris, P.; Kalish, B.T.; Kourembanas, S.; Christou, H. Acetazolamide Improves Right Ventricular Function and Metabolic Gene Dysregulation in Experimental Pulmonary Arterial Hypertension. Front. Cardiovasc. Med. 2021, 8, 662870. [Google Scholar] [CrossRef]
- Christou, H.; Michael, Z.; Spyropoulos, F.; Chen, Y.; Rong, D.; Khalil, R.A. Carbonic anhydrase inhibition improves pulmonary artery reactivity and nitric oxide-mediated relaxation in sugen-hypoxia model of pulmonary hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2021, 320, R835–R850. [Google Scholar] [CrossRef]
- Stacher, E.; Graham, B.B.; Hunt, J.M.; Gandjeva, A.; Groshong, S.D.; McLaughlin, V.V.; Jessup, M.; Grizzle, W.E.; Aldred, M.A.; Cool, C.D.; et al. Modern age pathology of pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2012, 186, 261–272. [Google Scholar] [CrossRef]
- Kosmas, K.; Michael, Z.; Papathanasiou, A.E.; Spyropoulos, F.; Adib, E.; Jasuja, R.; Christou, H. Skeletal Muscle Dysfunction in Experimental Pulmonary Hypertension. Int. J. Mol. Sci. 2022, 23, 10912. [Google Scholar] [CrossRef]
- Christou, H.; Reslan, O.M.; Mam, V.; Tanbe, A.F.; Vitali, S.H.; Touma, M.; Arons, E.; Mitsialis, S.A.; Kourembanas, S.; Khalil, R.A. Improved pulmonary vascular reactivity and decreased hypertrophic remodeling during nonhypercapnic acidosis in experimental pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012, 302, L875–L890. [Google Scholar] [CrossRef] [PubMed]
- Spyropoulos, F.; Vitali, S.H.; Touma, M.; Rose, C.D.; Petty, C.R.; Levy, P.; Kourembanas, S.; Christou, H. Echocardiographic markers of pulmonary hemodynamics and right ventricular hypertrophy in rat models of pulmonary hypertension. Pulm. Circ. 2020, 10, 2045894020910976. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, A.E.; Jones, T.R.; Lamprecht, M.R.; Clarke, C.; Kang, I.H.; Friman, O.; Guertin, D.A.; Chang, J.H.; Lindquist, R.A.; Moffat, J.; et al. CellProfiler: Image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006, 7, R100. [Google Scholar] [CrossRef] [PubMed]
- Sidrauski, C.; McGeachy, A.M.; Ingolia, N.T.; Walter, P. The small molecule ISRIB reverses the effects of eIF2alpha phosphorylation on translation and stress granule assembly. eLife 2015, 4, e05033. [Google Scholar] [CrossRef]
- Sekine, Y.; Zyryanova, A.; Crespillo-Casado, A.; Fischer, P.M.; Harding, H.P.; Ron, D. Stress responses. Mutations in a translation initiation factor identify the target of a memory-enhancing compound. Science 2015, 348, 1027–1030. [Google Scholar] [CrossRef]
- Fujikawa, D.; Nakamura, T.; Yoshioka, D.; Li, Z.; Moriizumi, H.; Taguchi, M.; Tokai-Nishizumi, N.; Kozuka-Hata, H.; Oyama, M.; Takekawa, M. Stress granule formation inhibits stress-induced apoptosis by selectively sequestering executioner caspases. Curr. Biol. 2023, 33, 1967–1981.e8. [Google Scholar] [CrossRef]
- Rama, A.; Matsushita, T.; Charolidi, N.; Rothery, S.; Dupont, E.; Severs, N.J. Up-regulation of connexin43 correlates with increased synthetic activity and enhanced contractile differentiation in TGF-beta-treated human aortic smooth muscle cells. Eur. J. Cell Biol. 2006, 85, 375–386. [Google Scholar] [CrossRef]
- Muller, J.; Appenzeller, P.; Lichtblau, M.; Saxer, S.; Berlier, C.; Schneider, S.R.; Furian, M.; Schwarz, E.I.; Swenson, E.R.; Bloch, K.E.; et al. Effects of 5-Week Oral Acetazolamide on Incremental Cycling Exercise in Pulmonary Arterial and Chronic Thromboembolic Pulmonary Hypertension: A Randomized Placebo-Controlled, Double-Blinded, Crossover Trial. Respiration 2024, 103, 124–133. [Google Scholar] [CrossRef]
- Lichtblau, M.; Saxer, S.; Muller, J.; Appenzeller, P.; Berlier, C.; Schneider, S.R.; Mayer, L.; Furian, M.; Schwarz, E.I.; Swenson, E.R.; et al. Effect of 5 weeks of oral acetazolamide on patients with pulmonary vascular disease: A randomized, double-blind, cross-over trial. Pulmonology 2024, 30, 362–369. [Google Scholar] [CrossRef]
- Alberti, S.; Mateju, D.; Mediani, L.; Carra, S. Granulostasis: Protein Quality Control of RNP Granules. Front. Mol. Neurosci. 2017, 10, 84. [Google Scholar] [CrossRef]
- Buchan, J.R. mRNP granules. Assembly, function, and connections with disease. RNA Biol. 2014, 11, 1019–1030. [Google Scholar] [CrossRef] [PubMed]
- Mahboubi, H.; Stochaj, U. Cytoplasmic stress granules: Dynamic modulators of cell signaling and disease. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 884–895. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Luo, J.; Mou, K.; Peng, L.; Li, X.; Lei, Y.; Wang, J.; Lin, S.; Luo, Y.; Xiang, L. Stress granules: Functions and mechanisms in cancer. Cell Biosci. 2023, 13, 86. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.E.; Grassetti, A.V.; Taroni, J.N.; Lyons, S.M.; Schweppe, D.; Gordon, J.K.; Spiera, R.F.; Lafyatis, R.; Anderson, P.J.; Gerber, S.A.; et al. Stress granules and RNA processing bodies are novel autoantibody targets in systemic sclerosis. Arthritis Res. Ther. 2016, 18, 27. [Google Scholar] [CrossRef] [PubMed]
- Paulin, R.; Meloche, J.; Courboulin, A.; Lambert, C.; Haromy, A.; Courchesne, A.; Bonnet, P.; Provencher, S.; Michelakis, E.D.; Bonnet, S. Targeting cell motility in pulmonary arterial hypertension. Eur. Respir. J. 2014, 43, 531–544. [Google Scholar] [CrossRef]
- Romer, L.H.; Birukov, K.G.; Garcia, J.G. Focal adhesions: Paradigm for a signaling nexus. Circ. Res. 2006, 98, 606–616. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, M.; Urabe, G.; Huang, Y.; Chen, G.; Wheeler, D.; Dornbos, D.J., 3rd; Huttinger, A.; Nimjee, S.M.; Gong, S.; et al. PERK Inhibition Mitigates Restenosis and Thrombosis: A Potential Low-Thrombogenic Antirestenotic Paradigm. JACC Basic. Transl. Sci. 2020, 5, 245–263. [Google Scholar] [CrossRef]
- Onat, U.I.; Yildirim, A.D.; Tufanli, O.; Cimen, I.; Kocaturk, B.; Veli, Z.; Hamid, S.M.; Shimada, K.; Chen, S.; Sin, J.; et al. Intercepting the Lipid-Induced Integrated Stress Response Reduces Atherosclerosis. J. Am. Coll. Cardiol. 2019, 73, 1149–1169. [Google Scholar] [CrossRef]
- Herman, A.B.; Silva Afonso, M.; Kelemen, S.E.; Ray, M.; Vrakas, C.N.; Burke, A.C.; Scalia, R.G.; Moore, K.; Autieri, M.V. Regulation of Stress Granule Formation by Inflammation, Vascular Injury, and Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 2014–2027. [Google Scholar] [CrossRef]
- Mikhael, M.; Makar, C.; Wissa, A.; Le, T.; Eghbali, M.; Umar, S. Oxidative Stress and Its Implications in the Right Ventricular Remodeling Secondary to Pulmonary Hypertension. Front. Physiol. 2019, 10, 1233. [Google Scholar] [CrossRef]
- Prouillac, C.; Vicendo, P.; Garrigues, J.C.; Poteau, R.; Rima, G. Evaluation of new thiadiazoles and benzothiazoles as potential radioprotectors: Free radical scavenging activity in vitro and theoretical studies (QSAR, DFT). Free. Radic. Biol. Med. 2009, 46, 1139–1148. [Google Scholar] [CrossRef] [PubMed]
- Shimoda, L.A.; Suresh, K.; Undem, C.; Jiang, H.; Yun, X.; Sylvester, J.T.; Swenson, E.R. Acetazolamide prevents hypoxia-induced reactive oxygen species generation and calcium release in pulmonary arterial smooth muscle. Pulm. Circ. 2021, 11, 20458940211049948. [Google Scholar] [CrossRef] [PubMed]
- Alikunju, S.; Niranjan, N.; Mohsin, M.; Sayed, N.; Sayed, D. G3bp1—microRNA-1 axis regulates cardiomyocyte hypertrophy. Cell Signal 2022, 91, 110245. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.W.; Oommen, S.; Qureshi, M.Y.; Goetsch, S.C.; Pease, D.R.; Sundsbak, R.S.; Guo, W.; Sun, M.; Sun, H.; Kuroyanagi, H.; et al. Dysregulated ribonucleoprotein granules promote cardiomyopathy in RBM20 gene-edited pigs. Nat. Med. 2020, 26, 1788–1800. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.; Liang, F.; Sun, B.; Wang, C.; Liu, Y.; Guan, X.; Yang, B.; Xiu, C.; Yang, N.; Liu, F.; et al. Presence and function of stress granules in atrial fibrillation. PLoS ONE 2019, 14, e0213769. [Google Scholar] [CrossRef]
- Klar, J.; Sobol, M.; Melberg, A.; Mabert, K.; Ameur, A.; Johansson, A.C.; Feuk, L.; Entesarian, M.; Orlen, H.; Casar-Borota, O.; et al. Welander distal myopathy caused by an ancient founder mutation in TIA1 associated with perturbed splicing. Hum. Mutat. 2013, 34, 572–577. [Google Scholar]
- Hackman, P.; Sarparanta, J.; Lehtinen, S.; Vihola, A.; Evila, A.; Jonson, P.H.; Luque, H.; Kere, J.; Screen, M.; Chinnery, P.F.; et al. Welander distal myopathy is caused by a mutation in the RNA-binding protein TIA1. Ann. Neurol. 2013, 73, 500–509. [Google Scholar] [CrossRef]
- Gass, J.; Blackburn, P.; Jackson, J.; Harris, K.; Selcen, D.; Dimberg, E.; Atwal, P. Whole Exome Sequencing Identifies Atypical Welander Distal Myopathy in Patient. J. Clin. Neuromuscul. Dis. 2017, 18, 152–156. [Google Scholar] [CrossRef]
- Mensch, A.; Meinhardt, B.; Bley, N.; Huttelmaier, S.; Schneider, I.; Stoltenburg-Didinger, G.; Kraya, T.; Muller, T.; Zierz, S. The p.S85C-mutation in MATR3 impairs stress granule formation in Matrin-3 myopathy. Exp. Neurol. 2018, 306, 222–231. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosmas, K.; Papathanasiou, A.E.; Spyropoulos, F.; Rehman, R.; Cunha, A.A.; Fredenburgh, L.E.; Perrella, M.A.; Christou, H. Stress Granule Assembly in Pulmonary Arterial Hypertension. Cells 2024, 13, 1796. https://doi.org/10.3390/cells13211796
Kosmas K, Papathanasiou AE, Spyropoulos F, Rehman R, Cunha AA, Fredenburgh LE, Perrella MA, Christou H. Stress Granule Assembly in Pulmonary Arterial Hypertension. Cells. 2024; 13(21):1796. https://doi.org/10.3390/cells13211796
Chicago/Turabian StyleKosmas, Kosmas, Aimilia Eirini Papathanasiou, Fotios Spyropoulos, Rakhshinda Rehman, Ashley Anne Cunha, Laura E. Fredenburgh, Mark A. Perrella, and Helen Christou. 2024. "Stress Granule Assembly in Pulmonary Arterial Hypertension" Cells 13, no. 21: 1796. https://doi.org/10.3390/cells13211796
APA StyleKosmas, K., Papathanasiou, A. E., Spyropoulos, F., Rehman, R., Cunha, A. A., Fredenburgh, L. E., Perrella, M. A., & Christou, H. (2024). Stress Granule Assembly in Pulmonary Arterial Hypertension. Cells, 13(21), 1796. https://doi.org/10.3390/cells13211796