Avian Models for Human Carcinogenesis—Recent Findings from Molecular and Clinical Research
Abstract
:1. Introduction
2. Avian Retroviruses
2.1. Reticuloendotheliosis Virus and Avian Leukosis Virus
2.2. Lymphoproliferative Disease Virus
2.3. Rous Sarcoma Virus
2.4. Avian Myeloblastosis Virus
3. Avian Herpesviruses
Marek’s Disease
4. Importance of Avian Oncoviruses for Biomedical Research
5. The Role of Chicken Inbred Lines in Advancing Cancer Research
6. Laying Hens as a Model for Ovarian Cancer Research
7. The Avian Embryo as a Model of Carcinogenesis
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin-Drubin, M.E.; Munger, K. Viruses Associated with Human Cancer. Biochim. Biophys. Acta 2008, 1782, 127–150. [Google Scholar] [CrossRef] [PubMed]
- Justice, J.; Beemon, K.L. Avian Retroviral Replication. Curr. Opin. Virol. 2013, 3, 664–669. [Google Scholar] [CrossRef] [PubMed]
- Fadly, A.M. Avian retroviruses. Vet. Clin. N. Am. Food Anim. Pract. 1997, 13, 71–85. [Google Scholar] [CrossRef]
- Fandiño, S.; Gomez-Lucia, E.; Benítez, L.; Doménech, A. Avian Leukosis: Will We Be Able to Get Rid of It? Animals 2023, 13, 2358. [Google Scholar] [CrossRef]
- Thomas, J.M.; Allison, A.B.; Holmes, E.C.; Phillips, J.E.; Bunting, E.M.; Yabsley, M.J.; Brown, J.D. Molecular Surveillance for Lymphoproliferative Disease Virus in Wild Turkeys (Meleagris gallopavo) from the Eastern United States. PLoS ONE 2015, 10, e0122644. [Google Scholar] [CrossRef]
- Adcock, K.G.; Berghaus, R.D.; Goodwin, C.C.; Ruder, M.G.; Yabsley, M.J.; Mead, D.G.; Nemeth, N.M. Lymphoproliferative Disease Virus and Reticuloendotheliosis Virus Detection and Disease in Wild Turkeys (Meleagris gallopavo). J. Wildl. Dis. 2024, 60, 139–150. [Google Scholar] [CrossRef]
- Caleiro, G.S.; Nunes, C.F.; Urbano, P.R.; Kirchgatter, K.; de Araujo, J.; Durigon, E.L.; Thomazelli, L.M.; Stewart, B.M.; Edwards, D.C.; Romano, C.M. Detection of Reticuloendotheliosis Virus in Muscovy Ducks, Wild Turkeys, and Chickens in Brazil. J. Wildl. Dis. 2020, 56, 631–635. [Google Scholar] [CrossRef]
- Freick, M.; Schreiter, R.; Weber, J.; Vahlenkamp, T.W.; Heenemann, K. Avian Leukosis Virus (ALV) Is Highly Prevalent in Fancy-Chicken Flocks in Saxony. Arch. Virol. 2022, 167, 1169–1174. [Google Scholar] [CrossRef]
- Beemon, K.L. Avian Leukosis and Sarcoma Viruses (Retroviridae). In Encyclopedia of Virology, 4th ed.; Academic Press: Cambridge, MA, USA, 2021; Volume 2, pp. 122–126. [Google Scholar]
- Mosad, S.M.; El-Tholoth, M.; El-Kenawy, A.A.; Abdel-Hafez, L.J.M.; El-Gohary, F.A.; El-Sharkawy, H.; Elsayed, M.M.; Saleh, A.A.; Elmahallawy, E.K. Molecular Detection of Reticuloendotheliosis Virus 5′ Long Terminal Repeat Integration in the Genome of Avipoxvirus Field Strains from Different Avian Species in Egypt. Biology 2020, 9, 257. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, S.; Winans, S.; Lam, G.; Justice, J.; Morgan, R.; Beemon, K. Selection for Avian Leukosis Virus Integration Sites Determines the Clonal Progression of B-Cell Lymphomas. PLoS Pathog. 2017, 13, e1006708. [Google Scholar] [CrossRef] [PubMed]
- Maclachlan, N.; Dubovi, E.J.; Barthold, S.W.; Swayne, D.; Winton, J.R. Fenner’s Veterinary Virology, 5th ed.; Academic Press: Cambridge, MA, USA, 2016; 581p. [Google Scholar]
- Cloft, S.E.; Kinstler, S.R.; Reno, K.E.; Sellers, H.S.; Franca, M.; Ecco, R.; Lee, M.D.; Maurer, J.J.; Wong, E.A. Runting Stunting Syndrome in Broiler Chickens Is Associated with Altered Intestinal Stem Cell Morphology and Gene Expression. Avian Dis. 2022, 66, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Robinson, F.R.; Twiehaus, M.J. Isolation of the Avian Reticuloendothelial Virus (Strain T). Avian Dis. 1974, 18, 278–288. [Google Scholar] [CrossRef]
- He, S.; Zhou, M.; Zheng, H.; Wang, Y.; Wu, S.; Gao, Y.; Chen, J. Resveratrol Inhibits the Progression of Premature Senescence Partially by Regulating V-Rel Avian Reticuloendotheliosis Viral Oncogene Homolog A (RELA) and Sirtuin 1 (SIRT1). Ren. Fail. 2022, 44, 171–183. [Google Scholar] [CrossRef]
- Mason, A.S.; Miedzinska, K.; Kebede, A.; Bamidele, O.; Al-Jumaili, A.S.; Dessie, T.; Hanotte, O.; Smith, J. Diversity of Endogenous Avian Leukosis Virus Subgroup E (ALVE) Insertions in Indigenous Chickens. Genet. Sel. Evol. 2020, 52, 29. [Google Scholar] [CrossRef]
- Borodin, A.M.; Emanuilova, Z.V.; Smolov, S.V.; Ogneva, O.A.; Konovalova, N.V.; Terentyeva, E.V.; Serova, N.Y.; Efimov, D.N.; Fisinin, V.I.; Greenberg, A.J.; et al. Eradication of avian leukosis virus subgroups J and K in broiler cross chickens by selection against infected birds using multilocus PCR. PLoS ONE 2022, 17, e0269525. [Google Scholar] [CrossRef]
- Li, Q.; Wang, P.; Li, M.; Lin, L.; Shi, M.; Li, H.; Deng, Q.; Teng, H.; Mo, M.; Wei, T.; et al. Recombinant subgroup B avian leukosis virus combined with the subgroup J env gene significantly increases its pathogenicity. Vet. Microbiol. 2020, 250, 108862. [Google Scholar] [CrossRef]
- Nair, V.; Fadly, A.M. Leukosis/Sarcoma Group. In Diseases of Poultry, 13th ed.; Swayne, D.E., Glisson, J.R., McDougald, L.R., Nolan, L.K., Suarez, D.L., Nair, V., Eds.; Wiley-Blackwell: Ames, IA, USA, 2013; pp. 553–592. [Google Scholar]
- Přikryl, D.; Plachý, J.; Kučerová, D.; Koslová, A.; Reinišová, M.; Šenigl, F.; Hejnar, J. The Novel Avian Leukosis Virus Subgroup K Shares Its Cellular Receptor with Subgroup A. J. Virol. 2019, 93, e00580-19. [Google Scholar] [CrossRef]
- Khordadmehr, M.; Firouzamandi, M.; zehtab najafi, M.; Shahbazi, R. Naturally Occurring Co-Infection of Avian Leukosis Virus (Subgroups A-E) and Reticuloendotheliosis Virus in Green Peafowls (Pavo Muticus). Rev. Bras. Ciênc. Avícola 2017, 19, 609–614. [Google Scholar] [CrossRef]
- Zheng, L.-P.; Teng, M.; Li, G.-X.; Zhang, W.-K.; Wang, W.-D.; Liu, J.-L.; Li, L.-Y.; Yao, Y.; Nair, V.; Luo, J. Current Epidemiology and Co-Infections of Avian Immunosuppressive and Neoplastic Diseases in Chicken Flocks in Central China. Viruses 2022, 14, 2599. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhuang, P.; Cheng, Z.; Yang, J.; Bi, J.; Wang, G. Avian Leukosis Virus Subgroup J and Reticuloendotheliosis Virus Coinfection Induced TRIM62 Regulation of the Actin Cytoskeleton. J. Vet. Sci. 2020, 21, e49. [Google Scholar] [CrossRef] [PubMed]
- Dibsy, R.; Bremaud, E.; Mak, J.; Favard, C.; Muriaux, D. HIV-1 Diverts Cortical Actin for Particle Assembly and Release. Nat. Commun. 2023, 14, 6945. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Zhang, X.; Xue, J.; Yao, Y.; Zhou, D.; Cheng, Z. TMT-Based Proteomic Analysis Reveals Integrins Involved in the Synergistic Infection of Reticuloendotheliosis Virus and Avian Leukosis Virus Subgroup J. BMC Vet. Res. 2022, 18, 131. [Google Scholar] [CrossRef]
- Zhou, D.; Xue, J.; He, S.; Du, X.; Zhou, J.; Li, C.; Huang, L.; Nair, V.; Yao, Y.; Cheng, Z. Reticuloendotheliosis Virus and Avian Leukosis Virus Subgroup J Synergistically Increase the Accumulation of Exosomal miRNAs. Retrovirology 2018, 15, 45. [Google Scholar] [CrossRef]
- Lee, J.; Lee, J.; Choi, C.; Kim, J.H. Blockade of Integrin A3 Attenuates Human Pancreatic Cancer via Inhibition of EGFR Signalling. Sci. Rep. 2019, 9, 2793. [Google Scholar] [CrossRef]
- Leonard, M.K.; Novak, M.; Snyder, D.; Snow, G.; Pamidimukkala, N.; McCorkle, J.R.; Yang, X.H.; Kaetzel, D.M. The Metastasis Suppressor NME1 Inhibits Melanoma Cell Motility via Direct Transcriptional Induction of the Integrin Beta-3 Gene. Exp. Cell Res. 2019, 374, 85. [Google Scholar] [CrossRef]
- An, J.S.; Moon, J.H.; Kim, C.; No, J.K.; Eun, Y.G.; Chang Lim, Y. Integrin Alpha 6 as a Stemness Driver Is a Novel Promising Target for HPV (+) Head and Neck Squamous Cell Carcinoma. Exp. Cell Res. 2021, 407, 112815. [Google Scholar] [CrossRef]
- Zhou, D.; Ding, L.; Xu, M.; Liu, X.; Xue, J.; Zhang, X.; Du, X.; Zhou, J.; Cui, X.; Cheng, Z. Musashi-1 and miR-147 Precursor Interaction Mediates Synergistic Oncogenicity Induced by Co-Infection of Two Avian Retroviruses. Cells 2022, 11, 3312. [Google Scholar] [CrossRef]
- Biggs, P.M.; Milne, B.S.; Frazier, J.A.; McDougall, J.S.; Stuart, J.C. Lymphoproliferative disease in turkeys. In Proceedings of the 15th World Poultry Congress, World Poultry Science Association, Washington, DC, USA, 11–16 August 1974; pp. 55–56. [Google Scholar]
- Rous, P. A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J. Exp. Med. 1911, 13, 397–411. [Google Scholar] [CrossRef]
- Baltimore, D. Viral RNA-Dependent DNA Polymerase: RNA-Dependent DNA Polymerase in Virions of RNA Tumour Viruses. Nature 1970, 226, 1209–1211. [Google Scholar] [CrossRef]
- Temin, H.M.; Mizutani, S. RNA-Dependent DNA Polymerase in Virions of Rous Sarcoma Virus. Nature 1970, 226, 1211–1213. [Google Scholar] [CrossRef] [PubMed]
- Stehelin, D.; Varmus, H.E.; Bishop, J.M.; Vogt, P.K. DNA Related to the Transforming Gene(s) of Avian Sarcoma Viruses Is Present in Normal Avian DNA. Nature 1976, 260, 170–173. [Google Scholar] [CrossRef] [PubMed]
- Raji, L.; Tetteh, A.; Amin, A.R.M.R. Role of C-Src in Carcinogenesis and Drug Resistance. Cancers 2023, 16, 32. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.N.; Majumdar, N.; Williams, F.; Rajput, S.; Pokhrel, L.R.; Cook, P.P.; Akula, S.M. MicroRNAs: Small but Key Players in Viral Infections and Immune Responses to Viral Pathogens. Biology 2023, 12, 1334. [Google Scholar] [CrossRef]
- Gallo, A.; Miceli, V.; Bulati, M.; Iannolo, G.; Contino, F.; Conaldi, P.G. Viral miRNAs as Active Players and Participants in Tumorigenesis. Cancers 2020, 12, 358. [Google Scholar] [CrossRef]
- Islam, M.S.; Islam, A.B.M.M.K. Viral miRNAs Confer Survival in Host Cells by Targeting Apoptosis Related Host Genes. Inform. Med. Unlocked 2021, 22, 100501. [Google Scholar] [CrossRef]
- Paul, S.; Saikia, M.; Chakraborty, S. Identification of Novel microRNAs in Rous Sarcoma Virus (RSV) and Their Target Sites in Tumor Suppressor Genes of Chicken. Infect. Genet. Evol. 2021, 96, 105139. [Google Scholar] [CrossRef]
- Brown, C.J.; Lain, S.; Verma, C.S.; Fersht, A.R.; Lane, D.P. Awakening Guardian Angels: Drugging the P53 Pathway. Nat. Rev. Cancer 2009, 9, 862–873. [Google Scholar] [CrossRef]
- Cavanagh, H.; Rogers, K.M.A. The Role of BRCA1 and BRCA2 Mutations in Prostate, Pancreatic and Stomach Cancers. Hered. Cancer Clin. Pract. 2015, 13, 16. [Google Scholar] [CrossRef]
- Khare, V.M.; Saxena, V.K.; Tomar, A.; Singh, K.P.; Singh, K.B.; Tiwari, A.K. MHC-B Haplotypes Impact Susceptibility and Resistance to RSV-A Infection. Front. Biosci. Elite Ed. 2018, 10, 506–519. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, N.G.; Kopulos, R.T.; Yates, L.M.; Briles, W.E.; Taylor, R.L. Research Note: Rous Sarcoma Growth Differs among Congenic Lines Containing Major Histocompatibility (B) Complex Recombinants. Poult. Sci. 2021, 100, 101335. [Google Scholar] [CrossRef] [PubMed]
- Khare, V.M.; Saxena, V.K.; Tomar, A.; Nyinawabera, A.; Singh, K.B.; Ashby, C.R., Jr.; Tiwari, A.K. Cytokine Gene Expression Following RSV-A Infection. Front. Biosci.-Landmark 2019, 24, 463–481. [Google Scholar] [CrossRef]
- Khare, V.M.; Saxena, V.K.; Pasternak, M.A.; Nyinawabera, A.; Singh, K.B.; Ashby, C.R.; Tiwari, A.K.; Tang, Y. The Expression Profiles of Chemokines, Innate Immune and Apoptotic Genes in Tumors Caused by Rous Sarcoma Virus (RSV-A) in Chickens. Genes Immun. 2022, 23, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Mucksová, J.; Plachý, J.; Staněk, O.; Hejnar, J.; Kalina, J.; Benešová, B.; Trefil, P. Cytokine Response to the RSV Antigen Delivered by Dendritic Cell-Directed Vaccination in Congenic Chicken Lines. Vet. Res. 2017, 48, 18. [Google Scholar] [CrossRef]
- Frossard, J. Retroviridae. In Veterinary Microbiology; McVey, D.S., Kennedy, M., Chengappa, M.M., Wilkes, R., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2022; pp. 698–727. ISBN 978-1-119-65075-1. [Google Scholar]
- Beard, J.W. Avian Virus Growths And Theri Etiologic Agents. Adv. Cancer Res. 1963, 7, 1–127. [Google Scholar] [CrossRef] [PubMed]
- Engelke, U.; Lipsick, J.S. Transformation of myelomonocytic cells by the avian myeloblastosis virus is determined by the v-myb oncogene, not by the unique long terminal repeats of the virus. J. Virol. 1994, 68, 2752–2755. [Google Scholar] [CrossRef]
- Ivanov, X.; Mladenov, Z.; Nedyalkov, S.; Todorov, T.G. Experimental investigations into avian leucoses. I. Transmission experiments of certain diseases of the avian leukosis complex, found in Bulgaria. Bull. Inst. Path. Comp. Anim. Acad. Bulg. Sci. 1962, 9, 5–36. [Google Scholar]
- Oh, I.H.; Reddy, E.P. The myb gene family in cell growth, differentiation and apoptosis. Oncogene 1999, 18, 3017–3033. [Google Scholar] [CrossRef]
- Davidson, C.J.; Guthrie, E.E.; Lipsick, J.S. Duplication and maintenance of the Myb genes of vertebrate animals. Biol. Open. 2013, 2, 101–110. [Google Scholar] [CrossRef]
- Li, Y.; Jin, K.; van Pelt, G.W.; van Dam, H.; Yu, X.; Mesker, W.E.; Ten Dijke, P.; Zhou, F.; Zhang, L. c-Myb Enhances Breast Cancer Invasion and Metastasis through the Wnt/β-Catenin/Axin2 Pathway. Cancer Res. 2016, 76, 3364–3375. [Google Scholar] [CrossRef] [PubMed]
- Mansour, M.R.; Abraham, B.J.; Anders, L.; Berezovskaya, A.; Gutierrez, A.; Durbin, A.D.; Etchin, J.; Lawton, L.; Sallan, S.E.; Silverman, L.B.; et al. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science 2014, 346, 1373–1377. [Google Scholar] [CrossRef]
- Williams, B.B.; Wall, M.; Miao, R.Y.; Williams, B.; Bertoncello, I.; Kershaw, M.H.; Mantamadiotis, T.; Haber, M.; Norris, M.D.; Gautam, A.; et al. Induction of T cell-mediated immunity using a c-Myb DNA vaccine in a mouse model of colon cancer. Cancer Immunol. Immunother. 2008, 57, 1635–1645. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.S.; Fu, Y.; Lin, J.Y. Upregulation of MYBL2independently predicts a poorer prognosis in patients with clear cell renal cell carcinoma. Oncol. Lett. 2020, 19, 2765–2772. [Google Scholar] [CrossRef]
- Klein, G. Herpesviruses and Oncogenesis. Proc. Natl. Acad. Sci. USA 1972, 69, 1056–1064. [Google Scholar] [CrossRef]
- Chang, P.-C.; Campbell, M.; Robertson, E.S. Human Oncogenic Herpesvirus and Post-Translational Modifications—Phosphorylation and SUMOylation. Front. Microbiol. 2016, 7, 962. [Google Scholar] [CrossRef]
- Bertzbach, L.D.; Conradie, A.M.; You, Y.; Kaufer, B.B. Latest Insights into Marek’s Disease Virus Pathogenesis and Tumorigenesis. Cancers 2020, 12, 647. [Google Scholar] [CrossRef]
- Weiss, R.A. The Oncologist’s Debt to the Chicken. Avian Pathol. 1998, 27, S8–S15. [Google Scholar] [CrossRef]
- Vishwanatha, R.; Nair, V. Avian Herpesviruses. In Reference Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 978-0-12-809633-8. [Google Scholar]
- McGeoch, D.J.; Davison, A.J. Chapter 17—The Molecular Evolutionary History of the Herpesviruses. In Origin and Evolution of Viruses; Domingo, E., Webster, R., Holland, J., Eds.; Academic Press: London, UK, 1999; pp. 441–465. ISBN 978-0-12-220360-2. [Google Scholar]
- Davison, A.J. Herpesvirus Systematics. Vet. Microbiol. 2010, 143, 52–69. [Google Scholar] [CrossRef]
- Yu, G.; Hatta, A.; Periyannan, S.; Lagudah, E.; Wulff, B.B.H. Isolation of Wheat Genomic DNA for Gene Mapping and Cloning. In Wheat Rust Diseases: Methods and Protocols; Humana Press: New York, NY, USA, 2017; Volume 1659, pp. 207–213. [Google Scholar] [CrossRef]
- Tulman, E.R.; Afonso, C.L.; Lu, Z.; Zsak, L.; Rock, D.L.; Kutish, G.F. The Genome of a Very Virulent Marek’s Disease Virus. J. Virol. 2000, 74, 7980–7988. [Google Scholar] [CrossRef]
- Osterrieder, N.; Kamil, J.P.; Schumacher, D.; Tischer, B.K.; Trapp, S. Marek’s Disease Virus: From Miasma to Model. Nat. Rev. Microbiol. 2006, 4, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Boodhoo, N.; Gurung, A.; Sharif, S.; Behboudi, S. Marek’s Disease in Chickens: A Review with Focus on Immunology. Vet. Res. 2016, 47, 119. [Google Scholar] [CrossRef]
- Witter, R.L. Increased Virulence of Marek’s Disease Virus Field Isolates. Avian Dis. 1997, 41, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Roh, J.H.; Kang, M.; Wei, B.; Yoon, R.H.; Seo, H.S.; Bahng, J.Y.; Kwon, J.T.; Cha, S.Y.; Jang, H.K. Efficacy of HVT-IBD vector vaccine compared to attenuated live vaccine using in-ovo vaccination against a Korean very virulent IBDV in commercial broiler chickens. Poult. Sci. 2016, 95, 1020–1024. [Google Scholar] [CrossRef]
- Baaten, B.J.G.; Staines, K.A.; Smith, L.P.; Skinner, H.; Davison, T.F.; Butter, C. Early Replication in Pulmonary B Cells after Infection with Marek’s Disease Herpesvirus by the Respiratory Route. Viral Immunol. 2009, 22, 431–444. [Google Scholar] [CrossRef] [PubMed]
- Lantier, I.; Mallet, C.; Souci, L.; Larcher, T.; Conradie, A.M.; Courvoisier, K.; Trapp, S.; Pasdeloup, D.; Kaufer, B.B.; Denesvre, C. In Vivo Imaging Reveals Novel Replication Sites of a Highly Oncogenic Avian Herpesvirus in Chickens. PLoS Pathog. 2022, 18, e1010745. [Google Scholar] [CrossRef]
- Calnek, B.W.; Adldinger, H.K.; Kahn, D.E. Feather Follicle Epithelium: A Source of Enveloped and Infectious Cell-Free Herpesvirus from Marek’s Disease. Avian Dis. 1970, 14, 219–233. [Google Scholar] [CrossRef]
- Lee, L.F.; Zhang, H.; Heidari, M.; Lupiani, B.; Reddy, S.M. Evaluation of Factors Affecting Vaccine Efficacy of Recombinant Marek’s Disease Virus Lacking the Meq Oncogene in Chickens. Avian Dis. 2011, 55, 172–179. [Google Scholar] [CrossRef]
- Baigent, S.J.; Smith, L.P.; Nair, V.K.; Currie, R.J.W. Vaccinal Control of Marek’s Disease: Current Challenges, and Future Strategies to Maximize Protection. Vet. Immunol. Immunopathol. 2006, 112, 78–86. [Google Scholar] [CrossRef]
- Lipsick, J. A History of Cancer Research: Tumor Viruses. Cold Spring Harb. Perspect. Biol. 2021, 13, a035774. [Google Scholar] [CrossRef]
- Becsei-Kilborn, E. Scientific Discovery and Scientific Reputation: The Reception of Peyton Rous’ Discovery of the Chicken Sarcoma Virus. J. Hist. Biol. 2010, 43, 111–157. [Google Scholar] [CrossRef] [PubMed]
- González-Herrero, I.; Rodríguez-Hernández, G.; Luengas-Martínez, A.; Isidro-Hernández, M.; Jiménez, R.; García-Cenador, M.B.; García-Criado, F.J.; Sánchez-García, I.; Vicente-Dueñas, C. The Making of Leukemia. Int. J. Mol. Sci. 2018, 19, 1494. [Google Scholar] [CrossRef] [PubMed]
- Vogt, P.K. Retroviral Oncogenes: A Historical Primer. Nat. Rev. Cancer 2012, 12, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Mui, U.N.; Haley, C.T.; Tyring, S.K. Viral Oncology: Molecular Biology and Pathogenesis. J. Clin. Med. 2017, 6, 111. [Google Scholar] [CrossRef]
- Campbell, K. Herpesviruses (Herpesviridae). In Infectious Causes of Cancer; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; pp. 91–105. ISBN 978-0-470-75365-1. [Google Scholar]
- Javier, R.T.; Butel, J.S. The History of Tumor Virology. Cancer Res. 2008, 68, 7693–7706. [Google Scholar] [CrossRef]
- M’Fadyan, J.; Hobday, F. Note on the experimental “transmission of warts in the dog”. J. Comp. Pathol. Ther. 1898, 11, 341–343. [Google Scholar] [CrossRef]
- Hausen, H.; Fox, J.; Wang, T.C.; Parsonnet, J. Infections Causing Human Cancer; John Wiley & Sons: Hoboken, NJ, USA, 2006; p. 517. ISBN 978-3-527-31056-2. [Google Scholar]
- Institute of Medicine. To Improve Human Health: A History of the Institute of Medicine; National Academies Press: Washington, DC, USA, 1998; ISBN 978-0-309-06188-9. [Google Scholar]
- White, M.K.; Pagano, J.S.; Khalili, K. Viruses and Human Cancers: A Long Road of Discovery of Molecular Paradigms. Clin. Microbiol. Rev. 2014, 27, 463–481. [Google Scholar] [CrossRef]
- Giunta, S. Decoding Human Cancer with Whole Genome Sequencing: A Review of PCAWG Project Studies Published in February 2020. Cancer Metastasis Rev. 2021, 40, 909–924. [Google Scholar] [CrossRef]
- Schiller, J.T.; Lowy, D.R. Vaccines to Prevent Infections by Oncoviruses. Annu. Rev. Microbiol. 2010, 64, 23–41. [Google Scholar] [CrossRef]
- Shuro, A. Review Paper on Approaches in Developing Inbred Lines in Cross-Pollinated Crops. Biochem. Mol. Biol. 2017, 2, 40. [Google Scholar] [CrossRef]
- Xu, L.; He, Y.; Ding, Y.; Liu, G.E.; Zhang, H.; Cheng, H.H.; Taylor, R.L., Jr.; Song, J. Genetic assessment of inbred chicken lines indicates genomic signatures of resistance to Marek’s disease. J. Anim. Sci. Biotechnol. 2018, 9, 65. [Google Scholar] [CrossRef] [PubMed]
- Gul, H.; Habib, G.; Khan, I.M.; Rahman, S.U.; Khan, N.M.; Wang, H.; Khan, N.U.; Liu, Y. Genetic resilience in chickens against bacterial, viral and protozoal pathogens. Front. Vet. Sci. 2022, 9, 1032983. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.P.D.; Gallardo, R.A. The Chicken MHC: Insights into Genetic Resistance, Immunity, and Inflammation Following Infectious Bronchitis Virus Infections. Vaccines 2020, 8, 637. [Google Scholar] [CrossRef] [PubMed]
- Lengyel, E.; Burdette, J.E.; Kenny, H.A.; Matei, D.; Pilrose, J.; Haluska, P.; Nephew, K.P.; Hales, D.B.; Stack, M.S. Epithelial ovarian cancer experimental models. Oncogene 2014, 33, 3619–3633. [Google Scholar] [CrossRef] [PubMed]
- Karnezis, A.N.; Cho, K.R. Preclinical Models of Ovarian Cancer: Pathogenesis, Problems, and Implications for Prevention. Clin. Obstet. Gynecol. 2017, 60, 789–800. [Google Scholar] [CrossRef]
- Tudrej, P.; Kujawa, K.A.; Cortez, A.J.; Lisowska, K.M. Characteristics of in Vivo Model Systems for Ovarian Cancer Studies. Diagnostics 2019, 9, 120. [Google Scholar] [CrossRef]
- Hawkridge, A.M. The Chicken Model of Spontaneous Ovarian Cancer. Proteom. Clin. Appl. 2014, 8, 689–699. [Google Scholar] [CrossRef]
- Bernardo, A.D.M.; Thorsteinsdóttir, S.; Mummery, C.L. Advantages of the Avian Model for Human Ovarian Cancer. Mol. Clin. Oncol. 2015, 3, 1191–1198. [Google Scholar] [CrossRef]
- Fredrickson, T.N. Ovarian tumors of the hen. Environ. Health Perspect. 1987, 73, 35–51. [Google Scholar] [CrossRef]
- Barnes, M.N.; Berry, W.D.; Straughn, J.M.J.; Kirby, T.O.; Leath, C.A.; Huh, W.K.; Grizzle, W.E.; Partridge, E.E. A Pilot Study of Ovarian Cancer Chemoprevention Using Medroxyprogesterone Acetate in an Avian Model of Spontaneous Ovarian Carcinogenesis. Gynecol. Oncol. 2002, 87, 57–63. [Google Scholar] [CrossRef]
- King, S.M.; Burdette, J.E. Evaluating the Progenitor Cells of Ovarian Cancer: Analysis of Current Animal Models. BMB Rep. 2011, 44, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Barua, A.; Abramowicz, J.S.; Bahr, J.M.; Bitterman, P.; Dirks, A.; Holub, K.A.; Sheiner, E.; Bradaric, M.J.; Edassery, S.L.; Luborsky, J.L. Detection of ovarian tumors in chicken by sonography: A step toward early diagnosis in humans? J. Ultrasound Med. 2007, 26, 909–919. [Google Scholar] [CrossRef]
- Barua, A.; Bitterman, P.; Abramowicz, J.S.; Dirks, A.L.; Bahr, J.M.; Hales, D.B.; Bradaric, M.J.; Edassery, S.L.; Rotmensch, J.; Luborsky, J.L. Histopathology of ovarian tumors in laying hens: A preclinical model of human ovarian cancer. Int. J. Gynecol. Cancer. 2009, 19, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Jackson, E.; Anderson, K.; Ashwell, C.; Petitte, J.; Mozdziak, P.E. CA125 Expression in Spontaneous Ovarian Adenocarcinomas from Laying Hens. Gynecol. Oncol. 2007, 104, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Barua, A.; Bahr, J.M. Ovarian Cancer: Applications of Chickens to Humans. Annu. Rev. Anim. Biosci. 2022, 10, 241–257. [Google Scholar] [CrossRef]
- Hasan, N.; Ohman, A.W.; Dinulescu, D.M. The Promise and Challenge of Ovarian Cancer Models. Transl. Cancer Res. 2015, 4. [Google Scholar] [CrossRef]
- Ansenberger, K.; Zhuge, Y.; Lagman, J.A.J.; Richards, C.; Barua, A.; Bahr, J.M.; Hales, D.B. E-Cadherin Expression in Ovarian Cancer in the Laying Hen, Gallus Domesticus, Compared to Human Ovarian Cancer. Gynecol. Oncol. 2009, 113, 362–369. [Google Scholar] [CrossRef]
- Hakim, A.A.; Barry, C.P.; Barnes, H.J.; Anderson, K.E.; Petitte, J.; Whitaker, R.; Lancaster, J.M.; Wenham, R.M.; Carver, D.K.; Turbov, J.; et al. Ovarian Adenocarcinomas in the Laying Hen and Women Share Similar Alterations in P53, Ras, and HER-2/Neu. Cancer Prev. Res. 2009, 2, 114–121. [Google Scholar] [CrossRef]
- Choi, P.-W.; So, W.W.; Yang, J.; Liu, S.; Tong, K.K.; Kwan, K.M.; Kwok, J.S.-L. MicroRNA-200 Family Governs Ovarian Inclusion Cyst Formation and Mode of Ovarian Cancer Spread. Oncogene 2020, 39, 4045–4061. [Google Scholar] [CrossRef]
- Stammer, K.; Edassery, S.L.; Barua, A.; Bitterman, P.; Bahr, J.M.; Hales, D.B.; Luborsky, J. Selenium-Binding Protein 1 Expression in Ovaries and Ovarian Tumors of in the Laying Hen, a Spontaneous Model of Human Ovarian Cancer. Gynecol. Oncol. 2008, 109, 115–121. [Google Scholar] [CrossRef]
- Pal, P.; Starkweather, K.N.; Hales, K.H.; Hales, D.B. A Review of Principal Studies on the Development and Treatment of Epithelial Ovarian Cancer in the Laying Hen Gallus Gallus. Comp. Med. 2021, 71, 271–284. [Google Scholar] [CrossRef] [PubMed]
- Eilati, E.; Pan, L.; Bahr, J.M.; Hales, D.B. Age Dependent Increase in Prostaglandin Pathway Coincides with Onset of Ovarian Cancer in Laying Hens. Prostaglandins Leukot. Essent. Fat. Acids 2012, 87, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Kain, K.H.; Miller, J.W.I.; Jones-Paris, C.R.; Thomason, R.T.; Lewis, J.D.; Bader, D.M.; Barnett, J.V.; Zijlstra, A. The Chick Embryo as an Expanding Experimental Model for Cancer and Cardiovascular Research. Dev. Dyn. 2014, 243, 216–228. [Google Scholar] [CrossRef] [PubMed]
- Sahin, K.; Yenice, E.; Tuzcu, M.; Orhan, C.; Mizrak, C.; Ozercan, I.H.; Sahin, N.; Yilmaz, B.; Bilir, B.; Ozpolat, B.; et al. Lycopene Protects Against Spontaneous Ovarian Cancer Formation in Laying Hens. J. Cancer Prev. 2018, 23, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Sahin, K.; Yenice, E.; Bilir, B.; Orhan, C.; Tuzcu, M.; Sahin, N.; Ozercan, I.H.; Kabil, N.; Ozpolat, B.; Kucuk, O. Genistein Prevents Development of Spontaneous Ovarian Cancer and Inhibits Tumor Growth in Hen Model. Cancer Prev. Res. 2019, 12, 135–146. [Google Scholar] [CrossRef]
- Dikshit, A.; Hales, K.; Hales, D.B. Whole Flaxseed Diet Alters Estrogen Metabolism to Promote 2-Methoxtestradiol-Induced Apoptosis in Hen Ovarian Cancer. J. Nutr. Biochem. 2017, 42, 117–125. [Google Scholar] [CrossRef]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Lee, K.Y.; Choi, H.J.; Park, K.J.; Woo, S.J.; Kim, Y.M.; Han, J.Y. Development and characterization of a CRISPR/Cas9-mediated RAG1 knockout chicken model lacking mature B and T cells. Front. Immunol. 2022, 13, 892476. [Google Scholar] [CrossRef]
- Oishi, I.; Yoshii, K.; Miyahara, D.; Kagami, H.; Tagami, T. Targeted mutagenesis in chicken using CRISPR/Cas9 system. Sci. Rep. 2016, 6, 23980. [Google Scholar] [CrossRef]
- Oishi, I.; Yoshii, K.; Miyahara, D.; Tagami, T. Efficient production of human interferon beta in the white of eggs from ovalbumin gene–targeted hens. Sci. Rep. 2018, 8, 10203. [Google Scholar] [CrossRef]
- Rieblinger, B.; Sid, H.; Duda, D.; Bozoglu, T.; Klinger, R.; Schlickenrieder, A.; Lengyel, K.; Flisikowski, K.; Flisikowska, T.; Simm, N.; et al. Cas9-expressing chickens and pigs as resources for genome editing in livestock. Proc. Natl. Acad. Sci. USA 2021, 118, e2022562118. [Google Scholar] [CrossRef] [PubMed]
- Orelli, B.J.; Logsdon, J.M., Jr.; Bishop, D.K. Nine novel conserved motifs in BRCA1 identified by the chicken orthologue. Oncogene 2001, 20, 4433–4438. [Google Scholar] [CrossRef] [PubMed]
- Takata, M.; Tachiiri, S.; Fujimori, A.; Thompson, L.H.; Miki, Y.; Hiraoka, M.; Takeda, S.; Yamazoe, M. Conserved domains in the chicken homologue of BRCA2. Oncogene 2002, 21, 1130–1134. [Google Scholar] [CrossRef] [PubMed]
- Prakash, V.; Carson, B.B.; Feenstra, J.M.; Dass, R.A.; Sekyrova, P.; Hoshino, A.; Petersen, J.; Guo, Y.; Parks, M.M.; Kurylo, C.M.; et al. Ribosome Biogenesis during Cell Cycle Arrest Fuels EMT in Development and Disease. Nat. Commun. 2019, 10, 2110. [Google Scholar] [CrossRef]
- DeBord, L.C.; Pathak, R.R.; Villaneuva, M.; Liu, H.-C.; Harrington, D.A.; Yu, W.; Lewis, M.T.; Sikora, A.G. The Chick Chorioallantoic Membrane (CAM) as a Versatile Patient-Derived Xenograft (PDX) Platform for Precision Medicine and Preclinical Research. Am. J. Cancer Res. 2018, 8, 1642–1660. [Google Scholar] [PubMed]
- Palmer, T.D.; Lewis, J.; Zijlstra, A. Quantitative Analysis of Cancer Metastasis Using an Avian Embryo Model. J. Vis. Exp. 2011, 51, 2815. [Google Scholar] [CrossRef]
- Bader, A.G.; Kang, S.; Vogt, P.K. Cancer-Specific Mutations in PIK3CA Are Oncogenic in Vivo. Proc. Natl. Acad. Sci. USA 2006, 103, 1475–1479. [Google Scholar] [CrossRef] [PubMed]
- Chambers, A.F.; Shafir, R.; Ling, V. A Model System for Studying Metastasis Using the Embryonic Chick. Cancer Res. 1982, 42, 4018–4025. [Google Scholar]
- Deryugina, E.I.; Kiosses, W.B. Intratumoral Cancer Cell Intravasation Can Occur Independent of Invasion into the Adjacent Stroma. Cell Rep. 2017, 19, 601–616. [Google Scholar] [CrossRef]
- Murphy, J.B. Transplantability of tissues to the embryo of foreign species: Its bearing on questions of tissue specificity and tumor immunity. J. Exp. Med. 1913, 17, 482–493. [Google Scholar] [CrossRef]
- Ribatti, D. The Chick Embryo Chorioallantoic Membrane as a Model for Tumor Biology. Exp. Cell Res. 2014, 328, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, S.; Feng, Y.; Zhang, J.; Du, Y.; Zhang, J.; Van Ongeval, C.; Ni, Y.; Li, Y. Utilisation of Chick Embryo Chorioallantoic Membrane as a Model Platform for Imaging-Navigated Biomedical Research. Cells 2021, 10, 463. [Google Scholar] [CrossRef] [PubMed]
- Pawlikowska, P.; Tayoun, T.; Oulhen, M.; Faugeroux, V.; Rouffiac, V.; Aberlenc, A.; Pommier, A.L.; Honore, A.; Marty, V.; Bawa, O.; et al. Exploitation of the Chick Embryo Chorioallantoic Membrane (CAM) as a Platform for Anti-Metastatic Drug Testing. Sci. Rep. 2020, 10, 16876. [Google Scholar] [CrossRef]
- Ribatti, D. The Chick Embryo Chorioallantoic Membrane (CAM) Assay. Reprod. Toxicol. 2017, 70, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Liu, X.; Yang, Y.; Wei, B.; Li, Q.; Mao, G.; He, Y.; Li, Y.; Zheng, L.; Zhang, Q.; et al. Decylubiquinone Suppresses Breast Cancer Growth and Metastasis by Inhibiting Angiogenesis via the ROS/P53/ BAI1 Signaling Pathway. Angiogenesis 2020, 23, 325–338. [Google Scholar] [CrossRef]
- Delloye-Bourgeois, C.; Bertin, L.; Thoinet, K.; Jarrosson, L.; Kindbeiter, K.; Buffet, T.; Tauszig-Delamasure, S.; Bozon, M.; Marabelle, A.; Combaret, V.; et al. Microenvironment-Driven Shift of Cohesion/Detachment Balance within Tumors Induces a Switch toward Metastasis in Neuroblastoma. Cancer Cell 2017, 32, 427–443.e8. [Google Scholar] [CrossRef]
- Jarrosson, L.; Dalle, S.; Costechareyre, C.; Tang, Y.; Grimont, M.; Plaschka, M.; Lacourrège, M.; Teinturier, R.; Le Bouar, M.; Maucort-Boulch, D.; et al. An In Vivo Avian Model of Human Melanoma to Perform Rapid and Robust Preclinical Studies. EMBO Mol. Med. 2023, 15, e16629. [Google Scholar] [CrossRef]
- Leene, W.; Duyzings, M.J.; van Steeg, C. Lymphoid Stem Cell Identification in the Developing Thymus and Bursa of Fabricius of the Chick. Z. Zellforsch. Mikrosk. Anat. 1973, 136, 521–533. [Google Scholar] [CrossRef]
- Auerbach, R.; Akhtar, N.; Lewis, R.L.; Shinners, B.L. Angiogenesis Assays: Problems and Pitfalls. Cancer Metastasis Rev. 2000, 19, 167–172. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niebora, J.; Data, K.; Domagała, D.; Józkowiak, M.; Barrett, S.; Norizadeh Abbariki, T.; Bryja, A.; Kulus, M.; Woźniak, S.; Ziemak, H.; et al. Avian Models for Human Carcinogenesis—Recent Findings from Molecular and Clinical Research. Cells 2024, 13, 1797. https://doi.org/10.3390/cells13211797
Niebora J, Data K, Domagała D, Józkowiak M, Barrett S, Norizadeh Abbariki T, Bryja A, Kulus M, Woźniak S, Ziemak H, et al. Avian Models for Human Carcinogenesis—Recent Findings from Molecular and Clinical Research. Cells. 2024; 13(21):1797. https://doi.org/10.3390/cells13211797
Chicago/Turabian StyleNiebora, Julia, Krzysztof Data, Dominika Domagała, Małgorzata Józkowiak, Saoirse Barrett, Tannaz Norizadeh Abbariki, Artur Bryja, Magdalena Kulus, Sławomir Woźniak, Hanna Ziemak, and et al. 2024. "Avian Models for Human Carcinogenesis—Recent Findings from Molecular and Clinical Research" Cells 13, no. 21: 1797. https://doi.org/10.3390/cells13211797
APA StyleNiebora, J., Data, K., Domagała, D., Józkowiak, M., Barrett, S., Norizadeh Abbariki, T., Bryja, A., Kulus, M., Woźniak, S., Ziemak, H., Piotrowska-Kempisty, H., Antosik, P., Bukowska, D., Mozdziak, P., Dzięgiel, P., & Kempisty, B. (2024). Avian Models for Human Carcinogenesis—Recent Findings from Molecular and Clinical Research. Cells, 13(21), 1797. https://doi.org/10.3390/cells13211797