Dysregulated Coagulation in Parkinson’s Disease
Abstract
:1. The Introduction
2. Dysregulated Coagulation in PD
2.1. Increased Fibrinogen
2.2. Fibrinolysis Dysfunction
2.3. Platelet Dysfunction
Aspect of Platelet Function | Key Findings | Reference |
---|---|---|
Platelet Count | Generally normal in PD | [34] |
L-DOPA treatment associated with thrombocytopenia; effect is reversible upon treatment cessation | [35] | |
L-DOPA treatment associated with thrombocytopenia; effect is reversible upon treatment cessation | [36] | |
Morphological Changes | Elevated mean platelet volume (MPV) | [38] |
Abnormally large platelet vacuoles | [37] | |
Larger platelet size in PD patients; abnormally large platelet vacuoles | [39] | |
Platelet Adhesion | Defective adhesion observed; formation of defective platelet-rich thrombi | [40] |
Platelet Activation | Hyperactivation contributes to increased blood coagulability | [11] |
Exogenous α-syn inhibits thrombin- or ionomycin-induced expression of P-selectin | [41] | |
Platelet Aggregation | Decreased aggregation responses to ADP and epinephrine | [42] |
MPP+ decreased platelet aggregation in platelet-rich plasma | [43] |
3. Comorbidity of Coagulation Disorders and PD
Coagulation Disorder | Clinical Manifestations | Epidemiological Data | Reference |
---|---|---|---|
Deep Vein Thrombosis (DVT) | |||
4.90% | [48] | ||
20% | [50] | ||
Blood clot formation in deep veins | 37.50% | [49] | |
2.70% | [47] | ||
4.90% | [51] | ||
9.40% | [52] | ||
Pulmonary Embolism (PE) | |||
Emboli block the arteries of the lung | 23.10% | [53] | |
Acute psychosis | N/A | [54] | |
Chest pain and dyspnea | N/A | [55] | |
Stroke | |||
Both ischemic and hemorrhagic presentations | Increased risk of stroke | [56] | |
Stroke | Increased risk of stroke | [57] | |
Ischemic stroke | Reduced stroke risk | [58] | |
Stroke | No relationship | [59] | |
Myocardial Infarction (MI) | |||
Reduced/blocked blood flow to heart | Reduced risk of MI | [60] |
4. The Pathophysiological Mechanisms Underlying Dysfunctional Coagulation in PD
4.1. Inflammation
4.2. Oxidative Stress
5. The Limitations of Current Studies and Further Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers 2017, 3, 17013. [Google Scholar] [CrossRef] [PubMed]
- Blesa, J.; Foffani, G.; Dehay, B.; Bezard, E.; Obeso, J.A. Motor and non-motor circuit disturbances in early Parkinson disease: Which happens first? Nat. Rev. Neurosci. 2022, 23, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Lashuel, H.A.; Overk, C.R.; Oueslati, A.; Masliah, E. The many faces of alpha-synuclein: From structure and toxicity to therapeutic target. Nat. Rev. Neurosci. 2013, 14, 38–48. [Google Scholar] [CrossRef]
- Huot, P.; Johnston, T.H.; Koprich, J.B.; Fox, S.H.; Brotchie, J.M. The pharmacology of L-DOPA-induced dyskinesia in Parkinson’s disease. Pharmacol. Rev. 2013, 65, 171–222. [Google Scholar] [CrossRef]
- Mackman, N.; Bergmeier, W.; Stouffer, G.A.; Weitz, J.I. Therapeutic strategies for thrombosis: New targets and approaches. Nat. Rev. Drug Discov. 2020, 19, 333–352. [Google Scholar] [CrossRef]
- Neubauer, K.; Zieger, B. Endothelial cells and coagulation. Cell Tissue Res. 2022, 387, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Heemskerk, J.W.; Mattheij, N.J.; Cosemans, J.M. Platelet-based coagulation: Different populations, different functions. J. Thromb. Haemost. 2013, 11, 2–16. [Google Scholar] [CrossRef]
- Sang, Y.; Roest, M.; de Laat, B.; de Groot, P.G.; Huskens, D. Interplay between platelets and coagulation. Blood Rev. 2021, 46, 100733. [Google Scholar] [CrossRef]
- Walker, C.P.; Royston, D. Thrombin generation and its inhibition: A review of the scientific basis and mechanism of action of anticoagulant therapies. Br. J. Anaesth. 2002, 88, 848–863. [Google Scholar] [CrossRef]
- Longstaff, C.; Kolev, K. Basic mechanisms and regulation of fibrinolysis. J. Thromb. Haemost. 2015, 13 (Suppl. 1), S98–S105. [Google Scholar] [CrossRef]
- Adams, B.; Nunes, J.M.; Page, M.J.; Roberts, T.; Carr, J.; Nell, T.A.; Kell, D.B.; Pretorius, E. Parkinson’s Disease: A Systemic Inflammatory Disease Accompanied by Bacterial Inflammagens. Front. Aging Neurosci. 2019, 11, 210. [Google Scholar] [CrossRef] [PubMed]
- Infante, J.; Prieto, C.; Sierra, M.; Sanchez-Juan, P.; Gonzalez-Aramburu, I.; Sanchez-Quintana, C.; Berciano, J.; Combarros, O.; Sainz, J. Comparative blood transcriptome analysis in idiopathic and LRRK2 G2019S-associated Parkinson’s disease. Neurobiol. Aging 2016, 38, 214.e1–214.e5. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.X.; Seo, B.A.; Kim, D.; Xiong, Y.; Kwon, S.H.; Brahmachari, S.; Kim, S.; Kam, T.I.; Nirujogi, R.S.; Kwon, S.H.; et al. Complement and Coagulation Cascades are Potentially Involved in Dopaminergic Neurodegeneration in alpha-Synuclein-Based Mouse Models of Parkinson’s Disease. J. Proteome Res. 2021, 20, 3428–3443. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.T.; Grove, J.S.; Grandinetti, A.; Curb, J.D.; Yee, M.; Blanchette, P.; Ross, G.W.; Rodriguez, B.I. Association of fibrinogen with Parkinson disease in elderly Japanese-American men: A prospective study. Neuroepidemiology 2010, 34, 50–54. [Google Scholar] [CrossRef]
- Lu, W.; Wan, X.; Liu, B.; Rong, X.; Zhu, L.; Li, P.; Li, J.; Wang, L.; Cui, L.; Wang, X. Specific changes of serum proteins in Parkinson’s disease patients. PLoS ONE 2014, 9, e95684. [Google Scholar] [CrossRef]
- Mila, S.; Albo, A.G.; Corpillo, D.; Giraudo, S.; Zibetti, M.; Bucci, E.M.; Lopiano, L.; Fasano, M. Lymphocyte proteomics of Parkinson’s disease patients reveals cytoskeletal protein dysregulation and oxidative stress. Biomark. Med. 2009, 3, 117–128. [Google Scholar] [CrossRef]
- Naskar, A.; Stezin, A.; Dharmappa, A.; Hegde, S.; Philip, M.; Kamble, N.; Saini, J.; Sandhya, K.; Tatu, U.; Yadav, R.; et al. Fibrinogen and Complement Factor H Are Promising CSF Protein Biomarkers for Parkinson’s Disease with Cognitive Impairment horizontal line A Proteomics-ELISA-Based Study. ACS Chem. Neurosci. 2022, 13, 1030–1045. [Google Scholar] [CrossRef]
- Pretorius, E.; Page, M.J.; Mbotwe, S.; Kell, D.B. Lipopolysaccharide-binding protein (LBP) can reverse the amyloid state of fibrin seen or induced in Parkinson’s disease. PLoS ONE 2018, 13, e0192121. [Google Scholar] [CrossRef]
- Gray, M.T.; Woulfe, J.M. Striatal blood-brain barrier permeability in Parkinson’s disease. J. Cereb. Blood Flow. Metab. 2015, 35, 747–750. [Google Scholar] [CrossRef]
- Maarouf, C.L.; Beach, T.G.; Adler, C.H.; Shill, H.A.; Sabbagh, M.N.; Wu, T.; Walker, D.G.; Kokjohn, T.A.; Roher, A.E.; Arizona, P.D.C. Cerebrospinal fluid biomarkers of neuropathologically diagnosed Parkinson’s disease subjects. Neurol. Res. 2012, 34, 669–676. [Google Scholar] [CrossRef]
- Yin, G.N.; Lee, H.W.; Cho, J.Y.; Suk, K. Neuronal pentraxin receptor in cerebrospinal fluid as a potential biomarker for neurodegenerative diseases. Brain Res. 2009, 1265, 158–170. [Google Scholar] [CrossRef]
- Abdi, F.; Quinn, J.F.; Jankovic, J.; McIntosh, M.; Leverenz, J.B.; Peskind, E.; Nixon, R.; Nutt, J.; Chung, K.; Zabetian, C.; et al. Detection of biomarkers with a multiplex quantitative proteomic platform in cerebrospinal fluid of patients with neurodegenerative disorders. J. Alzheimers Dis. 2006, 9, 293–348. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M. Alterations of fibrinogen structure in human disease. Cardiovasc. Hematol. Agents Med. Chem. 2008, 6, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Zago, E.; Dal Molin, A.; Dimitri, G.M.; Xumerle, L.; Pirazzini, C.; Bacalini, M.G.; Maturo, M.G.; Azevedo, T.; Spasov, S.; Gomez-Garre, P.; et al. Early downregulation of hsa-miR-144-3p in serum from drug-naive Parkinson’s disease patients. Sci. Rep. 2022, 12, 1330. [Google Scholar] [CrossRef] [PubMed]
- Cervilla-Martinez, J.F.; Rodriguez-Gotor, J.J.; Wypijewski, K.J.; Fontan-Lozano, A.; Wang, T.; Santamaria, E.; Fuller, W.; Mejias, R. Altered Cortical Palmitoylation Induces Widespread Molecular Disturbances in Parkinson’s Disease. Int. J. Mol. Sci. 2022, 23, 14018. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Muller, J.; Schuetze, K.; Rolfes, V.; Bissinger, R.; Rosero, N.; Ahmad, A.; Franklin, B.S.; Zur, B.; Frohlich, H.; et al. Comprehensive Profiling of Blood Coagulation and Fibrinolysis Marker Reveals Elevated Plasmin-Antiplasmin Complexes in Parkinson’s Disease. Biology 2021, 10, 716. [Google Scholar] [CrossRef]
- Collen, D.; Lijnen, H.R. Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 1991, 78, 3114–3124. [Google Scholar] [CrossRef]
- Lijnen, H.R. Elements of the fibrinolytic system. Ann. N. Y. Acad. Sci. 2001, 936, 226–236. [Google Scholar] [CrossRef]
- Medcalf, R.L. Fibrinolysis, inflammation, and regulation of the plasminogen activating system. J. Thromb. Haemost. 2007, 5 (Suppl. 1), 132–142. [Google Scholar] [CrossRef]
- Kim, K.S.; Choi, Y.R.; Park, J.Y.; Lee, J.H.; Kim, D.K.; Lee, S.J.; Paik, S.R.; Jou, I.; Park, S.M. Proteolytic cleavage of extracellular alpha-synuclein by plasmin: Implications for Parkinson disease. J. Biol. Chem. 2012, 287, 24862–24872. [Google Scholar] [CrossRef]
- Kruithof, E.K. Regulation of plasminogen activator inhibitor type 1 gene expression by inflammatory mediators and statins. Thromb. Haemost. 2008, 100, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Reuland, C.J.; Church, F.C. Synergy between plasminogen activator inhibitor-1, alpha-synuclein, and neuroinflammation in Parkinson’s disease. Med. Hypotheses 2020, 138, 109602. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Tang, R.; Fan, L.; Wang, E. Exogenous Tetranectin Alleviates Pre-formed-fibrils-induced Synucleinopathies in SH-SY5Y Cells by Activating the Plasminogen Activation System. Neurochem. Res. 2022, 47, 3192–3201. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.C.; Tai, C.H.; Tseng, S.H. Platelet abnormalities in patients with Parkinson’s disease undergoing preoperative evaluation for deep brain stimulation. Sci. Rep. 2022, 12, 14625. [Google Scholar] [CrossRef]
- Giner, V.; Rueda, D.; Salvador, A.; Hernandez, J.C.; Esteban, M.J.; Redon, J. Thrombocytopenia associated with levodopa treatment. Arch. Intern. Med. 2003, 163, 735–736. [Google Scholar] [CrossRef]
- Lee, K.E.; Kang, H.S.; Yu, H.J.; Roh, S.Y. Thrombocytopenia associated with levodopa treatment. J. Mov. Disord. 2013, 6, 21–22. [Google Scholar] [CrossRef]
- Tashkandi, H.; Shameli, A.; Harding, C.V.; Maitta, R.W. Ultrastructural changes in peripheral blood leukocytes in alpha-synuclein knockout mice. Blood Cells Mol. Dis. 2018, 73, 33–37. [Google Scholar] [CrossRef]
- Kocer, A.; Yaman, A.; Niftaliyev, E.; Duruyen, H.; Eryilmaz, M.; Kocer, E. Assessment of platelet indices in patients with neurodegenerative diseases: Mean platelet volume was increased in patients with Parkinson’s disease. Curr. Gerontol. Geriatr. Res. 2013, 2013, 986254. [Google Scholar] [CrossRef]
- Factor, S.A.; Ortof, E.; Dentinger, M.P.; Mankes, R.; Barron, K.D. Platelet morphology in Parkinson’s disease: An electron microscopic study. J. Neurol. Sci. 1994, 122, 84–89. [Google Scholar] [CrossRef]
- Reheman, A.; Tasneem, S.; Ni, H.; Hayward, C.P. Mice with deleted multimerin 1 and alpha-synuclein genes have impaired platelet adhesion and impaired thrombus formation that is corrected by multimerin 1. Thromb. Res. 2010, 125, e177–e183. [Google Scholar] [CrossRef]
- Acquasaliente, L.; Pontarollo, G.; Radu, C.M.; Peterle, D.; Artusi, I.; Pagotto, A.; Uliana, F.; Negro, A.; Simioni, P.; De Filippis, V. Exogenous human alpha-Synuclein acts in vitro as a mild platelet antiaggregant inhibiting alpha-thrombin-induced platelet activation. Sci. Rep. 2022, 12, 9880. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Nag, D.; Atam, V.; Seth, P.K.; Khanna, V.K. Platelet aggregation in patients with Parkinson’s disease. Stroke 1991, 22, 1607–1608. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.M.; Kim, H.H.; Bae, O.N.; Noh, J.Y.; Kim, K.Y.; Kim, S.H.; Chung, S.M.; Shin, S.; Kim, H.Y.; Chung, J.H. Inhibition of platelet aggregation by 1-methyl-4-phenyl pyridinium ion (MPP+) through ATP depletion: Evidence for the reduced platelet activities in Parkinson’s disease. Platelets 2009, 20, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Regnault, A.; Boroojerdi, B.; Meunier, J.; Bani, M.; Morel, T.; Cano, S. Does the MDS-UPDRS provide the precision to assess progression in early Parkinson’s disease? Learnings from the Parkinson’s progression marker initiative cohort. J. Neurol. 2019, 266, 1927–1936. [Google Scholar] [CrossRef]
- Sanger, T.D.; Delgado, M.R.; Gaebler-Spira, D.; Hallett, M.; Mink, J.W.; Task Force on Childhood Motor Disorders. Classification and definition of disorders causing hypertonia in childhood. Pediatrics 2003, 111, e89–e97. [Google Scholar] [CrossRef]
- Hu, X.; Li, Y.; Li, J.; Chen, H. Effects of altered blood flow induced by the muscle pump on thrombosis in a microfluidic venous valve model. Lab. Chip 2020, 20, 2473–2481. [Google Scholar] [CrossRef]
- Afsin, E.; Cosgun, Z.; Kurul, R.; Turkoglu, S.A. The incidence of deep venous thrombosis in Parkinson’s disease. Neurol. Res. 2023, 45, 1050–1054. [Google Scholar] [CrossRef]
- Burbridge, B.E.; Wallace, J.K.; Rajput, A.; McCulloch, L. Doppler ultrasonographic examination of the leg veins of patients with Parkinson disease. J. Psychiatry Neurosci. 1999, 24, 338–340. [Google Scholar]
- Nakajima, M.; Uyama, E.; Suga, T.; Honda, S.; Ando, Y. Deep venous thrombosis in patients with neurological diseases: A multicenter, prospective study. J. Clin. Neurosci. 2021, 91, 214–218. [Google Scholar] [CrossRef]
- Yamane, K.; Kimura, F.; Unoda, K.; Hosokawa, T.; Hirose, T.; Tani, H.; Doi, Y.; Ishida, S.; Nakajima, H.; Hanafusa, T. Postural abnormality as a risk marker for leg deep venous thrombosis in Parkinson’s disease. PLoS ONE 2013, 8, e66984. [Google Scholar] [CrossRef]
- Zibetti, M.; Rosso, M.; Cinquepalmi, A.; Lanotte, M.; Angrisano, S.; Rabbia, C.; Valpreda, S.; Lopiano, L. Asymptomatic deep venous thrombosis after deep brain stimulation for Parkinson disease. Stereotact. Funct. Neurosurg. 2010, 88, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fan, H.; Wei, W.; Zhu, H.; Wang, H.; Lyu, D.; Zhang, Z.; Tan, Y. A Silent Threat: Deep Vein Thrombosis in Early-Stage Parkinson’s Disease. Risk Manag. Healthc. Policy 2024, 17, 2169–2179. [Google Scholar] [CrossRef] [PubMed]
- Mosewich, R.K.; Rajput, A.H.; Shuaib, A.; Rozdilsky, B.; Ang, L. Pulmonary embolism: An under-recognized yet frequent cause of death in parkinsonism. Mov. Disord. 1994, 9, 350–352. [Google Scholar] [CrossRef] [PubMed]
- Co, M.L.F.; Agdamag, A.C.; Esteban, M.J.; Mateo, R. Massive pulmonary embolism presenting initially as acute psychosis. BMJ Case Rep. 2019, 12, e222018. [Google Scholar] [CrossRef]
- Hung, S.C.; Tai, C.T. Parkinson’s disease with recurrent pulmonary embolism. Zhonghua Yi Xue Za Zhi (Taipei) 2000, 63, 487–491. [Google Scholar]
- Becker, C.; Jick, S.S.; Meier, C.R. Risk of stroke in patients with idiopathic Parkinson disease. Park. Relat. Disord. 2010, 16, 31–35. [Google Scholar] [CrossRef]
- Skeie, G.O.; Muller, B.; Haugarvoll, K.; Larsen, J.P.; Tysnes, O.B. Parkinson disease: Associated disorders in the Norwegian population based incident ParkWest study. Park. Relat. Disord. 2013, 19, 53–55. [Google Scholar] [CrossRef]
- Struck, L.K.; Rodnitzky, R.L.; Dobson, J.K. Stroke and its modification in Parkinson’s disease. Stroke 1990, 21, 1395–1399. [Google Scholar] [CrossRef]
- Marttila, R.J.; Rinne, U.K. Arteriosclerosis, heredity, and some previous infections in the etiology of Parkinson’s disease. A case-control study. Clin. Neurol. Neurosurg. 1976, 79, 46–56. [Google Scholar] [CrossRef]
- Nabizadeh, F.; Valizadeh, P.; Sharifi, P.; Zafari, R.; Mirmosayyeb, O. Risk of myocardial infarction in Parkinson’s disease: A systematic review and meta-analysis. Eur. J. Neurol. 2023, 30, 2557–2569. [Google Scholar] [CrossRef]
- Boehlen, F.; Burkhard, P.R.; Momjian, S.; Fontana, P. Subthalamic nucleus deep brain stimulation for Parkinson’s disease in a patient with severe haemophilia A. Haemophilia 2017, 23, e246–e248. [Google Scholar] [CrossRef] [PubMed]
- Hebbink, J.A.; Nobels-Janssen, E.; Verhagen, I.; Kusters, B.; Pegge, S.A.H.; Tuladhar, A.M. Subacute parkinsonism due to systemic lupus erythematosus and catastrophic antiphospholipid syndrome. Lancet 2022, 400, 1966. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.C.; Lyu, R.K.; Chen, S.T.; Chu, Y.C.; Wu, Y.R. Parkinsonism in a patient with antiphospholipid syndrome--case report and literature review. J. Neurol. Sci. 2008, 267, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Martino, D.; Chew, N.K.; Mir, P.; Edwards, M.J.; Quinn, N.P.; Bhatia, K.P. Atypical movement disorders in antiphospholipid syndrome. Mov. Disord. 2006, 21, 944–949. [Google Scholar] [CrossRef] [PubMed]
- Milanov, I.; Bogdanova, D. Antiphospholipid syndrome and dystonia-parkinsonism. A case report. Park. Relat. Disord. 2001, 7, 139–141. [Google Scholar] [CrossRef]
- Okano, M.; Nakayama, K.; Tamada, N.; Shinkura, Y.; Yanaka, K.I.; Onishi, H.; Tanaka, H.; Shinke, T.; Tanaka, H.; Okita, Y.; et al. Reversible Parkinsonism and Multiple Cerebral Infarctions after Pulmonary Endarterectomy in a Patient with Antiphospholipid Syndrome. Intern. Med. 2018, 57, 2019–2023. [Google Scholar] [CrossRef]
- Yamawaki, Y.; Ogawa, N. Successful treatment of levodopa-induced neuroleptic malignant syndrome (NMS) and disseminated intravascular coagulation (DIC) in a patient with Parkinson’s disease. Intern. Med. 1992, 31, 1298–1302. [Google Scholar] [CrossRef]
- Cebrian, C.; Zucca, F.A.; Mauri, P.; Steinbeck, J.A.; Studer, L.; Scherzer, C.R.; Kanter, E.; Budhu, S.; Mandelbaum, J.; Vonsattel, J.P.; et al. MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat. Commun. 2014, 5, 3633. [Google Scholar] [CrossRef]
- Yuan, X.; Tian, Y.; Liu, C.; Zhang, Z. Environmental factors in Parkinson’s disease: New insights into the molecular mechanisms. Toxicol. Lett. 2022, 356, 1–10. [Google Scholar] [CrossRef]
- Litteljohn, D.; Mangano, E.; Clarke, M.; Bobyn, J.; Moloney, K.; Hayley, S. Inflammatory mechanisms of neurodegeneration in toxin-based models of Parkinson’s disease. Park. Dis. 2010, 2011, 713517. [Google Scholar] [CrossRef]
- Lindmark, E.; Tenno, T.; Siegbahn, A. Role of platelet P-selectin and CD40 ligand in the induction of monocytic tissue factor expression. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 2322–2328. [Google Scholar] [CrossRef] [PubMed]
- Pober, J.S.; Sessa, W.C. Evolving functions of endothelial cells in inflammation. Nat. Rev. Immunol. 2007, 7, 803–815. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, Z.M. Platelets in atherothrombosis. Nat. Med. 2002, 8, 1227–1234. [Google Scholar] [CrossRef] [PubMed]
- Laursen, A.S.; Olesen, M.V.; Folke, J.; Brudek, T.; Knecht, L.H.; Sotty, F.; Lambertsen, K.L.; Fog, K.; Dalgaard, L.T.; Aznar, S. Systemic inflammation activates coagulation and immune cell infiltration pathways in brains with propagating alpha-synuclein fibril aggregates. Mol. Cell. Neurosci. 2024, 129, 103931. [Google Scholar] [CrossRef]
- Niedzielska, E.; Smaga, I.; Gawlik, M.; Moniczewski, A.; Stankowicz, P.; Pera, J.; Filip, M. Oxidative Stress in Neurodegenerative Diseases. Mol. Neurobiol. 2016, 53, 4094–4125. [Google Scholar] [CrossRef]
- Becatti, M.; Marcucci, R.; Bruschi, G.; Taddei, N.; Bani, D.; Gori, A.M.; Giusti, B.; Gensini, G.F.; Abbate, R.; Fiorillo, C. Oxidative modification of fibrinogen is associated with altered function and structure in the subacute phase of myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1355–1361. [Google Scholar] [CrossRef]
- Loscalzo, J. Nitric oxide insufficiency, platelet activation, and arterial thrombosis. Circ. Res. 2001, 88, 756–762. [Google Scholar] [CrossRef]
- Dayal, S.; Wilson, K.M.; Motto, D.G.; Miller, F.J., Jr.; Chauhan, A.K.; Lentz, S.R. Hydrogen peroxide promotes aging-related platelet hyperactivation and thrombosis. Circulation 2013, 127, 1308–1316. [Google Scholar] [CrossRef]
- Alves, G.; Kurz, M.; Lie, S.A.; Larsen, J.P. Cigarette smoking in Parkinson’s disease: Influence on disease progression. Mov. Disord. 2004, 19, 1087–1092. [Google Scholar] [CrossRef]
- Di Biase, L.; Pecoraro, P.M.; Carbone, S.P.; Alessi, F.; Di Lazzaro, V. Smoking exposure and Parkinson’s disease: A UK Brain Bank pathology-validated case-control study. Park. Relat. Disord. 2024, 125, 107022. [Google Scholar] [CrossRef]
- Shahi, G.S.; Das, N.P.; Moochhala, S.M. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity: Partial protection against striato-nigral dopamine depletion in C57BL/6J mice by cigarette smoke exposure and by beta-naphthoflavone-pretreatment. Neurosci. Lett. 1991, 127, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Norman, T.R.; Chamberlain, K.G.; French, M.A. Platelet monoamine oxidase: Low activity in cigarette smokers. Psychiatry Res. 1987, 20, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Oreland, L.; Fowler, C.J.; Schalling, D. Low platelet monoamine oxidase activity in cigarette smokers. Life Sci. 1981, 29, 2511–2518. [Google Scholar] [CrossRef] [PubMed]
Samples | Detection Technique | Coagulation Parameters | Changes | Reference | |
---|---|---|---|---|---|
PD transgenic mouse | |||||
Ventral midbrain | SILAM | fibrinogen α-chain isoform 1 precursor and fibrinogen β-chain precursor | increased | [13] | |
PD patients | |||||
Blood | BBL fibrometer | fibrinogen | increased | [14] | |
Serum | 2-DE combined with LC-MS/MS | fibrinogen γ-chain | increased | [15] | |
Peripheral blood lymphocytes | 2-DE combined with LC-MS/MS | fibrinogen γ-chain | increased | [16] | |
CSF | Unbiased label-free LC-MS/MS | fibrinogen β-chain and γ-chain | increased | [17] | |
Blood | Confocal microscopy | fibrinogen | abnormal fibrinogen aggregation | [11] | |
Blood | Scanning electron microscopy | fibrinogen | exhibited a characteristic matted appearance | [18] | |
Postcommissural putamen | Immunofluorescent microscopy | extravascular fibrinogen | increased | [19] | |
Ventricular CSF | 2D-DIGE | fibrinogen β-chain | decreased | [20] | |
Lumbar CSF | 2DE | fibrinogen β-chain | decreased | [21] | |
CSF | iTRAQ in conjunction with multidimensional chromatography, followed by MS/MS | fibrinogen β-chain | no change | [22] | |
Serum | miRNA sequencing | fibrinogen γ-gene | increased | [23] | |
Cerebral cortex | Palmitome | palmitoylated fibrinogen | increased | [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Li, W.; Zhao, X.; Hu, N.; Wang, X.; Xiao, X.; Yang, K.; Sun, T. Dysregulated Coagulation in Parkinson’s Disease. Cells 2024, 13, 1874. https://doi.org/10.3390/cells13221874
Wang X, Li W, Zhao X, Hu N, Wang X, Xiao X, Yang K, Sun T. Dysregulated Coagulation in Parkinson’s Disease. Cells. 2024; 13(22):1874. https://doi.org/10.3390/cells13221874
Chicago/Turabian StyleWang, Xinqing, Wenxin Li, Xinyue Zhao, Ning Hu, Xi Wang, Xilin Xiao, Kai Yang, and Taolei Sun. 2024. "Dysregulated Coagulation in Parkinson’s Disease" Cells 13, no. 22: 1874. https://doi.org/10.3390/cells13221874
APA StyleWang, X., Li, W., Zhao, X., Hu, N., Wang, X., Xiao, X., Yang, K., & Sun, T. (2024). Dysregulated Coagulation in Parkinson’s Disease. Cells, 13(22), 1874. https://doi.org/10.3390/cells13221874