The Formation of Human Arteriovenous Malformation Organoids and Their Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Human Cell Culture
2.1.1. Isolation and Culture of Human Fibroblasts
2.1.2. Isolation and Two-Dimensional (2D) Culture of Human Endothelial Cells (ECs)
2.1.3. Reprogramming of Human Fibroblasts and Culture
2.2. Generation of Blood Vessel Organoids (BVOs)
2.3. Immunofluorescence Staining
2.4. Whole-Mount Immunostaining of Organoids
2.5. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
2.6. TaqMan Assay (mir)
2.7. Statistical Analysis
3. Results
3.1. Identification of Two-Dimensional Cells
3.2. Whole-Mount Immunostaining of Organoids
3.3. Real-Time PCR
3.4. TaqMan Real-Time PCR Assays
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adams, D.M. Practical genetic and biologic therapeutic considerations in vascular anomalies. Tech. Vasc. Interv. Radiol. 2019, 22, 100629. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Kim, H.Y.; Kim, B.S.; Chung, H.Y.; Lee, J.M.; Huh, S.; Bae, H.I. Capillary malformation of port-wine stain: Differentiation from early arteriovenous malformation by histopathological clues. Am. J. Dermatopathol. 2012, 34, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.B.; Lee, J.W.; Choi, K.Y.; Yang, J.D.; Cho, B.C.; Lee, S.J.; Kim, Y.S.; Lee, J.M.; Huh, S.; Chung, H.Y. Clinical Characteristics of Arteriovenous Malformations of the Head and Neck. Dermatol. Surg. 2017, 43, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Chen, G.; Li, J.; Qin, K.; Ding, X.; Peng, C.; Zhou, D.; Lin, X. Three-dimensional brain arteriovenous malformation models for clinical use and resident training. Medicine 2018, 97, e9516. [Google Scholar] [CrossRef] [PubMed]
- Conti, A.; Pontoriero, A.; Iatì, G.; Marino, D.; La Torre, D.; Vinci, S.; Germanò, A.; Pergolizzi, S.; Francesco, T. 3D-Printing of Arteriovenous Malformations for Radiosurgical Treatment: Pushing Anatomy Understanding to Real Boundaries. Cureus 2016, 8, e594. [Google Scholar] [CrossRef]
- Boon, L.M.; Dekeuleneer, V.; Coulie, J.; Marot, L.; Bataille, A.C.; Hammer, F.; Clapuyt, P.; Jeanjean, A.; Dompmartin, A.; Vikkula, M. Case report study of thalidomide therapy in 18 patients with severe arteriovenous malformation s. Nat. Cardiovasc. Res. 2022, 1, 562–567. [Google Scholar] [CrossRef]
- Liu, A.S.; Mulliken, J.B.; Zurakowski, D.; Fishman, S.J.; Greene, A.K. Extracranial Arteriovenous Malformations: Natural Progression and Recurrence after Treatment. Plast. Reconstr. Surg. 2010, 125, 1185–1194. [Google Scholar] [CrossRef]
- Alghuwainem, A.; Alshareeda, A.T.; Alsowayan, B. Scaffold-free 3-D cell sheet technique bridges the gap between 2-D cell culture and animal models. Int. J. Mol. Sci. 2019, 20, 4926. [Google Scholar] [CrossRef]
- Lee, J.S.; Cho, H.G.; Ryu, J.Y.; Oh, E.J.; Kim, H.M.; Kwak, S.I.; Lee, S.J.; Lee, J.M.; Lee, S.Y.; Huh, S.; et al. Hypoxia Promotes Angiogenic Effect in Extracranial Arteriovenous Malformation Endothelial Cells. Int. J. Mol. Sci. 2022, 23, 9109. [Google Scholar] [CrossRef]
- Seebauer, C.T.; Wiens, B.; Hintschich, C.A.; Platz Batista da Silva, N.; Evert, K.; Haubner, F.; Kapp, F.G.; Wendl, C.; Renner, K.; Bohr, C.; et al. Targeting the microenvironment in the treatment of arteriovenous malformations. Angiogenesis 2024, 27, 91–103. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Edmondson, R.; Broglie, J.J.; Adcock, A.F.; Yang, L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev. Technol. 2014, 12, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, W.-H.; Melnychenko, I.; Eschenhagen, T. Engineered heart tissue for regeneration of diseased hearts. Biomaterials 2004, 25, 1639–1647. [Google Scholar] [CrossRef] [PubMed]
- Dye, B.R.; Hill, D.R.; Ferguson, M.A.; Tsai, Y.H.; Nagy, M.S.; Dyal, R.; Wells, J.M.; Mayhew, C.N.; Nattiv, R.; Klein, O.D.; et al. In vitro generation of human pluripotent stem cell derived lung organoids. eLife 2015, 4, e05098. [Google Scholar] [CrossRef]
- Kauffman, A.L.; Ekert, J.E.; Gyurdieva, A.V.; Rycyzyn, M.A.; Hornby, P.J. Directed differentiation protocols for successful human intestinal organoids derived from multiple induced pluripotent stem cell lines. Stem Cell Biol. Res. 2015, 2, 1. [Google Scholar] [CrossRef]
- Lancaster, M.A.; Knoblich, J.A. Generation of cerebral organoids from human pluripotent stem cells. Nat. Protoc. 2014, 9, 2329–2340. [Google Scholar] [CrossRef]
- Wimmer, R.A.; Leopoldi, A.; Aichinger, M.; Kerjaschki, D.; Penninger, J.M. Generation of blood vessel organoids from human pluripotent stem cells. Nat. Protoc. 2019, 14, 3082–3100. [Google Scholar] [CrossRef] [PubMed]
- Shalek, A.K.; Satija, R.; Shuga, J.; Trombetta, J.J.; Gennert, D.; Lu, D.; Chen, P.; Gertner, R.S.; Gaublomme, J.T.; Yosef, N.; et al. Singlecell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 2014, 510, 363–369. [Google Scholar] [CrossRef]
- Ricard, N.; Bailly, S.; Guignabert, C.; Simons, M. The quiescent endothelium: Signalling pathways regulating organ-specifc endothelial normalcy. Nat. Rev. Cardiol. 2021, 18, 565–580. [Google Scholar] [CrossRef]
- Kalucka, J.; de Rooij, L.P.; Goveia, J.; Rohlenova, K.; Dumas, S.J.; Meta, E.; Conchinha, N.V.; Taverna, F.; Teuwen, L.A.; Veys, K.; et al. Single-cell transcriptome atlas of murine endothelial cells. Cell 2020, 180, 764–779.e20. [Google Scholar] [CrossRef]
- Pasut, A.; Becker, L.M.; Cuypers, A.; Carmeliet, P. Endothelial cell plasticity at the single-cell level. Angiogenesis 2021, 24, 311–326. [Google Scholar] [CrossRef]
- Gurevich, D.B.; David, D.T.; Sundararaman, A.; Patel, J. Endothelial heterogeneity in development and wound healing. Cells 2021, 10, 2338. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Kim, G.H.; Lee, J.H.; Ryu, J.Y.; Oh, E.J.; Kim, H.M.; Kwak, S.I.; Hur, K.; Chung, H.Y. MicroRNA-365a/b-3p as a Potential Biomarker for Hypertrophic Scars. Int. J. Mol. Sci. 2022, 23, 6117. [Google Scholar] [CrossRef] [PubMed]
- Mulliken, J.B.; Glowacki, J. Hemangiomas and vascular malformations in infants and children: A classification based on endothelial characteristics. Plast. Reconstr. Surg. 1982, 69, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Huch, M.; Koo, B.-K. Modeling mouse and human development using organoid cultures. Development 2015, 142, 3113–3125. [Google Scholar] [CrossRef]
- Clevers, H. Modeling development and disease with organoids. Cell 2016, 165, 1586–1597. [Google Scholar] [CrossRef]
- McCracken, K.W.; Catá, E.M.; Crawford, C.M.; Sinagoga, K.L.; Schumacher, M.; Rockich, B.E.; Tsai, Y.H.; Mayhew, C.N.; Spence, J.R.; Zavros, Y.; et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 2014, 516, 400–404. [Google Scholar] [CrossRef]
- Bigorgne, A.E.; Farin, H.F.; Lemoine, R.; Mahlaoui, N.; Lambert, N.; Gil, M.; Schulz, A.; Philippet, P.; Schlesser, P.; Abrahamsen, T.G.; et al. TTC7A mutations disrupt intestinal epithelial apicobasal polarity. J. Clin. Investig. 2014, 124, 328–337. [Google Scholar] [CrossRef]
- Sato, T.; Stange, D.E.; Ferrante, M.; Vries, R.G.; Van Es, J.H.; Van Den Brink, S.; Van Houdt, W.J.; Pronk, A.; Van Gorp, J.; Siersema, P.D.; et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 2011, 141, 1762–1772. [Google Scholar] [CrossRef] [PubMed]
- Van de Wetering, M.; Francies, H.E.; Francis, J.M.; Bounova, G.; Iorio, F.; Pronk, A.; van Houdt, W.; van Gorp, J.; Taylor-Weiner, A.; Kester, L.; et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 2015, 161, 933–945. [Google Scholar] [CrossRef]
- Dekkers, J.F.; Berkers, G.; Kruisselbrink, E.; Vonk, A.; De Jonge, H.R.; Janssens, H.M.; Bronsveld, I.; van de Graaf, E.A.; Nieuwenhuis, E.E.; Houwen, R.H.; et al. Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci. Transl. Med. 2016, 8, 344ra84. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, G.; Lee, J.H.; Ryu, J.Y.; Oh, E.J.; Kim, H.M.; Kwak, S.; Hur, K.; Chung, H.Y. MicroRNA-135b-5p Is a Pathologic Biomarker in the Endothelial Cells of Arteriovenous Malformations. Int. J. Mol. Sci. 2024, 25, 4888. [Google Scholar] [CrossRef] [PubMed]
No. | Age | Sex | AVM Status | Sample Type | Location | No. | Age | Sex | AVM Status | Sample Type | Location |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 49 | M | None | Skin | Lt. Back | 13 | 6y4m | F | AVM | Skin | Lt. Cheek |
2 | 4y9m | M | None | Skin | Lt. Ear | 14 | 7y3m | F | AVM | Skin | Rt. Ear |
3 | 5y11m | M | None | Skin | Rt. Forearm | 15 | 44 | F | AVM | Skin | Rt. Ear |
4 | 59 | F | None | Skin | Rt. Inguinal | 16 | 18y4m | F | AVM | Skin | Lt. Chest |
5 | 65 | M | None | Skin | Lt. Forearm | 17 | 23 | F | AVM | Skin | Lt. Cheek |
6 | 11y6m | F | None | Skin | Lt. Cheek | 18 | 29 | M | AVM | Skin | Rt. Heel |
7 | 47 | F | None | Blood vessel | Lt. Axilla | 19 | 7y3m | F | AVM | Blood vessel | Rt. Ear |
8 | 75 | M | None | Blood vessel | Lt. Axilla | 20 | 27 | F | AVM | Blood vessel | Rt. Ear |
9 | 47 | M | None | Blood vessel | Lt. Axilla | 21 | 66 | M | AVM | Blood vessel | Rt. Trunk |
10 | 29 | M | None | Blood vessel | Lt. Thigh | 22 | 52 | M | AVM | Blood vessel | Rt. Glabella |
11 | 45 | M | None | Blood vessel | Rt. Inguinal | 23 | 29 | M | AVM | Blood vessel | Rt. Heel |
12 | 8y3m | F | None | Blood vessel | Rt. Inguinal | 24 | 23 | F | AVM | Blood vessel | Lt. Cheek |
Primer Sequence | ||
---|---|---|
FSTL1 | Forward sequence | TCGCATCATCCAGTGGCTGGAA |
Reverse sequence | TCACTGGAGTCCAGGCGAGAAT | |
MARCKS | Forward sequence | CTCCTCGACTTCTTCGCCCAAG |
Reverse sequence | TCTTGAAGGAGAAGCCGCTCAG | |
CSPG4 | Forward sequence | GTCCTGCCTGTCAATGACCAAC |
Reverse sequence | CGATGGTGTAGACCAGATCCTC |
Title | Mature miRNA Sequence (5′-3′) |
---|---|
Endogenous | UUAUCAGAAUCUCCAGGGGUAC |
hsa-miR-135b-5p | UAUGGCUUUUCAUUCCUAUGUGA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, E.J.; Kim, H.M.; Kwak, S.; Huh, C.; Chung, H.Y. The Formation of Human Arteriovenous Malformation Organoids and Their Characteristics. Cells 2024, 13, 1955. https://doi.org/10.3390/cells13231955
Oh EJ, Kim HM, Kwak S, Huh C, Chung HY. The Formation of Human Arteriovenous Malformation Organoids and Their Characteristics. Cells. 2024; 13(23):1955. https://doi.org/10.3390/cells13231955
Chicago/Turabian StyleOh, Eun Jung, Hyun Mi Kim, Suin Kwak, Chanhoe Huh, and Ho Yun Chung. 2024. "The Formation of Human Arteriovenous Malformation Organoids and Their Characteristics" Cells 13, no. 23: 1955. https://doi.org/10.3390/cells13231955
APA StyleOh, E. J., Kim, H. M., Kwak, S., Huh, C., & Chung, H. Y. (2024). The Formation of Human Arteriovenous Malformation Organoids and Their Characteristics. Cells, 13(23), 1955. https://doi.org/10.3390/cells13231955