Targeted Deletion in the Basal Body Protein Talpid3 Leads to Loss of Primary Cilia in Embryonic Stem Cells and Defective Lineage-Specific Differentiation
Abstract
:1. Introduction
2. Results
2.1. Reprogramming of Embryonic and Limb Fibroblasts to iPS Cells and Their Characterisation
2.2. Establishment of Transgene-Free IPS Cell Lines by Excision of the PiggyBac Reprogramming Vector
2.3. Establishment of ES Cell Lines from Ta3−/− and Ta3fl/fl Blastocysts
2.4. Expression of Pluripotency and Limb-Specific Markers in Ta3−/− and Ta3fl/fl ESCs and Transgene-Free iPSCs
2.5. Effect of Deletion in Talpid3 on Colony Morphology and Cell Cycle of Ta3−/− ES and iPS Cells
2.6. Primary Cilia Are Absent and Basal Structures Enlarged in Transgene-Free Ta3 Exon11–12 DeletedmiPS ES Cell Lines
2.7. Embryoid Bodies Lacking Ta3 Are Still Competent to Form All Primary Embryonic Germ Layer Derivatives
2.8. Deletion in Ta3 Disrupts Extra-Embryonic Endoderm Differentiation and Polarisation in Embryoid Bodies
2.9. Deletion in Ta3 Alters Extra-Embryonic Endoderm Specification and Organisation
2.10. Primitive Endoderm Cells in Ta3fl/fl ES Cell-Derived EBs Possess Primary Cilia Which Are Absent in Ta3−/− EBs
2.11. Deletion in Ta3 Favours Differentiation to a PaE over VE Lineage
2.12. Deletion in Ta3 Disrupts Expression and Processing of Hh Pathway Components During EB Differentiation
2.13. Effect of Deletion in Talpid3 on the Processing of the Gli Transcription Factors
2.14. Talpid3 Is Required for Efficient Neuroectodermal and Motor Neuron Differentiation
3. Discussion
4. Methods
4.1. Knockout and Transgenic Mice
4.2. Animal Use Ethics
4.3. Cell Culture
4.4. Transfection and Reprogramming of MEFs Using the PiggyBac OSKML Vector
4.5. Isolation and Establishment of ES Cell Lines
4.6. Genotyping of iPS and ES Cells
4.7. Determination of Copy Numbers of Integrated Reprogramming Vector by qPCR
4.8. Splinkerette PCR for Integration Site Analysis
4.9. Excision of Reprogramming Vector
4.10. Cell Cycle Analysis
4.11. Colony Morphology Analysis
4.12. Generation of EBs and Directed Differentiation
4.13. Staining for Primary Cilia and Quantitation
4.14. Electroporation and Isolation of Clones Expressing Reporters
4.15. Composite Embryoid Bodies
4.16. Immunostaining
4.17. RNA Isolation and cDNA Synthesis
4.18. RT and Quantitative PCR for Pluripotency and Differentiation Marker Expression
4.19. Western Blot
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Satir, P.; Pedersen, L.B.; Christensen, S.T. The Primary Cilium at a Glance. J. Cell Sci. 2010, 123, 499–503. [Google Scholar] [CrossRef]
- Goetz, S.C.; Anderson, K.V. The Primary Cilium: A Signalling Centre during Vertebrate Development. Nat. Rev. Genet. 2010, 11, 331–344. [Google Scholar] [CrossRef]
- Jiang, J.; Hui, C.-C. Hedgehog Signaling in Development and Cancer. Dev. Cell 2008, 15, 801–812. [Google Scholar] [CrossRef]
- Logan, C.Y.; Nusse, R. The Wnt Signaling Pathway in Development and Disease. Annu. Rev. Cell Dev. Biol. 2004, 20, 781–810. [Google Scholar] [CrossRef]
- Huangfu, D.; Anderson, K.V. Cilia and Hedgehog Responsiveness in the Mouse. Proc. Natl. Acad. Sci. USA 2005, 102, 11325–11330. [Google Scholar] [CrossRef]
- Haycraft, C.J.; Banizs, B.; Aydin-Son, Y.; Zhang, Q.; Michaud, E.J.; Yoder, B.K. Gli2 and Gli3 Localize to Cilia and Require the Intraflagellar Transport Protein Polaris for Processing and Function. PLoS Genet. 2005, 1, e53. [Google Scholar] [CrossRef]
- Corbit, K.C.; Shyer, A.E.; Dowdle, W.E.; Gaulden, J.; Singla, V.; Chen, M.-H.; Chuang, P.-T.; Reiter, J.F. Kif3a Constrains Beta-Catenin-Dependent Wnt Signalling through Dual Ciliary and Non-Ciliary Mechanisms. Nat. Cell Biol. 2008, 10, 70–76. [Google Scholar] [CrossRef]
- Corbit, K.C.; Aanstad, P.; Singla, V.; Norman, A.R.; Stainier, D.Y.R.; Reiter, J.F. Vertebrate Smoothened Functions at the Primary Cilium. Nature 2005, 437, 1018–1021. [Google Scholar] [CrossRef]
- Schneider, L.; Clement, C.A.; Teilmann, S.C.; Pazour, G.J.; Hoffmann, E.K.; Satir, P.; Christensen, S.T. PDGFRalphaalpha Signaling Is Regulated through the Primary Cilium in Fibroblasts. Curr. Biol. CB 2005, 15, 1861–1866. [Google Scholar] [CrossRef] [PubMed]
- Maye, P.; Becker, S.; Kasameyer, E.; Byrd, N.; Grabel, L. Indian Hedgehog Signaling in Extraembryonic Endoderm and Ectoderm Differentiation in ES Embryoid Bodies. Mech. Dev. 2000, 94, 117–132. [Google Scholar] [CrossRef] [PubMed]
- Maye, P.; Becker, S.; Siemen, H.; Thorne, J.; Byrd, N.; Carpentino, J.; Grabel, L. Hedgehog Signaling Is Required for the Differentiation of ES Cells into Neurectoderm. Dev. Biol. 2004, 265, 276–290. [Google Scholar] [CrossRef]
- Persson, M.; Stamataki, D.; te Welscher, P.; Andersson, E.; Böse, J.; Rüther, U.; Ericson, J.; Briscoe, J. Dorsal-Ventral Patterning of the Spinal Cord Requires Gli3 Transcriptional Repressor Activity. Genes Dev. 2002, 16, 2865–2878. [Google Scholar] [CrossRef]
- Dessaud, E.; McMahon, A.P.; Briscoe, J. Pattern Formation in the Vertebrate Neural Tube: A Sonic Hedgehog Morphogen-Regulated Transcriptional Network. Development 2008, 135, 2489–2503. [Google Scholar] [CrossRef]
- Oh, S.; Huang, X.; Liu, J.; Litingtung, Y.; Chiang, C. Shh and Gli3 Activities Are Required for Timely Generation of Motor Neuron Progenitors. Dev. Biol. 2009, 331, 261–269. [Google Scholar] [CrossRef]
- Veland, I.R.; Awan, A.; Pedersen, L.B.; Yoder, B.K.; Christensen, S.T. Primary Cilia and Signaling Pathways in Mammalian Development, Health and Disease. Nephron Physiol. 2009, 111, p39–p53. [Google Scholar] [CrossRef]
- Nonaka, S.; Tanaka, Y.; Okada, Y.; Takeda, S.; Harada, A.; Kanai, Y.; Kido, M.; Hirokawa, N. Randomization of Left-Right Asymmetry Due to Loss of Nodal Cilia Generating Leftward Flow of Extraembryonic Fluid in Mice Lacking KIF3B Motor Protein. Cell 1998, 95, 829–837. [Google Scholar] [CrossRef]
- Marszalek, J.R.; Ruiz-Lozano, P.; Roberts, E.; Chien, K.R.; Goldstein, L.S. Situs Inversus and Embryonic Ciliary Morphogenesis Defects in Mouse Mutants Lacking the KIF3A Subunit of Kinesin-II. Proc. Natl. Acad. Sci. USA 1999, 96, 5043–5048. [Google Scholar] [CrossRef]
- Clement, C.A.; Kristensen, S.G.; Møllgård, K.; Pazour, G.J.; Yoder, B.K.; Larsen, L.A.; Christensen, S.T. The Primary Cilium Coordinates Early Cardiogenesis and Hedgehog Signaling in Cardiomyocyte Differentiation. J. Cell Sci. 2009, 122, 3070–3082. [Google Scholar] [CrossRef]
- Fliegauf, M.; Benzing, T.; Omran, H. When Cilia Go Bad: Cilia Defects and Ciliopathies. Nat. Rev. Mol. Cell Biol. 2007, 8, 880–893. [Google Scholar] [CrossRef] [PubMed]
- Badano, J.L.; Mitsuma, N.; Beales, P.L.; Katsanis, N. The Ciliopathies: An Emerging Class of Human Genetic Disorders. Annu. Rev. Genom. Hum. Genet. 2006, 7, 125–148. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, M.I.; Zullo, A.; Barra, A.; Bimonte, S.; Messaddeq, N.; Studer, M.; Dollé, P.; Franco, B. Oral-Facial-Digital Type I Protein Is Required for Primary Cilia Formation and Left-Right Axis Specification. Nat. Genet. 2006, 38, 112–117. [Google Scholar] [CrossRef]
- Gerdes, J.M.; Davis, E.E.; Katsanis, N. The Vertebrate Primary Cilium in Development, Homeostasis, and Disease. Cell 2009, 137, 32–45. [Google Scholar] [CrossRef]
- Davey, M.G.; Paton, I.R.; Yin, Y.; Schmidt, M.; Bangs, F.K.; Morrice, D.R.; Smith, T.G.; Buxton, P.; Stamataki, D.; Tanaka, M.; et al. The Chicken Talpid3 Gene Encodes a Novel Protein Essential for Hedgehog Signaling. Genes Dev. 2006, 20, 1365–1377. [Google Scholar] [CrossRef]
- Yin, Y.; Bangs, F.; Paton, I.R.; Prescott, A.; James, J.; Davey, M.G.; Whitley, P.; Genikhovich, G.; Technau, U.; Burt, D.W.; et al. The Talpid3 Gene (KIAA0586) Encodes a Centrosomal Protein That Is Essential for Primary Cilia Formation. Development 2009, 136, 655–664. [Google Scholar] [CrossRef]
- Bangs, F.; Antonio, N.; Thongnuek, P.; Welten, M.; Davey, M.G.; Briscoe, J.; Tickle, C. Generation of Mice with Functional Inactivation of Talpid3, a Gene First Identified in Chicken. Development 2011, 138, 3261–3272. [Google Scholar] [CrossRef]
- Singla, V.; Romaguera-Ros, M.; Garcia-Verdugo, J.M.; Reiter, J.F. Ofd1, a Human Disease Gene, Regulates the Length and Distal Structure of Centrioles. Dev. Cell 2010, 18, 410–424. [Google Scholar] [CrossRef]
- Dawe, H.R.; Smith, U.M.; Cullinane, A.R.; Gerrelli, D.; Cox, P.; Badano, J.L.; Blair-Reid, S.; Sriram, N.; Katsanis, N.; Attie-Bitach, T.; et al. The Meckel-Gruber Syndrome Proteins MKS1 and Meckelin Interact and Are Required for Primary Cilium Formation. Hum. Mol. Genet. 2007, 16, 173–186. [Google Scholar] [CrossRef]
- Kobayashi, T.; Kim, S.; Lin, Y.-C.; Inoue, T.; Dynlacht, B.D. The CP110-Interacting Proteins Talpid3 and Cep290 Play Overlapping and Distinct Roles in Cilia Assembly. J. Cell Biol. 2014, 204, 215–229. [Google Scholar] [CrossRef]
- Tsai, J.-J.; Hsu, W.-B.; Liu, J.-H.; Chang, C.-W.; Tang, T.K. CEP120 Interacts with C2CD3 and Talpid3 and Is Required for Centriole Appendage Assembly and Ciliogenesis. Sci. Rep. 2019, 9, 6037. [Google Scholar] [CrossRef]
- Wang, L.; Failler, M.; Fu, W.; Dynlacht, B.D. A Distal Centriolar Protein Network Controls Organelle Maturation and Asymmetry. Nat. Commun. 2018, 9, 3938. [Google Scholar] [CrossRef] [PubMed]
- Bashford, A.L.; Subramanian, V. Mice with a Conditional Deletion of Talpid3 (KIAA0586)—A Model for Joubert Syndrome. J. Pathol. 2019, 248, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Ben, J.; Elworthy, S.; Ng, A.S.M.; van Eeden, F.; Ingham, P.W. Targeted Mutation of the Talpid3 Gene in Zebrafish Reveals Its Conserved Requirement for Ciliogenesis and Hedgehog Signalling across the Vertebrates. Development 2011, 138, 4969–4978. [Google Scholar] [CrossRef] [PubMed]
- Stephen, L.A.; Tawamie, H.; Davis, G.M.; Tebbe, L.; Nürnberg, P.; Nürnberg, G.; Thiele, H.; Thoenes, M.; Boltshauser, E.; Uebe, S.; et al. TALPID3 Controls Centrosome and Cell Polarity and the Human Ortholog KIAA0586 Is Mutated in Joubert Syndrome (JBTS23). eLife 2015, 4, e08077. [Google Scholar] [CrossRef] [PubMed]
- Bachmann-Gagescu, R.; Phelps, I.G.; Dempsey, J.C.; Sharma, V.A.; Ishak, G.E.; Boyle, E.A.; Wilson, M.; Lourenço, C.M.; Arslan, M.; Shendure, J.; et al. KIAA0586 Is Mutated in Joubert Syndrome. Hum. Mutat. 2015, 36, 831–835. [Google Scholar] [CrossRef]
- Roosing, S.; Hofree, M.; Kim, S.; Scott, E.; Copeland, B.; Romani, M.; Silhavy, J.L.; Rosti, R.O.; Schroth, J.; Mazza, T.; et al. Functional Genome-Wide SiRNA Screen Identifies KIAA0586 as Mutated in Joubert Syndrome. Available online: https://elifesciences.org/articles/06602 (accessed on 26 February 2020).
- Malicdan, M.C.V.; Vilboux, T.; Stephen, J.; Maglic, D.; Mian, L.; Konzman, D.; Guo, J.; Yildirimli, D.; Bryant, J.; Fischer, R.; et al. Mutations in Human Homologue of Chicken Talpid3 Gene (KIAA0586) Cause a Hybrid Ciliopathy with Overlapping Features of Jeune and Joubert Syndromes. J. Med. Genet. 2015, 52, 830–839. [Google Scholar] [CrossRef]
- Kiprilov, E.N.; Awan, A.; Desprat, R.; Velho, M.; Clement, C.A.; Byskov, A.G.; Andersen, C.Y.; Satir, P.; Bouhassira, E.E.; Christensen, S.T.; et al. Human Embryonic Stem Cells in Culture Possess Primary Cilia with Hedgehog Signaling Machinery. J. Cell Biol. 2008, 180, 897–904. [Google Scholar] [CrossRef]
- Hunkapiller, J.; Singla, V.; Seol, A.; Reiter, J.F. The Ciliogenic Protein Oral-Facial-Digital 1 Regulates the Neuronal Differentiation of Embryonic Stem Cells. Stem Cells Dev. 2011, 20, 831–841. [Google Scholar] [CrossRef]
- Keller, G. Embryonic Stem Cell Differentiation: Emergence of a New Era in Biology and Medicine. Genes Dev. 2005, 19, 1129–1155. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef]
- Yusa, K.; Rad, R.; Takeda, J.; Bradley, A. Generation of Transgene-Free Induced Pluripotent Mouse Stem Cells by the PiggyBac Transposon. Nat. Methods 2009, 6, 363–369. [Google Scholar] [CrossRef]
- Doetschman, T.C.; Eistetter, H.; Katz, M.; Schmidt, W.; Kemler, R. The in Vitro Development of Blastocyst-Derived Embryonic Stem Cell Lines: Formation of Visceral Yolk Sac, Blood Islands and Myocardium. J. Embryol. Exp. Morphol. 1985, 87, 27–45. [Google Scholar] [CrossRef] [PubMed]
- Gardner, R.L. Origin and Differentiation of Extraembryonic Tissues in the Mouse. Int. Rev. Exp. Pathol. 1983, 24, 63–133. [Google Scholar] [PubMed]
- Gasperowicz, M.; Natale, D.R.C. Establishing Three Blastocyst Lineages--Then What? Biol. Reprod. 2011, 84, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Saiz, N.; Plusa, B. Early Cell Fate Decisions in the Mouse Embryo. Reproduction 2013, 145, R65–R80. [Google Scholar] [CrossRef]
- Dyer, M.A.; Farrington, S.M.; Mohn, D.; Munday, J.R.; Baron, M.H. Indian Hedgehog Activates Hematopoiesis and Vasculogenesis and Can Respecify Prospective Neurectodermal Cell Fate in the Mouse Embryo. Development 2001, 128, 1717–1730. [Google Scholar] [CrossRef]
- Belaoussoff, M.; Farrington, S.M.; Baron, M.H. Hematopoietic Induction and Respecification of A-P Identity by Visceral Endoderm Signaling in the Mouse Embryo. Development 1998, 125, 5009–5018. [Google Scholar] [CrossRef]
- Byrd, N.; Becker, S.; Maye, P.; Narasimhaiah, R.; St-Jacques, B.; Zhang, X.; McMahon, J.; McMahon, A.; Grabel, L. Hedgehog Is Required for Murine Yolk Sac Angiogenesis. Development 2002, 129, 361–372. [Google Scholar] [CrossRef]
- Ruiz i Altaba, A. Gli Proteins Encode Context-Dependent Positive and Negative Functions: Implications for Development and Disease. Development 1999, 126, 3205–3216. [Google Scholar] [CrossRef]
- Sasaki, H.; Nishizaki, Y.; Hui, C.; Nakafuku, M.; Kondoh, H. Regulation of Gli2 and Gli3 Activities by an Amino-Terminal Repression Domain: Implication of Gli2 and Gli3 as Primary Mediators of Shh Signaling. Development 1999, 126, 3915–3924. [Google Scholar] [CrossRef]
- Wang, B.; Fallon, J.F.; Beachy, P.A. Hedgehog-Regulated Processing of Gli3 Produces an Anterior/Posterior Repressor Gradient in the Developing Vertebrate Limb. Cell 2000, 100, 423–434. [Google Scholar] [CrossRef]
- Wijgerde, M.; McMahon, J.A.; Rule, M.; McMahon, A.P. A Direct Requirement for Hedgehog Signaling for Normal Specification of All Ventral Progenitor Domains in the Presumptive Mammalian Spinal Cord. Genes Dev. 2002, 16, 2849–2864. [Google Scholar] [CrossRef] [PubMed]
- Ribes, V.; Balaskas, N.; Sasai, N.; Cruz, C.; Dessaud, E.; Cayuso, J.; Tozer, S.; Yang, L.L.; Novitch, B.; Marti, E.; et al. Distinct Sonic Hedgehog Signaling Dynamics Specify Floor Plate and Ventral Neuronal Progenitors in the Vertebrate Neural Tube. Genes Dev. 2010, 24, 1186–1200. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.K.; Taipale, J.; Young, K.E.; Maiti, T.; Beachy, P.A. Small Molecule Modulation of Smoothened Activity. Proc. Natl. Acad. Sci. USA 2002, 99, 14071–14076. [Google Scholar] [CrossRef]
- Romani, S.; Illi, B.; De Mori, R.; Savino, M.; Gleeson, J.G.; Valente, E.M. The Ciliary Proteins Meckelin and Jouberin Are Required for Retinoic Acid-Dependent Neural Differentiation of Mouse Embryonic Stem Cells. Differ. Res. Biol. Divers. 2014, 87, 134–146. [Google Scholar] [CrossRef]
- Nichols, J.; Jones, K.; Phillips, J.M.; Newland, S.A.; Roode, M.; Mansfield, W.; Smith, A.; Cooke, A. Validated Germline-Competent Embryonic Stem Cell Lines from Nonobese Diabetic Mice. Nat. Med. 2009, 15, 814–818. [Google Scholar] [CrossRef]
- Trichas, G.; Begbie, J.; Srinivas, S. Use of the Viral 2A Peptide for Bicistronic Expression in Transgenic Mice. BMC Biol. 2008, 6, 40. [Google Scholar] [CrossRef] [PubMed]
- Jaenisch, R.; Young, R. Stem Cells, the Molecular Circuitry of Pluripotency and Nuclear Reprogramming. Cell 2008, 132, 567–582. [Google Scholar] [CrossRef]
- Casanova, J.E.; Grabel, L.B. The Role of Cell Interactions in the Differentiation of Teratocarcinoma-Derived Parietal and Visceral Endoderm. Dev. Biol. 1988, 129, 124–139. [Google Scholar] [CrossRef]
- Becker, S.; Wang, Z.J.; Massey, H.; Arauz, A.; Labosky, P.; Hammerschmidt, M.; St-Jacques, B.; Bumcrot, D.; McMahon, A.; Grabel, L. A Role for Indian Hedgehog in Extraembryonic Endoderm Differentiation in F9 Cells and the Early Mouse Embryo. Dev. Biol. 1997, 187, 298–310. [Google Scholar] [CrossRef]
- Coucouvanis, E.; Martin, G.R. BMP Signaling Plays a Role in Visceral Endoderm Differentiation and Cavitation in the Early Mouse Embryo. Development 1999, 126, 535–546. [Google Scholar] [CrossRef]
- Alonso, A.; Breuer, B.; Steuer, B.; Fischer, J. The F9-EC Cell Line as a Model for the Analysis of Differentiation. Int. J. Dev. Biol. 1991, 35, 389–397. [Google Scholar]
- Paca, A.; Séguin, C.A.; Clements, M.; Ryczko, M.; Rossant, J.; Rodriguez, T.A.; Kunath, T. BMP Signaling Induces Visceral Endoderm Differentiation of XEN Cells and Parietal Endoderm. Dev. Biol. 2012, 361, 90–102. [Google Scholar] [CrossRef] [PubMed]
- Sirard, C.; de la Pompa, J.L.; Elia, A.; Itie, A.; Mirtsos, C.; Cheung, A.; Hahn, S.; Wakeham, A.; Schwartz, L.; Kern, S.E.; et al. The Tumor Suppressor Gene Smad4/Dpc4 Is Required for Gastrulation and Later for Anterior Development of the Mouse Embryo. Genes. Dev. 1998, 12, 107–119. [Google Scholar] [CrossRef]
- Cohen, M.; Kicheva, A.; Ribeiro, A.; Blassberg, R.; Page, K.M.; Barnes, C.P.; Briscoe, J. Ptch1 and Gli Regulate Shh Signalling Dynamics via Multiple Mechanisms. Nat. Commun. 2015, 6, 6709. [Google Scholar] [CrossRef] [PubMed]
- Bangs, F.K.; Schrode, N.; Hadjantonakis, A.-K.; Anderson, K.V. Lineage Specificity of Primary Cilia in the Mouse Embryo. Nat. Cell Biol. 2015, 17, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.-Y.; Tsai, H.-L.; Syu, J.-S.; Chen, T.-Y.; Su, M.-T. Primary Cilium-Regulated EG-VEGF Signaling Facilitates Trophoblast Invasion. J. Cell. Physiol. 2017, 232, 1467–1477. [Google Scholar] [CrossRef]
- Palis, J.; McGrath, K.E.; Kingsley, P.D. Initiation of Hematopoiesis and Vasculogenesis in Murine Yolk Sac Explants. Blood 1995, 86, 156–163. [Google Scholar] [CrossRef]
- Savatier, P.; Lapillonne, H.; Jirmanova, L.; Vitelli, L.; Samarut, J. Analysis of the Cell Cycle in Mouse Embryonic Stem Cells. Methods Mol. Biol. 2002, 185, 27–33. [Google Scholar]
- Ferguson, R.; Subramanian, V. Embryoid body arrays: Parallel cryosectioning of spheroid/embryoid body samples for medium through-put analysis. Stem Cell Res. 2018, 28, 125–130. [Google Scholar] [CrossRef]
- Pratt, T.; Sharp, L.; Nichols, J.; Price, D.J.; Mason, J.O. Embryonic stem cells and transgenic mice ubiquitously expressing a tau-tagged green fluorescent protein. Dev. Biol. 2000, 228, 19–28. [Google Scholar] [CrossRef]
- Woltjen, K.; Michael, I.P.; Mohseni, P.; Desai, R.; Mileikovsky, M.; Hämäläinen, R.; Cowling, R.; Wang, W.; Liu, P.; Gertsenstein, M.; et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 2009, 458, 766–770. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferguson, R.; Subramanian, V. Targeted Deletion in the Basal Body Protein Talpid3 Leads to Loss of Primary Cilia in Embryonic Stem Cells and Defective Lineage-Specific Differentiation. Cells 2024, 13, 1957. https://doi.org/10.3390/cells13231957
Ferguson R, Subramanian V. Targeted Deletion in the Basal Body Protein Talpid3 Leads to Loss of Primary Cilia in Embryonic Stem Cells and Defective Lineage-Specific Differentiation. Cells. 2024; 13(23):1957. https://doi.org/10.3390/cells13231957
Chicago/Turabian StyleFerguson, Ross, and Vasanta Subramanian. 2024. "Targeted Deletion in the Basal Body Protein Talpid3 Leads to Loss of Primary Cilia in Embryonic Stem Cells and Defective Lineage-Specific Differentiation" Cells 13, no. 23: 1957. https://doi.org/10.3390/cells13231957
APA StyleFerguson, R., & Subramanian, V. (2024). Targeted Deletion in the Basal Body Protein Talpid3 Leads to Loss of Primary Cilia in Embryonic Stem Cells and Defective Lineage-Specific Differentiation. Cells, 13(23), 1957. https://doi.org/10.3390/cells13231957