Modulation of Second Messenger Signaling in the Brain Through PDE4 and PDE5 Inhibition: Therapeutic Implications for Neurological Disorders
Abstract
:1. Introduction
2. Distribution and Functional Roles of PDE4 and PDE5 Isoforms in the Central Nervous System and Peripheral Tissues
2.1. PDE4 Isoforms in the CNS and Peripheral Tissues
2.2. PDE5 Isoforms in the CNS and Peripheral Tissues
2.3. Integration of Roles in Signaling and Pathophysiology
2.4. Therapeutic Implications
3. Therapeutic Potential of PDE4 and PDE5 in Neurological Disorders
3.1. Seizure and Epilepsy
3.2. Ischemia and Stroke
3.3. Traumatic Brain Injury (TBI)
3.4. Alzheimer’s Disease
3.5. Summary of Effects of PDE4 and PDE5 Inhibitors in Neurological Disorders
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Delhaye, S.; Bardoni, B. Role of phosphodiesterases in the pathophysiology of neurodevelopmental disorders. Mol. Psychiatry 2021, 26, 4570–4582. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.L.; Wang, Y.H.; Xu, J.; Zhang, N. The protective effect of the PDE-4 inhibitor rolipram on intracerebral haemorrhage is associated with the cAMP/AMPK/SIRT1 pathway. Sci. Rep. 2021, 11, 19737. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.W.; Kim, F.; Cho, J.Y.; Kim, S.; Rhee, J.; Choung, J.J. Phosphodiesterase 5 inhibitor mirodenafil ameliorates Alzheimer-like pathology and symptoms by multimodal actions. Alzheimers Res. Ther. 2022, 14, 92. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.F.; Cheng, Y.F.; Huang, Y.; Conti, M.; Wilson, S.P.; O’Donnell, J.M.; Zhang, H.T. Phosphodiesterase-4D knock-out and RNA interference-mediated knock-down enhance memory and increase hippocampal neurogenesis via increased cAMP signaling. J. Neurosci. 2011, 31, 172–183. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Zhang, X.; Feng, C.; Fan, C.; Yang, X.; Zhang, R.; Zhu, F.; Zhou, Y.; Xu, Y.; et al. DC591017, a phosphodiesterase-4 (PDE4) inhibitor with robust anti-inflammation through regulating PKA-CREB signaling. Biochem. Pharmacol. 2020, 177, 113958. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Z.; Yang, W.X.; Zhang, Y.; Zhao, N.; Zhang, Y.Z.; Liu, Y.Q.; Xu, Y.; Wilson, S.P.; O’Donnell, J.M.; Zhang, H.T.; et al. Phosphodiesterase-4D Knock-down in the Prefrontal Cortex Alleviates Chronic Unpredictable Stress-Induced Depressive-Like Behaviors and Memory Deficits in Mice. Sci. Rep. 2015, 5, 11332. [Google Scholar] [CrossRef] [PubMed]
- Wiescholleck, V.; Manahan-Vaughan, D. PDE4 inhibition enhances hippocampal synaptic plasticity in vivo and rescues MK801-induced impairment of long-term potentiation and object recognition memory in an animal model of psychosis. Transl. Psychiatry 2012, 2, e89. [Google Scholar] [CrossRef] [PubMed]
- Pierre, S.; Eschenhagen, T.; Geisslinger, G.; Scholich, K. Capturing adenylyl cyclases as potential drug targets. Nat. Rev. Drug Discov. 2009, 8, 321–335. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, F.F.; Xu, Y.; Fu, H.R.; Wang, X.D.; Wang, L.; Chen, W.; Xu, X.Y.; Gao, Y.F.; Zhang, J.G.; et al. The Phosphodiesterase-4 Inhibitor Roflumilast, a Potential Treatment for the Comorbidity of Memory Loss and Depression in Alzheimer’s Disease: A Preclinical Study in APP/PS1 Transgenic Mice. Int. J. Neuropsychopharmacol. 2020, 23, 700–711. [Google Scholar] [CrossRef] [PubMed]
- Bollen, E.; Puzzo, D.; Rutten, K.; Privitera, L.; De Vry, J.; Vanmierlo, T.; Kenis, G.; Palmeri, A.; D’Hooge, R.; Balschun, D.; et al. Improved long-term memory via enhancing cGMP-PKG signaling requires cAMP-PKA signaling. Neuropsychopharmacology 2014, 39, 2497–2505. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhang, L.; Lian, G.; Wang, X.; Zhang, H.; Yao, X.; Yang, J.; Wu, C. Sildenafil attenuates LPS-induced pro-inflammatory responses through down-regulation of intracellular ROS-related MAPK/NF-kappaB signaling pathways in N9 microglia. Int. Immunopharmacol. 2011, 11, 468–474. [Google Scholar] [CrossRef]
- Puerta, E.; Hervias, I.; Barros-Minones, L.; Jordan, J.; Ricobaraza, A.; Cuadrado-Tejedor, M.; Garcia-Osta, A.; Aguirre, N. Sildenafil protects against 3-nitropropionic acid neurotoxicity through the modulation of calpain, CREB, and BDNF. Neurobiol. Dis. 2010, 38, 237–245. [Google Scholar] [CrossRef]
- Shelly, M.; Lim, B.K.; Cancedda, L.; Heilshorn, S.C.; Gao, H.; Poo, M.M. Local and long-range reciprocal regulation of cAMP and cGMP in axon/dendrite formation. Science 2010, 327, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Argyrousi, E.K.; Heckman, P.R.A.; Prickaerts, J. Role of cyclic nucleotides and their downstream signaling cascades in memory function: Being at the right time at the right spot. Neurosci. Biobehav. Rev. 2020, 113, 12–38. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.T.; Zhao, Y.; Huang, Y.; Dorairaj, N.R.; Chandler, L.J.; O’Donnell, J.M. Inhibition of the phosphodiesterase 4 (PDE4) enzyme reverses memory deficits produced by infusion of the MEK inhibitor U0126 into the CA1 subregion of the rat hippocampus. Neuropsychopharmacology 2004, 29, 1432–1439. [Google Scholar] [CrossRef] [PubMed]
- Houslay, M.D.; Adams, D.R. PDE4 cAMP phosphodiesterases: Modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochem. J. 2003, 370, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Richter, W.; Menniti, F.S.; Zhang, H.T.; Conti, M. PDE4 as a target for cognition enhancement. Expert Opin. Ther. Targets 2013, 17, 1011–1027. [Google Scholar] [CrossRef]
- Wilson, N.M.; Titus, D.J.; Oliva, A.A., Jr.; Furones, C.; Atkins, C.M. Traumatic Brain Injury Upregulates Phosphodiesterase Expression in the Hippocampus. Front. Syst. Neurosci. 2016, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- Schepers, M.; Paes, D.; Tiane, A.; Rombaut, B.; Piccart, E.; van Veggel, L.; Gervois, P.; Wolfs, E.; Lambrichts, I.; Brullo, C.; et al. Selective PDE4 subtype inhibition provides new opportunities to intervene in neuroinflammatory versus myelin damaging hallmarks of multiple sclerosis. Brain Behav. Immun. 2023, 109, 1–22. [Google Scholar] [CrossRef]
- Lugnier, C. The Complexity and Multiplicity of the Specific cAMP Phosphodiesterase Family: PDE4, Open New Adapted Therapeutic Approaches. Int. J. Mol. Sci. 2022, 23, 10616. [Google Scholar] [CrossRef]
- Hollas, M.A.; Ben Aissa, M.; Lee, S.H.; Gordon-Blake, J.M.; Thatcher, G.R.J. Pharmacological manipulation of cGMP and NO/cGMP in CNS drug discovery. Nitric Oxide 2019, 82, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Garthwaite, J. NO as a multimodal transmitter in the brain: Discovery and current status. Br. J. Pharmacol. 2019, 176, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Shimizu-Albergine, M.; Rybalkin, S.D.; Rybalkina, I.G.; Feil, R.; Wolfsgruber, W.; Hofmann, F.; Beavo, J.A. Individual cerebellar Purkinje cells express different cGMP phosphodiesterases (PDEs): In vivo phosphorylation of cGMP-specific PDE (PDE5) as an indicator of cGMP-dependent protein kinase (PKG) activation. J. Neurosci. 2003, 23, 6452–6459. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, F.; Zhong, Y.; Huang, Y.; Yixizhuoma; Jia, Q.; Zhang, S. A label-free LC/MS-based enzymatic activity assay for the detection of PDE5A inhibitors. Front. Chem. 2023, 11, 1097027. [Google Scholar] [CrossRef] [PubMed]
- Machado Batista Sohn, J.; Cardoso, N.C.; Raymundi, A.M.; Prickaerts, J.; Stern, C.A.J. Phosphodiesterase 4 inhibition after retrieval switches the memory fate favoring extinction instead of reconsolidation. Sci. Rep. 2023, 13, 20384. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.W.; Kho, A.R.; Lee, S.H.; Kang, B.S.; Park, M.K.; Lee, C.J.; Park, S.W.; Woo, S.Y.; Kim, D.Y.; Jung, H.H.; et al. A phosphodiesterase 4 (PDE4) inhibitor, amlexanox, reduces neuroinflammation and neuronal death after pilocarpine-induced seizure. Neurotherapeutics 2024, 21, e00357. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Sugita, M.; Nukui, H. Phosphodiesterase 5 inhibitor, zaprinast, selectively increases cerebral blood flow in the ischemic penumbra in the rat brain. Neurol. Res. 2005, 27, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Yazdani, A.; Howidi, B.; Shi, M.Z.; Tugarinov, N.; Khoja, Z.; Wintermark, P. Sildenafil improves hippocampal brain injuries and restores neuronal development after neonatal hypoxia-ischemia in male rat pups. Sci. Rep. 2021, 11, 22046. [Google Scholar] [CrossRef]
- Baillie, G.S.; Tejeda, G.S.; Kelly, M.P. Therapeutic targeting of 3’,5’-cyclic nucleotide phosphodiesterases: Inhibition and beyond. Nat. Rev. Drug Discov. 2019, 18, 770–796. [Google Scholar] [CrossRef]
- Li, Z.H.; Cui, D.; Qiu, C.J.; Song, X.J. Cyclic nucleotide signaling in sensory neuron hyperexcitability and chronic pain after nerve injury. Neurobiol. Pain 2019, 6, 100028. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Fetter, R.; Schwabe, T.; Jung, C.; Liu, L.; Steller, H.; Gaul, U. The cAMP effector PKA mediates Moody GPCR signaling in Drosophila blood-brain barrier formation and maturation. eLife 2021, 10, e68275. [Google Scholar] [CrossRef]
- Liu, J.; Liu, B.; Yuan, P.; Cheng, L.; Sun, H.; Gui, J.; Pan, Y.; Huang, D.; Chen, H.; Jiang, L. Role of PKA/CREB/BDNF signaling in PM2.5-induced neurodevelopmental damage to the hippocampal neurons of rats. Ecotoxicol. Environ. Saf. 2021, 214, 112005. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Mergia, E.; Koesling, D.; Mittmann, T. Nitric Oxide/Cyclic Guanosine Monophosphate Signaling via Guanylyl Cyclase Isoform 1 Mediates Early Changes in Synaptic Transmission and Brain Edema Formation after Traumatic Brain Injury. J. Neurotrauma 2021, 38, 1689–1701. [Google Scholar] [CrossRef]
- Silva, A.; Nascimento, C.P.; Azevedo, J.E.C.; Vieira, L.R.; Hamoy, A.O.; Tiago, A.; Martins Rodrigues, J.C.; de Araujo, D.B.; Favacho Lopes, D.C.; de Mello, V.J.; et al. Unmasking hidden risks: The surprising link between PDE5 inhibitors and seizure susceptibility. PLoS ONE 2023, 18, e0294754. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, M.A.J.; Chaves-Filho, A.; de Souza, A.G.; de Carvalho Lima, C.N.; de Lima, K.A.; Rios Vasconcelos, E.R.; Feitosa, M.L.; Souza Oliveira, J.V.; de Souza, D.A.A.; Macedo, D.S.; et al. Proconvulsant effects of sildenafil citrate on pilocarpine-induced seizures: Involvement of cholinergic, nitrergic and pro-oxidant mechanisms. Brain Res. Bull. 2019, 149, 60–74. [Google Scholar] [CrossRef]
- Wilson, N.M.; Gurney, M.E.; Dietrich, W.D.; Atkins, C.M. Therapeutic benefits of phosphodiesterase 4B inhibition after traumatic brain injury. PLoS ONE 2017, 12, e0178013. [Google Scholar] [CrossRef]
- Kilicarslan, B.; Kilicarslan, E.; Kizmazoglu, C.; Aydin, H.E.; Kaya, I.; Danyeli, A.E.; Karabekir, H.S. Evaluation of the Efficacy of Sildenafil Citrate Following Severe Head Trauma in an Experimental Rat Model. Turk. Neurosurg. 2020, 30, 501–506. [Google Scholar] [CrossRef]
- Kalyani, P.; Lippa, S.M.; Werner, J.K.; Amyot, F.; Moore, C.B.; Kenney, K.; Diaz-Arrastia, R. Phosphodiesterase-5 (PDE-5) Inhibitors as Therapy for Cerebrovascular Dysfunction in Chronic Traumatic Brain Injury. Neurotherapeutics 2023, 20, 1629–1640. [Google Scholar] [CrossRef]
- Shi, Y.; Lv, J.; Chen, L.; Luo, G.; Tao, M.; Pan, J.; Hu, X.; Sheng, J.; Zhang, S.; Zhou, M.; et al. Phosphodiesterase-4D Knockdown in the Prefrontal Cortex Alleviates Memory Deficits and Synaptic Failure in Mouse Model of Alzheimer’s Disease. Front. Aging Neurosci. 2021, 13, 722580. [Google Scholar] [CrossRef] [PubMed]
- Mao, F.; Wang, H.; Ni, W.; Zheng, X.; Wang, M.; Bao, K.; Ling, D.; Li, X.; Xu, Y.; Zhang, H.; et al. Design, Synthesis, and Biological Evaluation of Orally Available First-Generation Dual-Target Selective Inhibitors of Acetylcholinesterase (AChE) and Phosphodiesterase 5 (PDE5) for the Treatment of Alzheimer’s Disease. ACS Chem. Neurosci. 2018, 9, 328–345. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, M.; Omidvarnia, A.; Curwood, E.K.; Walz, J.M.; Rayner, G.; Jackson, G.D. The dynamics of functional connectivity in neocortical focal epilepsy. Neuroimage Clin. 2017, 15, 209–214. [Google Scholar] [CrossRef]
- Thijs, R.D.; Surges, R.; O’Brien, T.J.; Sander, J.W. Epilepsy in adults. Lancet 2019, 393, 689–701. [Google Scholar] [CrossRef]
- Abel, T.; Nguyen, P.V. Regulation of hippocampus-dependent memory by cyclic AMP-dependent protein kinase. Prog. Brain Res. 2008, 169, 97–115. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Chen, X.; Wang, B.; Ma, W.; Yang, Y.; Zheng, R.; Huang, Z. PKA-RIIbeta autophosphorylation modulates PKA activity and seizure phenotypes in mice. Commun. Biol. 2021, 4, 263. [Google Scholar] [CrossRef]
- Esplugues, J.V. NO as a signalling molecule in the nervous system. Br. J. Pharmacol. 2002, 135, 1079–1095. [Google Scholar] [CrossRef]
- ElHady, A.K.; El-Gamil, D.S.; Abdel-Halim, M.; Abadi, A.H. Advancements in Phosphodiesterase 5 Inhibitors: Unveiling Present and Future Perspectives. Pharmaceuticals 2023, 16, 1266. [Google Scholar] [CrossRef] [PubMed]
- Syed, Y.A.; Baer, A.; Hofer, M.P.; Gonzalez, G.A.; Rundle, J.; Myrta, S.; Huang, J.K.; Zhao, C.; Rossner, M.J.; Trotter, M.W.; et al. Inhibition of phosphodiesterase-4 promotes oligodendrocyte precursor cell differentiation and enhances CNS remyelination. EMBO Mol. Med. 2013, 5, 1918–1934. [Google Scholar] [CrossRef] [PubMed]
- Donders, Z.; Skorupska, I.J.; Willems, E.; Mussen, F.; Broeckhoven, J.V.; Carlier, A.; Schepers, M.; Vanmierlo, T. Beyond PDE4 inhibition: A comprehensive review on downstream cAMP signaling in the central nervous system. Biomed. Pharmacother. 2024, 177, 117009. [Google Scholar] [CrossRef] [PubMed]
- Olmestig, J.N.E.; Marlet, I.R.; Hainsworth, A.H.; Kruuse, C. Phosphodiesterase 5 inhibition as a therapeutic target for ischemic stroke: A systematic review of preclinical studies. Cell. Signal. 2017, 38, 39–48. [Google Scholar] [CrossRef]
- Xu, F.; Lv, C.; Deng, Y.; Liu, Y.; Gong, Q.; Shi, J.; Gao, J. Icariside II, a PDE5 Inhibitor, Suppresses Oxygen-Glucose Deprivation/Reperfusion-Induced Primary Hippocampal Neuronal Death Through Activating the PKG/CREB/BDNF/TrkB Signaling Pathway. Front. Pharmacol. 2020, 11, 523. [Google Scholar] [CrossRef]
- Yu, S.; Doycheva, D.M.; Gamdzyk, M.; Yang, Y.; Lenahan, C.; Li, G.; Li, D.; Lian, L.; Tang, J.; Lu, J.; et al. Activation of MC1R with BMS-470539 attenuates neuroinflammation via cAMP/PKA/Nurr1 pathway after neonatal hypoxic-ischemic brain injury in rats. J. Neuroinflammation 2021, 18, 26. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Li, L.; Chen, B.; Fang, Y.; Lin, W.; Zhang, T.; Feng, X.; Tao, X.; Wu, Y.; Fu, X.; et al. Chlorogenic acid exerts neuroprotective effect against hypoxia-ischemia brain injury in neonatal rats by activating Sirt1 to regulate the Nrf2-NF-kappaB signaling pathway. Cell Commun. Signal. 2022, 20, 84. [Google Scholar] [CrossRef]
- Xu, B.; Qin, Y.; Li, D.; Cai, N.; Wu, J.; Jiang, L.; Jie, L.; Zhou, Z.; Xu, J.; Wang, H. Inhibition of PDE4 protects neurons against oxygen-glucose deprivation-induced endoplasmic reticulum stress through activation of the Nrf-2/HO-1 pathway. Redox Biol. 2020, 28, 101342. [Google Scholar] [CrossRef]
- Xu, B.; Wang, T.; Xiao, J.; Dong, W.; Wen, H.Z.; Wang, X.; Qin, Y.; Cai, N.; Zhou, Z.; Xu, J.; et al. FCPR03, a novel phosphodiesterase 4 inhibitor, alleviates cerebral ischemia/reperfusion injury through activation of the AKT/GSK3beta/ beta-catenin signaling pathway. Biochem. Pharmacol. 2019, 163, 234–249. [Google Scholar] [CrossRef]
- Baudet, S.; Zagar, Y.; Roche, F.; Gomez-Bravo, C.; Couvet, S.; Becret, J.; Belle, M.; Vougny, J.; Uthayasuthan, S.; Ros, O.; et al. Subcellular second messenger networks drive distinct repellent-induced axon behaviors. Nat. Commun. 2023, 14, 3809. [Google Scholar] [CrossRef] [PubMed]
- Itoh, T.; Abe, K.; Hong, J.; Inoue, O.; Pike, V.W.; Innis, R.B.; Fujita, M. Effects of cAMP-dependent protein kinase activator and inhibitor on in vivo rolipram binding to phosphodiesterase 4 in conscious rats. Synapse 2010, 64, 172–176. [Google Scholar] [CrossRef] [PubMed]
PDE4 Inhibitor | Neurological Disorder | Animal Model | Observed Effects | References |
---|---|---|---|---|
Amlexanox | Seizures and Epilepsy | Sprague Dawley rats (6–8 weeks old) | ▼ Neuronal cell death ▲ Lysosomal function ▲ Autophagy ▼ Neuroinflammation ▼ Reactive oxygen species (ROS) | [26] |
Rolipram FCPR03 | Ischemia and Stroke | Adult male C57BL/6 mice (6–8 weeks old) Sprague Dawley rats (6–8 weeks old) | ▼ Neuronal cell death ▼ Neuroinflammation ▲ Blood-brain barrier integrity ▼ ROS production ▲SIRT1 and p-AMPK ▲AKT/GSK3β/β-catenin | [2,54] |
A33 Rolipram | Traumatic Brain Injury (TBI) | Sprague Dawley rats (6–8 weeks old) | ▼ Neuronal cell death ▲ Cognitive function ▲ Synaptic function ▲ Synaptic plasticity ▼ Neuroinflammation | [18,36] |
Roflumilast | Alzheimer’s Disease (AD) | APP/PS1 double transgenic mice | ▼ Neuronal cell death ▲ cAMP/CREB/BDNF signaling ▲ Bcl-2/Bax ratio ▲ Cognitive function ▼ Depressive-like behavior | [9] |
PDE5 Inhibitor | Neurological Disorder | Animal Model | Observed Effects | References |
---|---|---|---|---|
Sildenafil | Seizures and Epilepsy | Male Swiss mice Wistar rats | ▲ Neuroprotection via NO-cGMP-PKG pathway ▼ ROS production ▼ Neuronal excitability | [34,35] |
Sildenafil | Ischemia and Stroke | 10-day-old (P10) male Long–Evans rat | ▼ Neuronal death ▲ Neuroprotection via PKG pathway ▼ ROS production ▲ PI3K/Akt/mTOR pathway activation ▲ Mitochondrial function | [28] |
Sildenafil | Traumatic Brain Injury (TBI) | Twenty-eight Wistar-derived albino strain female rats | ▼ Neuronal death ▲ Cerebral blood flow without increasing intracranial pressure ▼ Endothelin-1 levels ▲ Cerebral perfusion | [37] |
Mirodenafil | Alzheimer’s Disease (AD) | APP-C105 AD mouse | ▼ Amyloid-beta (Aβ) and tau levels ▲ Cognitive function ▲ Aβ clearance via autophagy-lysosome pathway ▲ cGMP/PKG/CREB signaling pathway ▲ Mitochondrial function | [3] |
Focus Area | Key Objectives | Specific Actions | Expected Outcomes |
---|---|---|---|
Mechanisms of Action | 1.1 Disease-Specific Pathways: Study PDE4 and PDE5 roles in Alzheimer’s, TBI, stroke, and epilepsy. 1.2 Crosstalk Analysis: Investigate interactions between PDE4 and PDE5 in overlapping conditions. |
|
|
Enhancing PDE Inhibitors | 2.1 Improve Selectivity: Design isoform-specific inhibitors (e.g., PDE4D, PDE5A). 2.2 Improve Bioavailability: Ensure BBB penetration and target engagement. 2.3 Safety Testing: Examine chronic dosing impacts (e.g., emesis, cardiovascular side effects). |
|
|
Preclinical to Clinical | 3.1 Validate in Human Models: Use iPSC-derived neurons and 3D brain organoids to test PDE inhibitors. 3.2 Initiate Clinical Trials: Prioritize stroke and epilepsy for Phase 1 studies. |
|
|
Combination Therapies | 4.1 Dual PDE Inhibition: Explore combined PDE4 and PDE5 targeting. 4.2 Synergistic Approaches: Pair PDE inhibitors with anti-inflammatory or antioxidant agents. |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, M.K.; Yang, H.W.; Woo, S.Y.; Kim, D.Y.; Son, D.-S.; Choi, B.Y.; Suh, S.W. Modulation of Second Messenger Signaling in the Brain Through PDE4 and PDE5 Inhibition: Therapeutic Implications for Neurological Disorders. Cells 2025, 14, 86. https://doi.org/10.3390/cells14020086
Park MK, Yang HW, Woo SY, Kim DY, Son D-S, Choi BY, Suh SW. Modulation of Second Messenger Signaling in the Brain Through PDE4 and PDE5 Inhibition: Therapeutic Implications for Neurological Disorders. Cells. 2025; 14(2):86. https://doi.org/10.3390/cells14020086
Chicago/Turabian StylePark, Min Kyu, Hyun Wook Yang, Seo Young Woo, Dong Yeon Kim, Dae-Soon Son, Bo Young Choi, and Sang Won Suh. 2025. "Modulation of Second Messenger Signaling in the Brain Through PDE4 and PDE5 Inhibition: Therapeutic Implications for Neurological Disorders" Cells 14, no. 2: 86. https://doi.org/10.3390/cells14020086
APA StylePark, M. K., Yang, H. W., Woo, S. Y., Kim, D. Y., Son, D.-S., Choi, B. Y., & Suh, S. W. (2025). Modulation of Second Messenger Signaling in the Brain Through PDE4 and PDE5 Inhibition: Therapeutic Implications for Neurological Disorders. Cells, 14(2), 86. https://doi.org/10.3390/cells14020086