Next Issue
Volume 14, February-1
Previous Issue
Volume 14, January-1
 
 

Cells, Volume 14, Issue 2 (January-2 2025) – 88 articles

Cover Story (view full-size image): Cells (ISSN 2073-4409) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to cell biology, molecular biology and biophysics. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. The Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH) and Society for Regenerative Medicine (Russian Federation) (RPO) are affiliated with Cells and their members receive discounts on the article processing charges.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
29 pages, 3286 KiB  
Review
Detection of Cancer Stem Cells from Patient Samples
by Sofia Hakala, Anna Hämäläinen, Sanne Sandelin, Nikolaos Giannareas and Elisa Närvä
Cells 2025, 14(2), 148; https://doi.org/10.3390/cells14020148 - 20 Jan 2025
Viewed by 743
Abstract
The existence of cancer stem cells (CSCs) in various tumors has become increasingly clear in addition to their prominent role in therapy resistance, metastasis, and recurrence. For early diagnosis, disease progression monitoring, and targeting, there is a high demand for clinical-grade methods for [...] Read more.
The existence of cancer stem cells (CSCs) in various tumors has become increasingly clear in addition to their prominent role in therapy resistance, metastasis, and recurrence. For early diagnosis, disease progression monitoring, and targeting, there is a high demand for clinical-grade methods for quantitative measurement of CSCs from patient samples. Despite years of active research, standard measurement of CSCs has not yet reached clinical settings, especially in the case of solid tumors. This is because detecting this plastic heterogeneous population of cells is not straightforward. This review summarizes various techniques, highlighting their benefits and limitations in detecting CSCs from patient samples. In addition, methods designed to detect CSCs based on secreted and niche-associated signaling factors are reviewed. Spatial and single-cell methods for analyzing patient tumor tissues and noninvasive techniques such as liquid biopsy and in vivo imaging are discussed. Additionally, methods recently established in laboratories, preclinical studies, and clinical assays are covered. Finally, we discuss the characteristics of an ideal method as we look toward the future. Full article
(This article belongs to the Special Issue Signaling in Cancer Stem Cells)
Show Figures

Figure 1

24 pages, 1204 KiB  
Review
Modelling Peroxisomal Disorders in Zebrafish
by Chenxing S. Jiang and Michael Schrader
Cells 2025, 14(2), 147; https://doi.org/10.3390/cells14020147 - 20 Jan 2025
Viewed by 836
Abstract
Peroxisomes are ubiquitous, dynamic, oxidative organelles with key functions in cellular lipid metabolism and redox homeostasis. They have been linked to healthy ageing, neurodegeneration, cancer, the combat of pathogens and viruses, and infection and immune responses. Their biogenesis relies on several peroxins (encoded [...] Read more.
Peroxisomes are ubiquitous, dynamic, oxidative organelles with key functions in cellular lipid metabolism and redox homeostasis. They have been linked to healthy ageing, neurodegeneration, cancer, the combat of pathogens and viruses, and infection and immune responses. Their biogenesis relies on several peroxins (encoded by PEX genes), which mediate matrix protein import, membrane assembly, and peroxisome multiplication. Defects in peroxins or peroxisomal enzymes can result in severe disorders, including developmental and neurological abnormalities. The drive to understand the role of peroxisomes in human health and disease, as well as their functions in tissues and organs or during development, has led to the establishment of vertebrate models. The zebrafish (Danio rerio) has become an attractive vertebrate model organism to investigate peroxisomal functions. Here, we provide an overview of the visualisation of peroxisomes in zebrafish, as well as the peroxisomal metabolic functions and peroxisomal protein inventory in comparison to human peroxisomes. We then present zebrafish models which have been established to investigate peroxisomal disorders. These include model zebrafish for peroxisome biogenesis disorders/Zellweger Spectrum disorders, and single enzyme deficiencies, particularly adrenoleukodystrophy and fatty acid beta-oxidation abnormalities. Finally, we highlight zebrafish models for deficiencies of dually targeted peroxisomal/mitochondrial proteins. Advantages for the investigation of peroxisomes during development and approaches to the application of zebrafish models for drug screening are discussed. Full article
(This article belongs to the Special Issue Modeling Developmental Processes and Disorders in Zebrafish)
Show Figures

Figure 1

17 pages, 3010 KiB  
Article
Inhibiting Autophagy by Chemicals During SCAPs Osteodifferentiation Elicits Disorganized Mineralization, While the Knock-Out of Atg5/7 Genes Leads to Cell Adaptation
by Damien Le Nihouannen, Claudine Boiziau, Sylvie Rey, Nicole Agadzhanian, Nathalie Dusserre, Fabrice Cordelières, Muriel Priault and Helene Boeuf
Cells 2025, 14(2), 146; https://doi.org/10.3390/cells14020146 - 20 Jan 2025
Viewed by 782
Abstract
SCAPs (Stem Cells from Apical Papilla), derived from the apex of forming wisdom teeth, extracted from teenagers for orthodontic reasons, belong to the MSCs (Mesenchymal Stromal Cells) family. They have multipotent differentiation capabilities and are a potentially powerful model for investigating strategies of [...] Read more.
SCAPs (Stem Cells from Apical Papilla), derived from the apex of forming wisdom teeth, extracted from teenagers for orthodontic reasons, belong to the MSCs (Mesenchymal Stromal Cells) family. They have multipotent differentiation capabilities and are a potentially powerful model for investigating strategies of clinical cell therapies. Since autophagy—a regulated self-eating process—was proposed to be essential in osteogenesis, we investigated its involvement in the SCAP model. By using a combination of chemical and genetic approaches to inhibit autophagy, we studied early and late events of osteoblastic differentiation. We showed that blocking the formation of autophagosomes with verteporfin did not induce a dramatic alteration in early osteoblastic differentiation monitored by ALP (alkaline phosphatase) activity. However, blocking the autophagy flux with bafilomycin A1 led to ALP repression. Strikingly, the mineralization process was observed with both compounds, with calcium phosphate (CaP) nodules that remained inside cells under bafilomycin A1 treatment and numerous but smaller CaP nodules after verteporfin treatment. In contrast, deletion of Atg5 or Atg7, two genes involved in the formation of autophagosomes and essential to trigger canonical autophagy, indicated that both genes could be involved differently in the mineralization process with a modification of the ALP activity while final mineralization was not altered. Full article
(This article belongs to the Section Autophagy)
Show Figures

Figure 1

25 pages, 3503 KiB  
Review
Advancements in Bone Replacement Techniques–Potential Uses After Maxillary and Mandibular Resections Due to Medication-Related Osteonecrosis of the Jaw (MRONJ)
by Judit Bovari-Biri, Judith A Miskei, Zsanett Kover, Alexandra Steinerbrunner-Nagy, Kinga Kardos, Peter Maroti and Judit E Pongracz
Cells 2025, 14(2), 145; https://doi.org/10.3390/cells14020145 - 20 Jan 2025
Viewed by 675
Abstract
Maxillofacial bone defects can have a profound impact on both facial function and aesthetics. While various biomaterial scaffolds have shown promise in addressing these challenges, regenerating bone in this region remains complex due to its irregular shape, intricate structure, and differing cellular origins [...] Read more.
Maxillofacial bone defects can have a profound impact on both facial function and aesthetics. While various biomaterial scaffolds have shown promise in addressing these challenges, regenerating bone in this region remains complex due to its irregular shape, intricate structure, and differing cellular origins compared to other bones in the human body. Moreover, the significant and variable mechanical loads placed on the maxillofacial bones add further complexity, especially in cases of difficult-to-treat medical conditions. This review provides a brief overview of medication-related osteonecrosis of the jaw (MRONJ), highlighting the medication-induced adverse reactions and the associated clinical challenges in treating this condition. The purpose of this manuscript is to emphasize the role of biotechnology and tissue engineering technologies in therapy. By using scaffold materials and biofactors in combination with autologous cells, innovative solutions are explored for the repair of damaged facial bones. The ongoing search for effective scaffolds that can address these challenges and improve in vitro bone preparation for subsequent regeneration in the maxillofacial region remains critical. The primary purpose of this review is to spotlight current research trends and novel approaches in this area. Full article
Show Figures

Figure 1

17 pages, 702 KiB  
Review
The Link Between Venous and Arterial Thrombosis: Is There a Role for Endothelial Dysfunction?
by Marco Paolo Donadini, Francesca Calcaterra, Erica Romualdi, Roberta Ciceri, Assunta Cancellara, Corrado Lodigiani, Monica Bacci, Silvia Della Bella, Walter Ageno and Domenico Mavilio
Cells 2025, 14(2), 144; https://doi.org/10.3390/cells14020144 - 20 Jan 2025
Viewed by 791
Abstract
Venous thromboembolism (VTE) and arterial thrombosis (AT) are distinct yet closely related pathological processes. While traditionally considered separate entities, accumulating evidence suggests that they share common risk factors, such as inflammation and endothelial dysfunction (ED). This review explores the parallels and differences between [...] Read more.
Venous thromboembolism (VTE) and arterial thrombosis (AT) are distinct yet closely related pathological processes. While traditionally considered separate entities, accumulating evidence suggests that they share common risk factors, such as inflammation and endothelial dysfunction (ED). This review explores the parallels and differences between venous and arterial thrombosis, with particular attention to the role of unprovoked VTE and its potential links to atherosclerosis and systemic inflammation. A key focus is the role of ED, which is emerging as a critical factor in thrombogenesis across both the venous and arterial systems. We examine the current methods for clinically detecting ED, including the use of biomarkers and advanced imaging techniques. Additionally, we discuss novel research avenues, such as the potential of endothelial colony-forming cells and other innovative methodologies, to further unravel the complex mechanisms of thrombosis. Finally, we propose future clinical scenarios where targeting endothelial health could pave the way for more effective prevention and treatment strategies in thrombosis management. Full article
(This article belongs to the Special Issue Novel Insight into Endothelial Function and Atherosclerosis)
Show Figures

Graphical abstract

38 pages, 4043 KiB  
Review
Brain Plasticity and Cell Competition: Immediate Early Genes Are the Focus
by Pavel P. Tregub, Yulia K. Komleva, Maria V. Kukla, Anton S. Averchuk, Anna S. Vetchinova, Natalia A. Rozanova, Sergey N. Illarioshkin and Alla B. Salmina
Cells 2025, 14(2), 143; https://doi.org/10.3390/cells14020143 - 19 Jan 2025
Viewed by 686
Abstract
Brain plasticity is at the basis of many cognitive functions, including learning and memory. It includes several mechanisms of synaptic and extrasynaptic changes, neurogenesis, and the formation and elimination of synapses. The plasticity of synaptic transmission involves the expression of immediate early genes [...] Read more.
Brain plasticity is at the basis of many cognitive functions, including learning and memory. It includes several mechanisms of synaptic and extrasynaptic changes, neurogenesis, and the formation and elimination of synapses. The plasticity of synaptic transmission involves the expression of immediate early genes (IEGs) that regulate neuronal activity, thereby supporting learning and memory. In addition, IEGs are involved in the regulation of brain cells’ metabolism, proliferation, and survival, in the establishment of multicellular ensembles, and, presumably, in cell competition in the tissue. In this review, we analyze the current understanding of the role of IEGs (c-Fos, c-Myc, Arg3.1/Arc) in controlling brain plasticity in physiological and pathological conditions, including brain aging and neurodegeneration. This work might inspire new gene therapy strategies targeting IEGs to regulate synaptic plasticity, and potentially prevent or mitigate neurodegenerative diseases. Full article
Show Figures

Graphical abstract

15 pages, 2707 KiB  
Article
Calponin 3 Regulates Myoblast Proliferation and Differentiation Through Actin Cytoskeleton Remodeling and YAP1-Mediated Signaling in Myoblasts
by Mai Thi Nguyen, Quoc Kiet Ly, Thanh Huu Phan Ngo and Wan Lee
Cells 2025, 14(2), 142; https://doi.org/10.3390/cells14020142 - 18 Jan 2025
Viewed by 622
Abstract
An actin-binding protein, known as Calponin 3 (CNN3), modulates the remodeling of the actin cytoskeleton, a fundamental process for the maintenance of skeletal muscle homeostasis. Although the roles of CNN3 in actin remodeling have been established, its biological significance in myoblast differentiation remains [...] Read more.
An actin-binding protein, known as Calponin 3 (CNN3), modulates the remodeling of the actin cytoskeleton, a fundamental process for the maintenance of skeletal muscle homeostasis. Although the roles of CNN3 in actin remodeling have been established, its biological significance in myoblast differentiation remains largely unknown. This study investigated the functional significance of CNN3 in myogenic differentiation, along with its effects on actin remodeling and mechanosensitive signaling in C2C12 myoblasts. CNN3 knockdown led to a marked increase in filamentous actin, which promoted the nuclear localization of Yes-associated protein 1 (YAP1), a mechanosensitive transcriptional coactivator required for response to the mechanical cues that drive cell proliferation. Subsequently, CNN3 depletion enhanced myoblast proliferation by upregulating the expression of the YAP1 target genes related to cell cycle progression, such as cyclin B1, cyclin D1, and PCNA. According to a flow cytometry analysis, CNN3-deficient cells displayed higher S and G2/M phase fractions, which concurred with elevated proliferation rates. Furthermore, CNN3 knockdown impaired myogenic differentiation, as evidenced by reduced levels of MyoD, MyoG, and MyHC, key markers of myogenic commitment and maturation, and immunocytochemistry showed that myotube formation was diminished in CNN3-suppressed cells, which was supported by lower differentiation and fusion indices. These findings reveal that CNN3 is essential for myogenic differentiation, playing a key role in regulating actin remodeling and cellular localization of YAP1 to orchestrate the proliferation and differentiation in myogenic progenitor cells. This study highlights CNN3 as a critical regulator of skeletal myogenesis and suggests its therapeutic potential as a target for muscle atrophy and related disorders. Full article
(This article belongs to the Special Issue Advances in Muscle Research in Health and Disease—2nd Edition)
Show Figures

Figure 1

15 pages, 749 KiB  
Review
Microlipophagy from Simple to Complex Eukaryotes
by Ravinder Kumar, Colin Arrowood, Micah B. Schott and Taras Y. Nazarko
Cells 2025, 14(2), 141; https://doi.org/10.3390/cells14020141 - 18 Jan 2025
Viewed by 1009
Abstract
Lipophagy is a selective degradation of lipid droplets in lysosomes or vacuoles. Apart from its role in generating energy and free fatty acids for membrane repair, growth, and the formation of new membranes, lipophagy emerges as a key player in other cellular processes [...] Read more.
Lipophagy is a selective degradation of lipid droplets in lysosomes or vacuoles. Apart from its role in generating energy and free fatty acids for membrane repair, growth, and the formation of new membranes, lipophagy emerges as a key player in other cellular processes and disease pathogenesis. While fungal, plant, and algal cells use microlipophagy, the most prominent form of lipophagy in animal cells is macrolipophagy. However, recent studies showed that animal cells can also use microlipophagy to metabolize their lipid droplets. Therefore, to no surprise, microlipophagy is conserved from simple unicellular to the most complex multicellular eukaryotes, and many eukaryotic cells can operate both forms of lipophagy. Macrolipophagy is the most studied and better understood at the molecular level, while our understanding of microlipophagy is very sparse. This review will discuss microlipophagy from the perspective of its conservation in eukaryotes and its importance in diseases. To better appreciate the conserved nature of microlipophagy, different organisms and types of cells in which microlipophagy has been reported are also shown in a tabular form. We also point toward the gaps in our understanding of microlipophagy, including the signaling behind microlipophagy, especially in the cells of complex multicellular organisms. Full article
(This article belongs to the Special Issue Insight into Lipid Droplets)
Show Figures

Figure 1

11 pages, 2221 KiB  
Perspective
Role of Thyroid Hormone in Neurodegenerative Disorders of Older People
by Arshag D. Mooradian and Michael J. Haas
Cells 2025, 14(2), 140; https://doi.org/10.3390/cells14020140 - 18 Jan 2025
Viewed by 600
Abstract
Thyroid dysfunction is associated with a number of neuropsychiatric manifestations. Cognitive decline is a common feature of hypothyroidism and clinical or subclinical hyperthyroidism. In addition, there is a significant association between thyroid hormone (TH) levels and the degree of cognitive impairment in Parkinson’s [...] Read more.
Thyroid dysfunction is associated with a number of neuropsychiatric manifestations. Cognitive decline is a common feature of hypothyroidism and clinical or subclinical hyperthyroidism. In addition, there is a significant association between thyroid hormone (TH) levels and the degree of cognitive impairment in Parkinson’s disease (PD). The pathophysiology of TH-related neurodegeneration include changes in the blood–brain barrier, increased cellular stress, altered processing of β-amyloid precursor protein and the effect of TH on neuronal cell viability. The neurotoxicity of TH is partially mediated by the thyroid hormone responsive protein (THRP). This protein is 83% homologous to mouse c-Abl-interacting protein-2 (Abi2), a c-Abl-modulating protein with tumor suppressor activity. In cell cultures, increasing THRP expression either with TH treatment or exogenously through transfecting neuronal or PC 12 cells causes cell necrosis. The expression of exogenous THRP in other cells such as the colonic epithelial cell line Caco-2 and the glial cell line U251 has no effect on cell viability. The effect of THRP on cell viability is not modulated by c-Abl tyrosine kinase. The causal relationship between specific biochemical perturbations in cerebral tissue and thyroid dysfunction remains to be elucidated. Full article
Show Figures

Figure 1

18 pages, 815 KiB  
Review
Impacts of Hyaluronan on Extracellular Vesicle Production and Signaling
by Melanie A. Simpson
Cells 2025, 14(2), 139; https://doi.org/10.3390/cells14020139 - 18 Jan 2025
Viewed by 533
Abstract
Hyaluronan (HA) is a critical component of cell and tissue matrices and an important signaling molecule. The enzymes that synthesize and process HA, as well as the HA receptors through which the signaling properties of HA are transmitted, have been identified in extracellular [...] Read more.
Hyaluronan (HA) is a critical component of cell and tissue matrices and an important signaling molecule. The enzymes that synthesize and process HA, as well as the HA receptors through which the signaling properties of HA are transmitted, have been identified in extracellular vesicles and implicated in context-specific processes associated with health and disease. The goal of this review is to present a comprehensive summary of the research on HA and its related receptors and enzymes in extracellular vesicle biogenesis and the cellular responses to vesicles bearing these extracellular matrix modulators. When present in extracellular vesicles, HA is assumed to be on the outside of the vesicle and is sometimes found associated with CD44 or the HAS enzyme itself. Hyaluronidases may be inside the vesicles or present on the vesicle surface via a transmembrane domain or GPI linkage. The implication of presenting these signals in extracellular vesicles is that there is a greater range of systemic distribution and more complex delivery media than previously thought for secreted HA or hyaluronidase alone. Understanding the context for these HA signals offers new diagnostic and therapeutic insight. Full article
(This article belongs to the Special Issue Role of Hyaluronan in Human Health and Disease)
Show Figures

Figure 1

13 pages, 3016 KiB  
Communication
Nestin Forms a Flexible Cytoskeleton by Means of a Huge Tail Domain That Is Reversibly Stretched and Contracted by Weak Forces
by Ayana Yamagishi, Rina Tokuoka, Kazuki Imai, Mei Mizusawa, Moe Susaki, Koki Uchida, Saku T. Kijima, Akira Nagasaki, Daijiro Takeshita, Chiaki Yoshikawa, Taro Q. P. Uyeda and Chikashi Nakamura
Cells 2025, 14(2), 138; https://doi.org/10.3390/cells14020138 - 17 Jan 2025
Viewed by 509
Abstract
Nestin is a type VI intermediate filament protein and a well-known neural stem cell marker. It is also expressed in high-grade cancer cells, forming copolymerized filaments with vimentin. We previously showed that nestin inhibits the binding of vimentin’s tail domain to actin filaments [...] Read more.
Nestin is a type VI intermediate filament protein and a well-known neural stem cell marker. It is also expressed in high-grade cancer cells, forming copolymerized filaments with vimentin. We previously showed that nestin inhibits the binding of vimentin’s tail domain to actin filaments (AFs) by steric hindrance through its large nestin tail domain (NTD), thereby increasing three-dimensional cytoskeleton network mobility, enhancing cell flexibility, and promoting cancer progression. Further, we found that nestin itself stably binds to AFs via the NTD. We therefore hypothesized that the NTD may form a flexible cytoskeletal structure by extending with weak force. In vitro tensile tests using atomic force microscopy were performed to assess the mechanical properties of NTDs. The C-terminus of the NTD bound AFs by bringing the AFM tip modified with the NTD into contact with the AFs on the substrate. NTDs were elongated to approximately 80% of their maximum length at weak forces < 150 pN. Repeated tensile tests revealed that the NTD refolded quickly and behaved like a soft elastic material. We speculate that nestin stably binds AFs, and the NTD extends with weak force, contracting quickly upon load release. Thereby, nestin would absorb mechanical load and maintain cytoskeletal integrity. Full article
Show Figures

Figure 1

21 pages, 6707 KiB  
Article
Derivation and Characterization of Isogenic OPA1 Mutant and Control Human Pluripotent Stem Cell Lines
by Katherine A. Pohl, Xiangmei Zhang, Johnny Jeonghyun Ji, Linsey Stiles, Alfredo A. Sadun and Xian-Jie Yang
Cells 2025, 14(2), 137; https://doi.org/10.3390/cells14020137 - 17 Jan 2025
Viewed by 608
Abstract
Dominant optic atrophy (DOA) is the most commonly inherited optic neuropathy. The majority of DOA is caused by mutations in the OPA1 gene, which encodes a dynamin-related GTPase located to the mitochondrion. OPA1 has been shown to regulate mitochondrial dynamics and promote fusion. [...] Read more.
Dominant optic atrophy (DOA) is the most commonly inherited optic neuropathy. The majority of DOA is caused by mutations in the OPA1 gene, which encodes a dynamin-related GTPase located to the mitochondrion. OPA1 has been shown to regulate mitochondrial dynamics and promote fusion. Within the mitochondrion, proteolytically processed OPA1 proteins form complexes to maintain membrane integrity and the respiratory chain complexity. Although OPA1 is broadly expressed, human OPA1 mutations predominantly affect retinal ganglion cells (RGCs) that are responsible for transmitting visual information from the retina to the brain. Due to the scarcity of human RGCs, DOA has not been studied in depth using the disease affected neurons. To enable studies of DOA using stem-cell-derived human RGCs, we performed CRISPR-Cas9 gene editing to generate OPA1 mutant pluripotent stem cell (PSC) lines with corresponding isogenic controls. CRISPR-Cas9 gene editing yielded both OPA1 homozygous and heterozygous mutant ESC lines from a parental control ESC line. In addition, CRISPR-mediated homology-directed repair (HDR) successfully corrected the OPA1 mutation in a DOA patient’s iPSCs. In comparison to the isogenic controls, the heterozygous mutant PSCs expressed the same OPA1 protein isoforms but at reduced levels; whereas the homozygous mutant PSCs showed a loss of OPA1 protein and altered mitochondrial morphology. Furthermore, OPA1 mutant PSCs exhibited reduced rates of oxygen consumption and ATP production associated with mitochondria. These isogenic PSC lines will be valuable tools for establishing OPA1-DOA disease models in vitro and developing treatments for mitochondrial deficiency associated neurodegeneration. Full article
(This article belongs to the Special Issue Mitochondria and Other Organelles in Neurodegenerative Diseases)
Show Figures

Graphical abstract

17 pages, 3017 KiB  
Article
Testing the Purity of Limnospira fusiformis Cultures After Axenicity Treatments
by Michael Schagerl, Alexander Kaptejna, Fabian Polz, Sameh S. Ali, Shuhao Huo, Joana Seneca, Petra Pjevac and Vera Hechtl
Cells 2025, 14(2), 136; https://doi.org/10.3390/cells14020136 - 17 Jan 2025
Viewed by 426
Abstract
Contaminations are challenging for monocultures, as they impact the culture conditions and thus influence the growth of the target organism and the overall biomass composition. In phycology, axenic cultures comprising a single living species are commonly strived for both basic research and industrial [...] Read more.
Contaminations are challenging for monocultures, as they impact the culture conditions and thus influence the growth of the target organism and the overall biomass composition. In phycology, axenic cultures comprising a single living species are commonly strived for both basic research and industrial applications, because contaminants reduce significance for analytic purposes and interfere with the safety and quality of commercial products. We aimed to establish axenic cultures of Limnospira fusiformis, known as the food additive “Spirulina”. Axenicity is strived because it ensures that pathogens or harmful microorganisms are absent and that the harvested biomass is consistent in terms of quality and composition. For the axenic treatment, we applied sterile filtration, ultrasonication, pH treatment, repeated centrifugation, and administration of antibiotics. For testing axenicity, we considered the most common verification method plate tests with Lysogeny Broth (LB) medium, which indicated axenicity after treatments were performed. In addition, we included plate tests with Reasoner’s 2A (R2A) agar and modified Zarrouk+ medium, the latter comparable to the biochemical properties of L. fusiformis’ cultivation medium. In contrast to LB plates, the other media, particularly Zarrouk+, indicated bacterial contamination. We conclude that LB-agar plates are inappropriate for contamination screening of extremophiles. Contamination was also verified by cultivation-independent methods like flow cytometry and 16S rRNA genome amplicon sequencing. We detected taxa of the phyla Proteobacteria, Bacteriodota, Firmicutes and to a lesser extent Verrucomicrobiota. Contaminants are robust taxa, as they survived aggressive treatments. Sequencing data suggest that some of them are promising candidates for in-depth studies to commercially exploit them. Full article
(This article belongs to the Section Plant, Algae and Fungi Cell Biology)
Show Figures

Figure 1

27 pages, 6880 KiB  
Article
Deciphering the Transcriptional Metabolic Profile of Adipose-Derived Stem Cells During Osteogenic Differentiation and Epigenetic Drug Treatment
by Giulia Gerini, Alice Traversa, Fabrizio Cece, Matteo Cassandri, Paola Pontecorvi, Simona Camero, Giulia Nannini, Enrico Romano, Francesco Marampon, Mary Anna Venneri, Simona Ceccarelli, Antonio Angeloni, Amedeo Amedei, Cinzia Marchese and Francesca Megiorni
Cells 2025, 14(2), 135; https://doi.org/10.3390/cells14020135 - 17 Jan 2025
Viewed by 594
Abstract
Adipose-derived mesenchymal stem cells (ASCs) are commonly employed in clinical treatment for various diseases due to their ability to differentiate into multi-lineage and anti-inflammatory/immunomodulatory properties. Preclinical studies support their use for bone regeneration, healing, and the improvement of functional outcomes. However, a deeper [...] Read more.
Adipose-derived mesenchymal stem cells (ASCs) are commonly employed in clinical treatment for various diseases due to their ability to differentiate into multi-lineage and anti-inflammatory/immunomodulatory properties. Preclinical studies support their use for bone regeneration, healing, and the improvement of functional outcomes. However, a deeper understanding of the molecular mechanisms underlying ASC biology is crucial to identifying key regulatory pathways that influence differentiation and enhance regenerative potential. In this study, we employed the NanoString nCounter technology, an advanced multiplexed digital counting method of RNA molecules, to comprehensively characterize differentially expressed transcripts involved in metabolic pathways at distinct time points in osteogenically differentiating ASCs treated with or without the pan-DNMT inhibitor RG108. In silico annotation and gene ontology analysis highlighted the activation of ethanol oxidation, ROS regulation, retinoic acid metabolism, and steroid hormone metabolism, as well as in the metabolism of lipids, amino acids, and nucleotides, and pinpointed potential new osteogenic drivers like AOX1 and ADH1A. RG108-treated cells, in addition to the upregulation of the osteogenesis-related markers RUNX2 and ALPL, showed statistically significant alterations in genes implicated in transcriptional control (MYCN, MYB, TP63, and IRF1), ethanol oxidation (ADH1C, ADH4, ADH6, and ADH7), and glucose metabolism (SLC2A3). These findings highlight the complex interplay of the metabolic, structural, and signaling pathways that orchestrate osteogenic differentiation. Furthermore, this study underscores the potential of epigenetic drugs like RG108 to enhance ASC properties, paving the way for more effective and personalized cell-based therapies for bone regeneration. Full article
(This article belongs to the Special Issue New Insights into Adipose-Derived Stem Cells (ADSCs))
Show Figures

Graphical abstract

12 pages, 1507 KiB  
Article
Transcriptomic Profiling and Tumor Microenvironment Classification Reveal Unique and Dynamic Immune Biology in HIV-Associated Kaposi Sarcoma
by Jihua Yang, Ayse Ece Cali Daylan, Aleksei Shevkoplias, Ekaterina Postovalova, Meng Wang, Andrey Tyshevich, Matthew Lee, Hiba Narvel, Ksenia Zornikova, Nara Shin, Nikita Kotlov, Luca Paoluzzi, Changcheng Zhu, Balazs Halmos, Xingxing Zang and Haiying Cheng
Cells 2025, 14(2), 134; https://doi.org/10.3390/cells14020134 - 17 Jan 2025
Viewed by 716
Abstract
Kaposi Sarcoma (KS) is a vascular tumor originating from endothelial cells and is associated with human herpesvirus 8 (KSHV) infection. It disproportionately affects populations facing health disparities. Although antiretroviral therapy (ART) has improved KS control in people with HIV (PWH), treatment options for [...] Read more.
Kaposi Sarcoma (KS) is a vascular tumor originating from endothelial cells and is associated with human herpesvirus 8 (KSHV) infection. It disproportionately affects populations facing health disparities. Although antiretroviral therapy (ART) has improved KS control in people with HIV (PWH), treatment options for advanced KS remain limited. This study investigates the tumor microenvironment (TME) of KS through whole-transcriptomic profiling, analyzing changes over time and differences based on HIV status. The TME was categorized into four subtypes: immune-enriched (IE), non-fibrotic, immune-enriched/fibrotic (IE/F), fibrotic (F) and immune-depleted (D). Nine KS patients (four HIV-negative and five HIV-positive) were enrolled in the study. Longitudinally collected KS samples from three patients (one HIV-negative and two HIV-positive) allowed for the investigation of dynamic TME changes within individual patients. The immune cellular composition was determined using deconvolution and compared to a cohort of non-KS patients. Our findings revealed that all KS samples, regardless of HIV status, were enriched in endothelial cells. Compared to non-KS tissues, the KS samples contained a higher percentage of NK and CD8+ T cells. HIV-negative KS samples displayed the IE and IE/F TME subtypes, while HIV-positive samples exhibited IE, IE/F, and F subtypes. Over the course of the disease, a decrease in angiogenic signatures was observed in two HIV-positive KS patients. Notably, HIV-negative KS samples showed alterations in NK cell-mediated immunity and cytotoxic response pathways, whereas HIV-positive samples exhibited changes in growth regulation and protein kinase activity pathways at the time of initial diagnosis. The gene expression of immune checkpoints, including CD274 (PD-L1) and PDCD1LC2 (PD-L2), was comparable between HIV-positive and HIV-negative KS samples at diagnosis. Furthermore, sequencing identified a shared TCRβ chain in all patients analyzed, indicating a T-cell immune response to a common antigen. This study demonstrates unique transcriptomic features and TME subtypes in KS that differ based on HIV status. Additionally, it illustrates longitudinal dynamic changes in the gene signatures and TME subtypes in individual patients. The identification of a shared TCRβ chain suggests that immune T cells in KS patients may target a common antigen. Future studies should further explore the immune microenvironment and unique T cell clonotypes, which could pave the way for the development of novel therapeutic strategies for KS patients. Full article
(This article belongs to the Section Cell Methods)
Show Figures

Figure 1

25 pages, 3833 KiB  
Article
Exploiting Cancer Dormancy Signaling Mechanisms in Epithelial Ovarian Cancer Through Spheroid and Organoid Analysis
by Emily J. Tomas, Yudith Ramos Valdes, Jennifer Davis, Bart Kolendowski, Adrian Buensuceso, Gabriel E. DiMattia and Trevor G. Shepherd
Cells 2025, 14(2), 133; https://doi.org/10.3390/cells14020133 - 17 Jan 2025
Viewed by 657
Abstract
Epithelial ovarian cancer (EOC) exhibits a unique mode of metastasis, involving spheroid formation in the peritoneum. Our research on EOC spheroid cell biology has provided valuable insights into the signaling plasticity associated with metastasis. We speculate that EOC cells modify their biology between [...] Read more.
Epithelial ovarian cancer (EOC) exhibits a unique mode of metastasis, involving spheroid formation in the peritoneum. Our research on EOC spheroid cell biology has provided valuable insights into the signaling plasticity associated with metastasis. We speculate that EOC cells modify their biology between tumour and spheroid states during cancer dormancy, although the specific mechanisms underlying this transition remain unknown. Here, we present novel findings from direct comparisons between cultured EOC spheroids and organoids. Our results indicated that AMP-activated protein kinase (AMPK) activity was significantly upregulated and protein kinase B (Akt) was downregulated in EOC spheroids compared to organoids, suggesting a clear differential phenotype. Through RNA sequencing analysis, we further supported these phenotypic differences and highlighted the significance of cell cycle regulation in organoids. By inhibiting the G2/M checkpoint via kinase inhibitors, we confirmed that this pathway is essential for organoids. Interestingly, our results suggest that specifically targeting aurora kinase A (AURKA) may represent a promising therapeutic strategy since our cells were equally sensitive to Alisertib treatment as both spheroids and organoids. Our findings emphasize the importance of studying cellular adaptations of EOC cells, as there may be different therapeutic targets depending on the step of EOC disease progression. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms in Gynecological Disorders)
Show Figures

Figure 1

21 pages, 609 KiB  
Review
The Multifaceted Roles of MicroRNA-181 in Stem Cell Differentiation and Cancer Stem Cell Plasticity
by Chun Yang, Rui Wang and Pierre Hardy
Cells 2025, 14(2), 132; https://doi.org/10.3390/cells14020132 - 17 Jan 2025
Viewed by 668
Abstract
Stem cells are undifferentiated or partially differentiated cells with an extraordinary ability to self-renew and differentiate into various cell types during growth and development. The epithelial–mesenchymal transition (EMT), a critical developmental process, enhances stem cell-like properties in cells, and is associated with both [...] Read more.
Stem cells are undifferentiated or partially differentiated cells with an extraordinary ability to self-renew and differentiate into various cell types during growth and development. The epithelial–mesenchymal transition (EMT), a critical developmental process, enhances stem cell-like properties in cells, and is associated with both normal stem cell function and the formation of cancer stem cells. Cell stemness and the EMT often coexist and are interconnected in various contexts. Cancer stem cells are a critical tumor cell population that drives tumorigenesis, cancer progression, drug resistance, and metastasis. Stem cell differentiation and the generation of cancer stem cells are regulated by numerous molecules, including microRNAs (miRNAs). These miRNAs, particularly through the modulation of EMT-associated factors, play major roles in controlling the stemness of cancer stem cells. This review presents an up-to-date summary of the regulatory roles of miR-181 in human stem cell differentiation and cancer cell stemness. We outline studies from the current literature and summarize the miR-181-controlled signaling pathways responsible for driving human stem cell differentiation or the emergence of cancer stem cells. Given its critical role in regulating cell stemness, miR-181 is a promising target for influencing human cell fate. Modulation of miR-181 expression has been found to be altered in cancer stem cells’ biological behaviors and to significantly improve cancer treatment outcomes. Additionally, we discuss challenges in miRNA-based therapies and targeted delivery with nanotechnology-based systems. Full article
(This article belongs to the Section Stem Cells)
Show Figures

Graphical abstract

19 pages, 1303 KiB  
Review
CRISPR-Cas9 in Cardiovascular Medicine: Unlocking New Potential for Treatment
by Klaudia Bonowicz, Dominika Jerka, Klaudia Piekarska, Janet Olagbaju, Laura Stapleton, Munirat Shobowale, Andrzej Bartosiński, Magdalena Łapot, Yidong Bai and Maciej Gagat
Cells 2025, 14(2), 131; https://doi.org/10.3390/cells14020131 - 17 Jan 2025
Viewed by 1152
Abstract
Cardiovascular diseases (CVDs) remain a significant global health challenge, with many current treatments addressing symptoms rather than the genetic roots of these conditions. The advent of CRISPR-Cas9 technology has revolutionized genome editing, offering a transformative approach to targeting disease-causing mutations directly. This article [...] Read more.
Cardiovascular diseases (CVDs) remain a significant global health challenge, with many current treatments addressing symptoms rather than the genetic roots of these conditions. The advent of CRISPR-Cas9 technology has revolutionized genome editing, offering a transformative approach to targeting disease-causing mutations directly. This article examines the potential of CRISPR-Cas9 in the treatment of various CVDs, including atherosclerosis, arrhythmias, cardiomyopathies, hypertension, and Duchenne muscular dystrophy (DMD). The technology’s ability to correct single-gene mutations with high precision and efficiency positions it as a groundbreaking tool in cardiovascular therapy. Recent developments have extended the capabilities of CRISPR-Cas9 to include mitochondrial genome editing, a critical advancement for addressing mitochondrial dysfunctions often linked to cardiovascular disorders. Despite its promise, significant challenges remain, including off-target effects, ethical concerns, and limitations in delivery methods, which hinder its translation into clinical practice. This article also explores the ethical and regulatory considerations surrounding gene editing technologies, emphasizing the implications of somatic versus germline modifications. Future research efforts should aim to enhance the accuracy of CRISPR-Cas9, improve delivery systems for targeted tissues, and ensure the safety and efficacy of treatments in the long term. Overcoming these obstacles could enable CRISPR-Cas9 to not only treat but also potentially cure genetically driven cardiovascular diseases, heralding a new era in precision medicine for cardiovascular health. Full article
(This article belongs to the Special Issue Updates on the Mechanisms and Therapies of Cardiometabolic Disease)
Show Figures

Figure 1

18 pages, 2435 KiB  
Article
Impact of High Glucose on Bone Collagenous Matrix Composition, Structure, and Organization: An Integrative Analysis Using an Ex Vivo Model
by Rita Araújo, Ricardo N. M. J. Páscoa, Raquel Bernardino and Pedro S. Gomes
Cells 2025, 14(2), 130; https://doi.org/10.3390/cells14020130 - 17 Jan 2025
Viewed by 539
Abstract
Diabetes mellitus is a widespread metabolic disorder linked to numerous systemic complications, including adverse effects on skeletal health, such as increased bone fragility and fracture risk. Emerging evidence suggests that high glucose may disrupt the extracellular matrix (ECM) of bone, potentially altering its [...] Read more.
Diabetes mellitus is a widespread metabolic disorder linked to numerous systemic complications, including adverse effects on skeletal health, such as increased bone fragility and fracture risk. Emerging evidence suggests that high glucose may disrupt the extracellular matrix (ECM) of bone, potentially altering its composition and organization. Collagen, the primary organic component of the ECM, is critical for maintaining structural integrity and biomechanical properties. However, definitive evidence and a comprehensive understanding of the molecular mechanisms through which high glucose impacts the ECM and collagen remain elusive. This study employed an ex vivo embryonic chicken femur model to investigate the effects of high glucose on the collagenous matrix. A comprehensive approach integrating histological evaluation, histomorphometry, ATR-FTIR spectroscopy, and proteomics was adopted to unravel structural, biochemical, and molecular changes in the ECM. Histomorphometric analysis revealed disrupted collagen fibril architecture, characterized by altered fibril diameter, alignment, and spatial organization. ATR-FTIR spectroscopy highlighted biochemical modifications, including non-enzymatic glycation that impaired collagen crosslinking and reduced matrix integrity. Proteomic profiling unveiled significant alterations in ECM composition and function, including downregulation of key collagen crosslinking enzymes and upregulation of inflammatory and coagulation pathways. High glucose profoundly disrupts the collagenous matrix of bone, weakening its structural integrity and organization. These findings emphasize the critical impact of high glucose environments on extracellular matrix composition and bone quality, offering insights into the mechanisms behind diabetic bone fragility and guiding future research toward targeted therapeutic strategies. Full article
Show Figures

Figure 1

25 pages, 3319 KiB  
Review
Peri-Implant Soft Tissue in Contact with Zirconium/Titanium Abutments from Histological and Biological Perspectives: A Concise Review
by Fatma A. N. Abouel Maaty, Mai A. Ragab, Yasmin M. El-Ghazawy, Fatma I. Elfaiedi, Marwa M. S. Abbass, Israa Ahmed Radwan, Dina Rady, Sara El Moshy, Nahed Sedky Korany, Geraldine M. Ahmed, Christof E. Dörfer and Karim M. Fawzy El-Sayed
Cells 2025, 14(2), 129; https://doi.org/10.3390/cells14020129 - 17 Jan 2025
Viewed by 525
Abstract
Dental implants are crucial in contemporary oral rehabilitation, necessitating optimal integration with the surrounding soft tissues for durable success. The attachment between the implant surface and peri-implant mucosa should establish a secure seal to prevent bacterial infiltration and subsequent tissue inflammation. This concise [...] Read more.
Dental implants are crucial in contemporary oral rehabilitation, necessitating optimal integration with the surrounding soft tissues for durable success. The attachment between the implant surface and peri-implant mucosa should establish a secure seal to prevent bacterial infiltration and subsequent tissue inflammation. This concise review examines the histological and biological perspectives of peri-implant soft tissue reactions to zirconium and titanium abutments, shedding light on their respective advantages and limitations. While titanium has been the gold standard, zirconia has gained attention due to its biocompatibility and aesthetic appeal. Histological studies show comparable soft tissue attachment and inflammatory responses between the two materials. Further research is needed to explore surface treatments and optimize outcomes in dental implant rehabilitation. Full article
(This article belongs to the Special Issue Recent Advances in Regenerative Dentistry—Second Edition)
Show Figures

Graphical abstract

15 pages, 2325 KiB  
Article
Association of Structural Maintenance of Chromosome-1A Phosphorylation with Progression of Breast Cancer
by Sushma Yadav, Claudia M. Kowolik, Daniel Schmolze, Yuan Yuan, Min Lin, Arthur D. Riggs and David A. Horne
Cells 2025, 14(2), 128; https://doi.org/10.3390/cells14020128 - 17 Jan 2025
Viewed by 433
Abstract
Structural maintenance of chromosome-1A (SMC1A) is overexpressed in various malignancies including triple-negative breast cancer (TNBC). As a core component of the cohesin complex, SMC1A was initially recognized for its involvement in chromosomal cohesion and DNA-repair pathways. However, recent studies have unveiled its pivotal [...] Read more.
Structural maintenance of chromosome-1A (SMC1A) is overexpressed in various malignancies including triple-negative breast cancer (TNBC). As a core component of the cohesin complex, SMC1A was initially recognized for its involvement in chromosomal cohesion and DNA-repair pathways. However, recent studies have unveiled its pivotal role in epithelial–mesenchymal transition (EMT), metastasis, and chemo- and radio-resistance in cancer cells. In hepatocellular carcinoma, aberrant phosphorylation of SMC1A has been associated with enhanced cell proliferation and migration. Despite these insights, the precise role of SMC1A phosphorylation in breast cancer remains largely unexplored. This study represents the first investigation to test the phosphorylation status and subcellular localization of SMC1A (p-SMC1A) in breast cancer and normal breast tissues. Immunohistochemical (IHC) staining was conducted using previously validated phospho-SMC1A antibodies on a histological section and tissue microarray (TMA) comprising samples from primary, invasive, and metastatic breast cancer and normal breast tissues. Our results revealed that p-SMC1A staining intensity was lower in normal breast tissues compared to invasive or metastatic breast cancer tissues (p < 0.001). Approximately 40% of breast cancer tissue exhibited cytoplasmic/membranous localization of p-SMC1A, whereas nuclear expression was observed in normal breast tissues. Moreover, elevated phosphorylation levels were significantly associated with higher tumor grade and metastasis. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

17 pages, 1906 KiB  
Review
Key Role of Phosphorylation in Small Heat Shock Protein Regulation via Oligomeric Disaggregation and Functional Activation
by Zachary B. Sluzala, Angelina Hamati and Patrice E. Fort
Cells 2025, 14(2), 127; https://doi.org/10.3390/cells14020127 - 17 Jan 2025
Viewed by 532
Abstract
Heat shock proteins (HSPs) are essential molecular chaperones that protect cells by aiding in protein folding and preventing aggregation under stress conditions. Small heat shock proteins (sHSPs), which include members from HSPB1 to HSPB10, are particularly important for cellular stress responses. These proteins [...] Read more.
Heat shock proteins (HSPs) are essential molecular chaperones that protect cells by aiding in protein folding and preventing aggregation under stress conditions. Small heat shock proteins (sHSPs), which include members from HSPB1 to HSPB10, are particularly important for cellular stress responses. These proteins share a conserved α-crystallin domain (ACD) critical for their chaperone function, with flexible N- and C-terminal extensions that facilitate oligomer formation. Phosphorylation, a key post-translational modification (PTM), plays a dynamic role in regulating sHSP structure, oligomeric state, stability, and chaperone function. Unlike other PTMs such as deamidation, oxidation, and glycation—which are often linked to protein destabilization—phosphorylation generally induces structural transitions that enhance sHSP activity. Specifically, phosphorylation promotes the disaggregation of sHSP oligomers into smaller, more active complexes, thereby increasing their efficiency. This disaggregation mechanism is crucial for protecting cells from stress-induced damage, including apoptosis, inflammation, and other forms of cellular dysfunction. This review explores the role of phosphorylation in modulating the function of sHSPs, particularly HSPB1, HSPB4, and HSPB5, and discusses how these modifications influence their protective functions in cellular stress responses. Full article
Show Figures

Graphical abstract

15 pages, 2315 KiB  
Article
Age-Dependent Effects of Butyl Benzyl Phthalate Exposure on Lipid Metabolism and Hepatic Fibrosis in Mice
by Min-Seo Park, Seonhwa Hwang, Hyun-Bon Kang, Minjeong Ha, Juyeon Park, So-Youn Park, Yong-Joo Park and Min-Hi Park
Cells 2025, 14(2), 126; https://doi.org/10.3390/cells14020126 - 16 Jan 2025
Viewed by 517
Abstract
Endocrine-disrupting chemicals (EDCs), including phthalates, have been implicated in the development of non-alcoholic fatty liver disease (NAFLD) and hepatic fibrosis. This study investigates the age-dependent effects of butyl benzyl phthalate (BBP) exposure on lipid metabolism in the livers of young and aged mice. [...] Read more.
Endocrine-disrupting chemicals (EDCs), including phthalates, have been implicated in the development of non-alcoholic fatty liver disease (NAFLD) and hepatic fibrosis. This study investigates the age-dependent effects of butyl benzyl phthalate (BBP) exposure on lipid metabolism in the livers of young and aged mice. Young (2-month-old) and aged (20-month-old) male C57BL/6 mice were exposed to BBP through drinking water at a dose of 169 μg/kg/day for 6 and 4 months, respectively. Young mice exposed to BBP showed fatty liver, with downregulation of key fatty acid oxidation genes (CPT1A, CPT1B, CPT2, and Acox1) and elevated pro-inflammatory cytokines (TNF-α and IL-6). In contrast, aged mice exhibited hepatic fibrosis, with increased collagen deposition and upregulation of genes related to fibrosis (Acta2, MMP2, TGF-ß1, and Col1a2), cirrhosis (CXCR4, SOX9, DCN, and MFAP4), and cancer (Bcl2, CDKN2a, c-Myc, and Fn1). Overall, these findings emphasize the importance of age when evaluating the risks of EDC exposure, such as BBP. Future research should focus on understanding the molecular mechanisms behind these age-related differences and explore Grem1 and SOCS3 as potential therapeutic targets for treating EDC-induced and age-related liver diseases. Full article
Show Figures

Figure 1

22 pages, 5935 KiB  
Article
Interaction Between Malat1 and miR-499-5p Regulates Meis1 Expression and Function with a Net Impact on Cell Proliferation
by Salma A. Fahim, Manon Ragheb, Ibrahim Hassan Fayed, Aya Osama, Ahmed Karam, Sameh Magdeldin, Rana Metwale, Mohamed Dief Allah Abdalmoneam Elsayed, Ahmed Abdellatif, Hesham A. Sadek, Shereen Ahmed El Sobky, Nada El-Ekiaby, Injie Omar Fawzy and Ahmed Ihab Abdelaziz
Cells 2025, 14(2), 125; https://doi.org/10.3390/cells14020125 - 16 Jan 2025
Viewed by 685
Abstract
Meis1 is a transcription factor involved in numerous functions including development and proliferation and has been previously shown to harness cell cycle progression. In this study, we used in silico analysis to predict that miR-499-5p targets Meis1 and that Malat1 sponges miR-499-5p. For [...] Read more.
Meis1 is a transcription factor involved in numerous functions including development and proliferation and has been previously shown to harness cell cycle progression. In this study, we used in silico analysis to predict that miR-499-5p targets Meis1 and that Malat1 sponges miR-499-5p. For the first time, we demonstrated that the overexpression of miR-499-5p led to the downregulation of Meis1 mRNA and protein in C166 cells by directly binding to its 3’UTR. Moreover, knocking down Malat1 increased miR-499-5p expression, subsequently suppressing Meis1. Through BrdU incorporation assay, we showed that the knockdown of Malat1, Meis1, or mimicking with miR-499-5p promoted cell proliferation. Enrichment analyses on proteins identified via mass spectrometry after manipulating Malat1, miR-499-5p, or Meis1 revealed a multitude of differentially expressed proteins related to cell cycle, cell division, and key pathways like Wnt and mTOR, essential for cell proliferation. Collectively, our findings confirm that Malat1 sponges miR-499-5p, regulating Meis1, and that Malat1/miR-499-5p/Meis1 could potentially form an axis that has a pivotal influence on cellular proliferation. Full article
(This article belongs to the Section Cell Proliferation and Division)
Show Figures

Figure 1

17 pages, 3346 KiB  
Article
Dysregulation of Metabolic Peptides Precedes Hyperinsulinemia and Inflammation Following Exposure to Rotenone in Rats
by Vandana Zaman, Denise Matzelle, Naren L. Banik and Azizul Haque
Cells 2025, 14(2), 124; https://doi.org/10.3390/cells14020124 - 16 Jan 2025
Viewed by 603
Abstract
Rotenone, a naturally occurring compound derived from the roots of tropical plants, is used as a broad-spectrum insecticide, piscicide, and pesticide. It is a classical, high-affinity mitochondrial complex I inhibitor that causes not only oxidative stress, α-synuclein phosphorylation, DJ-1 (Parkinson’s disease protein 7) [...] Read more.
Rotenone, a naturally occurring compound derived from the roots of tropical plants, is used as a broad-spectrum insecticide, piscicide, and pesticide. It is a classical, high-affinity mitochondrial complex I inhibitor that causes not only oxidative stress, α-synuclein phosphorylation, DJ-1 (Parkinson’s disease protein 7) modifications, and inhibition of the ubiquitin-proteasome system but it is also widely considered an environmental contributor to Parkinson’s disease (PD). While prodromal symptoms, such as loss of smell, constipation, sleep disorder, anxiety/depression, and the loss of dopaminergic neurons in the substantia nigra of rotenone-treated animals, have been reported, alterations of metabolic hormones and hyperinsulinemia remain largely unknown and need to be investigated. Whether rotenone and its effect on metabolic peptides could be utilized as a biomarker for its toxic metabolic effects, which can cause long-term detrimental effects and ultimately lead to obesity, hyperinsulinemia, inflammation, and possibly gut–brain axis dysfunction, remains unclear. Here, we show that rotenone disrupts metabolic homeostasis, altering hormonal peptides and promoting infiltration of inflammatory T cells. Specifically, our results indicate a significant decrease in glucagon-like peptide-1 (GLP-1), C-peptide, and amylin. Interestingly, levels of several hormonal peptides related to hyperinsulinemia, such as insulin, leptin, pancreatic peptide (PP), peptide YY (PYY), and gastric inhibitory polypeptide (GIP), were significantly upregulated. Administration of rotenone to rats also increased body weight and activated macrophages and inflammatory T cells. These data strongly suggest that rotenone disrupts metabolic homeostasis, leading to obesity and hyperinsulinemia. The potential implications of these findings are vast, given that monitoring these markers in the blood could not only provide a crucial tool for assessing the extent of exposure and its relevance to obesity and inflammation but could also open new avenues for future research and potential therapeutic strategies. Full article
(This article belongs to the Special Issue Neuroinflammation in Brain Health and Diseases)
Show Figures

Figure 1

13 pages, 686 KiB  
Review
Gonadal Hormone Changes with Aging and Their Impact on Chronic Pain
by Onella Athnaiel, Nicholas Davidson, Jaskaran Mangat, Ned F. Nasr and Nebojsa Nick Knezevic
Cells 2025, 14(2), 123; https://doi.org/10.3390/cells14020123 - 16 Jan 2025
Viewed by 503
Abstract
Chronic pain, pain that lasts beyond three months, is a common finding in the elderly. It is often due to musculoskeletal conditions but can be precipitated by other factors as well. While physiological systems decline with aging, chronic pain is influenced by changes [...] Read more.
Chronic pain, pain that lasts beyond three months, is a common finding in the elderly. It is often due to musculoskeletal conditions but can be precipitated by other factors as well. While physiological systems decline with aging, chronic pain is influenced by changes in hormone profiles as men and women enter into andropause and menopause, respectively. Research on gonadal hormones is limited, especially when it comes to their relationship with chronic pain. Women tend to experience less pain with aging compared to their premenopausal years, and this is partially explained by the fact that estrogen enhances pain sensitivity and its decline during menopause decreases it. However, hormone replacement therapy (HRT) seems to increase pain tolerance post-menopause. There is some evidence that testosterone plays a protective factor in pain perception. Men on the other hand, have higher pain tolerance as testosterone is considered to be a protective factor. With aging and decreasing testosterone, older men tend to be less tolerant to pain. This paper explores how hormonal changes with aging impact pain perception in both men and women, highlighting several pain conditions influenced by hormones. Although research remains limited, the potential of HRT as a treatment for common pain conditions is examined. Full article
Show Figures

Figure 1

49 pages, 7071 KiB  
Review
Advancing Neuroscience and Therapy: Insights into Genetic and Non-Genetic Neuromodulation Approaches
by Weijia Zhi, Ying Li, Lifeng Wang and Xiangjun Hu
Cells 2025, 14(2), 122; https://doi.org/10.3390/cells14020122 - 15 Jan 2025
Viewed by 872
Abstract
Neuromodulation stands as a cutting-edge approach in the fields of neuroscience and therapeutic intervention typically involving the regulation of neural activity through physical and chemical stimuli. The purpose of this review is to provide an overview and evaluation of different neuromodulation techniques, anticipating [...] Read more.
Neuromodulation stands as a cutting-edge approach in the fields of neuroscience and therapeutic intervention typically involving the regulation of neural activity through physical and chemical stimuli. The purpose of this review is to provide an overview and evaluation of different neuromodulation techniques, anticipating a clearer understanding of the future developmental trajectories and the challenges faced within the domain of neuromodulation that can be achieved. This review categorizes neuromodulation techniques into genetic neuromodulation methods (including optogenetics, chemogenetics, sonogenetics, and magnetogenetics) and non-genetic neuromodulation methods (including deep brain stimulation, transcranial magnetic stimulation, transcranial direct current stimulation, transcranial ultrasound stimulation, photobiomodulation therapy, infrared neuromodulation, electromagnetic stimulation, sensory stimulation therapy, and multi-physical-factor stimulation techniques). By systematically evaluating the principles, mechanisms, advantages, limitations, and efficacy in modulating neuronal activity and the potential applications in interventions of neurological disorders of these neuromodulation techniques, a comprehensive picture is gradually emerging regarding the advantages and challenges of neuromodulation techniques, their developmental trajectory, and their potential clinical applications. This review highlights significant advancements in applying these techniques to treat neurological and psychiatric disorders. Genetic methods, such as sonogenetics and magnetogenetics, have demonstrated high specificity and temporal precision in targeting neuronal populations, while non-genetic methods, such as transcranial magnetic stimulation and photobiomodulation therapy, offer noninvasive and versatile clinical intervention options. The transformative potential of these neuromodulation techniques in neuroscience research and clinical practice is underscored, emphasizing the need for integration and innovation in technologies, the optimization of delivery methods, the improvement of mediums, and the evaluation of toxicity to fully harness their therapeutic potential. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

16 pages, 4043 KiB  
Article
Discovery of Evolutionary Loss of the Ubiquitin-like Autophagy-Related ATG12 System in a Lineage of Apicomplexa
by Xiaoxia X. Lin, Yun D. Bai, Sichang T. Wang, Akira Nozawa, Tatsuya Sawasaki, Tatsunori Masatani, Kenji Hikosaka, Masahito Asada and Hirokazu Sakamoto
Cells 2025, 14(2), 121; https://doi.org/10.3390/cells14020121 - 15 Jan 2025
Viewed by 1002
Abstract
The autophagy-related ubiquitin-like conjugation systems, the ATG8 and ATG12 systems, are universally conserved in eukaryotes. However, the covalent bond in the ATG12 system has recently been shown to be evolutionarily lost in Apicomplexa. Here, we show that all genes associated with the ATG12 [...] Read more.
The autophagy-related ubiquitin-like conjugation systems, the ATG8 and ATG12 systems, are universally conserved in eukaryotes. However, the covalent bond in the ATG12 system has recently been shown to be evolutionarily lost in Apicomplexa. Here, we show that all genes associated with the ATG12 system are absent in piroplasmida, a lineage within Apicomplexa. Comparative genomics of ATGs further shows that piroplasm ATG3 has lost the region necessary for ATG12 binding. However, our in vitro functional analysis using recombinant proteins demonstrated that ATG3 retained the ability to interact with ATG8 in Babesia bovis, a model species in piroplasmida. These findings provide evidence that the ATG8 system is functional, while the ATG12 system is completely lost in the common ancestor of piroplasmida and highlight the evolutionary flexibility of the ATG12 system in Apicomplexa. Full article
(This article belongs to the Section Autophagy)
Show Figures

Figure 1

27 pages, 833 KiB  
Review
Phosphodiesterase Type 5 Inhibitors in Male Reproduction: Molecular Mechanisms and Clinical Implications for Fertility Management
by Aris Kaltsas, Fotios Dimitriadis, Athanasios Zachariou, Nikolaos Sofikitis and Michael Chrisofos
Cells 2025, 14(2), 120; https://doi.org/10.3390/cells14020120 - 15 Jan 2025
Viewed by 615
Abstract
Phosphodiesterases, particularly the type 5 isoform (PDE5), have gained recognition as pivotal regulators of male reproductive physiology, exerting significant influence on testicular function, sperm maturation, and overall fertility potential. Over the past several decades, investigations have expanded beyond the original therapeutic intent of [...] Read more.
Phosphodiesterases, particularly the type 5 isoform (PDE5), have gained recognition as pivotal regulators of male reproductive physiology, exerting significant influence on testicular function, sperm maturation, and overall fertility potential. Over the past several decades, investigations have expanded beyond the original therapeutic intent of PDE5 inhibitors for erectile dysfunction, exploring their broader reproductive implications. This narrative review integrates current evidence from in vitro studies, animal models, and clinical research to clarify the roles of PDEs in effecting the male reproductive tract, with an emphasis on the mechanistic pathways underlying cyclic nucleotide signaling, the cellular specificity of PDE isoform expression, and the effects of PDE5 inhibitors on Leydig and Sertoli cell functions. Although certain findings suggest potential improvements in sperm motility, semen parameters, and a more favorable biochemical milieu for spermatogenesis, inconsistencies in study design, limited sample sizes, and inadequate long-term data temper definitive conclusions. Addressing these gaps through standardized protocols, larger and more diverse patient cohorts, and explorations of mechanistic biomarkers could pave the way for incorporating PDE5 inhibitors into evidence-based fertility treatment strategies. In the future, such targeted approaches may inform individualized regimens, optimize male reproductive outcomes, and refine the clinical application of PDE5 inhibitors as part of comprehensive male fertility management. Full article
Show Figures

Figure 1

24 pages, 4607 KiB  
Article
Effect of Kinases in Extracellular Vesicles from HIV-1-Infected Cells on Bystander Cells
by Gifty A. Mensah, Anastasia Williams, Pooja Khatkar, Yuriy Kim, James Erickson, Alexandra Duverger, Heather Branscome, Kajal Patil, Hafsa Chaudhry, Yuntao Wu, Olaf Kutsch and Fatah Kashanchi
Cells 2025, 14(2), 119; https://doi.org/10.3390/cells14020119 - 15 Jan 2025
Viewed by 714
Abstract
As of 2023, there were 39.9 million people living with Human Immunodeficiency Virus type 1 (HIV-1). Although great strides have been made in treatment options for HIV-1, and our understanding of the HIV-1 life cycle has vastly improved since the start of this [...] Read more.
As of 2023, there were 39.9 million people living with Human Immunodeficiency Virus type 1 (HIV-1). Although great strides have been made in treatment options for HIV-1, and our understanding of the HIV-1 life cycle has vastly improved since the start of this global health crisis, a functional cure remains elusive. One of the main barriers to a cure is latency, which allows the virus to persist despite combined antiretroviral therapy (cART). Recently, we have found that exosomes, which are small, membrane-enclosed particles released by virtually all cell types and known to mediate intercellular communication, caused an increase in RNA Polymerase II loading onto the HIV-1 promoter. This resulted in the production of both short- and long-length viral transcripts in infected cells under cART. This current study examines the effects of exosome-associated kinases on bystander cells. The phospho-kinase profiling of exosomes revealed differences in the kinase payload of exosomes derived from uninfected and HIV-1-infected cells, with CDK10, GSK3β, and MAPK8 having the largest concentration differences. These kinases were shown to be biologically active and capable of phosphorylating substrates, and they modulated changes in the cell cycle dynamics of exposed cells. Given the relevance of such effects for the immune response, our results implicate exosome-associated kinases as new possible key contributors to HIV-1 pathogenesis that affect bystander cells. These findings may guide new therapeutic avenues to improve the current antiretroviral treatment regimens. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop