Brain Plasticity and Cell Competition: Immediate Early Genes Are the Focus
Abstract
:1. Introduction
2. c-Fos, Arg3.1/Arc, and c-Myc as Potent Regulators of Brain Plasticity
2.1. c-Fos Gene
2.2. Arg3.1/Arc Gene
2.3. c-Myc Gene
3. IEGs and Establishment of Multicellular Ensembles in the Brain
3.1. c-Fos Gene
3.2. Arg3.1/Arc Gene
4. Brain Plasticity as a Phenomenon of Cell Competition: Is There Any Role for IEGs?
- (i).
- Due to the high level of brain plasticity, cell competition might have different mechanisms and outcomes in the developing, mature, and aging brain, as well as in the damaged brain and under stimulated/non-stimulated conditions.
- (ii).
- There is a basis for the competitive behavior of synapses that are intrinsically different in their strength and contribution to the development of LTP and LTD, particularly in learning and memory encoding or consolidation. Molecular mechanisms may be involved, which could lead to the selection of subpopulations of cells encoding and storing information [88,182].
- (iii).
- Stem and progenitor cells in neurogenic niches might have higher dependence on the cell competition mechanisms compared to mature neurons.
- (iv).
- In pathological conditions, e.g., neurodegeneration, the removal of mature neurons damaged by the accumulation of aberrantly folded proteins might also be provided by a mechanism of cell competition [183].
- (v).
- Microglia undergo cell competition under conditions of inflammation and polarization [184].
4.1. Cell Competition and Neurogenesis
4.2. Cell Competition and Brain Metabolism
4.3. Cell Competition and Synaptic Plasticity
5. Aberrant Arg3.1/Arc, c-Fos, and c-Myc Expression and Cell Competition in Brain Aging and Neurodegenerative Diseases
6. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
α7nAChR | Alpha-7 nicotinic receptor |
AD | Alzheimer’s disease |
AICD | intracellular domain of amyloid precursor protein |
AMPAR | alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor |
AP-1 | transcription factor activator protein 1 |
APP | Amyloid Precursor Protein |
Arc | activity-regulated cytoskeleton-associated protein |
CREB | CRE-binding protein |
csf1ra | colony-stimulating factor-1 receptor |
ERK | extracellular regulated kinase |
FLNA | filamin A |
FMRP | fragile X mental retardation |
GluA1 | glutamate ionotropic receptor |
GSK3 | glycogen synthase kinase 3 |
IEGs | immediate early genes |
IRES | Internal Ribosome Entry Site |
LTD | long-term depression |
LTP | long-term potentiation |
mAChR | muscarinic acetylcholine receptor |
mGluR | metabotropic glutamate receptor |
NICD | Notch intracellular domain |
NMDAR | N-methyl-D-aspartate receptor |
Notch1 | Notch homologue protein |
PICK1 | protein interacting with C-kinase 1 |
PKA | protein kinase A activated by cyclic adenosine monophosphate |
PKC | protein kinase C activated by diacylglycerol |
PML | promyelocytic leukemia protein |
PS1 | presenilin 1 |
PSD | postsynaptic density |
RNA | ribonucleic acid |
SNARE | soluble NSF attachment receptor |
Tip60 | 60 kDa Tat-interactive protein |
TCF | ternary complex factor |
TLR | toll-like receptor |
TrkB | tyrosine kinase B. |
TRIM5α | Rhesus protein serving as a restriction factor which affects capsids’ disassembly |
References
- Semyanov, A.; Verkhratsky, A. Astrocytic processes: From tripartite synapses to the active milieu. Trends Neurosci. 2021, 44, 781–792. [Google Scholar] [CrossRef]
- Fields, R.D. The Brain Learns in Unexpected Ways: Neuroscientists have discovered a set of unfamiliar cellular mechanisms for making fresh memories. Sci. Am. 2020, 3, 74–79. [Google Scholar]
- Fila, M.; Diaz, L.; Szczepanska, J.; Pawlowska, E.; Blasiak, J. mRNA trafficking in the nervous system: A key mechanism of the involvement of activity-regulated cytoskeleton-associated protein (Arc) in synaptic plasticity. Neural Plast. 2021, 2021, 3468795. [Google Scholar] [CrossRef] [PubMed]
- Hantak, M.P.; Einstein, J.; Kearns, R.B.; Shepherd, J.D. Intercellular Communication in the Nervous System Goes Viral. Trends Neurosci. 2021, 44, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Lanahan, A.; Worley, P. Immediate-early genes and synaptic function. Neurobiol. Learn. Mem. 1998, 70, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Mendoza, J.; León-Guerrero, S.D.; Pedraza-Alva, G.; Pérez-Martínez, L. Shaping synaptic plasticity: The role of activity-mediated epigenetic regulation on gene transcription. Int. J. Dev. Neurosci. 2013, 31, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Cadahía, B.; Drobic, B.; Davie, J.R. Activation and function of immediate-early genes in the nervous system. Biochem. Cell Biol. 2011, 89, 61–73. [Google Scholar] [CrossRef]
- Okuno, H. Regulation and function of immediate-early genes in the brain: Beyond neuronal activity markers. Neurosci. Res. 2011, 69, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Lituma, P.J.; Castillo, P.E.; Singer, R.H. Maintenance of a short-lived protein required for long-term memory involves cycles of transcription and local translation. Neuron 2023, 111, 2051–2064. [Google Scholar] [CrossRef]
- Healy, S.; Khan, P.; Davie, J.R. Immediate early response genes and cell transformation. Pharmacol. Ther. 2013, 137, 64–77. [Google Scholar]
- Dutcher, S.A.; Underwood, B.D.; Walker, P.D.; Diaz, F.G.; Michael, D.B. Patterns of immediate early gene mRNA expression following rodent and human traumatic brain injury. Neurol. Res. 1999, 21, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Steward, O.; Schuman, E.M. Protein synthesis at synaptic sites on dendrites. Annu. Rev. Neurosci. 2001, 24, 299–325. [Google Scholar] [CrossRef] [PubMed]
- Stacho, M.; Manahan-Vaughan, D. The intriguing contribution of hippocampal long-term depression to spatial learning and long-term memory. Front. Behav. Neurosci. 2022, 16, 806356. [Google Scholar] [CrossRef]
- Li, X.H.; Miao, H.H. NMDA receptor dependent long-term potentiation in chronic pain. Neurochem. Res. 2019, 3, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Proskura, A.L.; Malahin, I.A.; Turnaev, I.I.; Suslov, V.V.; Zapara, T.A.; Ratushnyak, A.S. Intermolecular interactions in neuron functional systems. Vavilov J. Genet. Breed. 2013, 17, 620–628. [Google Scholar]
- Franchini, L.; Stanic, J.; Ponzoni, L. Linking NMDA receptor synaptic retention to synaptic plasticity and cognition. Science 2019, 3, 927–939. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ardiles, A.O.; Yang, S.; Tran, T.; Posada-Duque, R. Metabotropic glutamate receptors induce a form of LTP controlled by translation and Arc signaling in the hippocampus. J. Neurosci. 2016, 3, 1723–1729. [Google Scholar] [CrossRef]
- Sumi, T.; Harada, K. Mechanism underlying hippocampal long-term potentiation and depression based on competition between endocytosis and exocytosis of AMPA receptors. Sci. Rep. 2020, 3, 14711–14725. [Google Scholar] [CrossRef]
- Campillos, M.; Doerks, T.; Shah, P.K.; Bork, P. Computational characterization of multiple Gag-like human proteins. Trends Genet. 2006, 3, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Lüscher, C.; Malenka, R.C. NMDA Receptor-Dependent Long-Term Potentiation and Long-Term Depression (LTP/LTD). Cold Spring Harb. Perspect. Biol. 2012, 4, 005710–005712. [Google Scholar] [CrossRef] [PubMed]
- Vinci, M.; Costanza, C.; Rando, R.G.; Treccarichi, S.; Saccone, S.; Carotenuto, M.; Roccella, M.; Calì, F.; Elia, M.; Vetri, L. STXBP6 Gene Mutation: A New Form of SNAREopathy Leads to Developmental Epileptic Encephalopathy. Int. J. Mol. Sci. 2023, 24, 16436. [Google Scholar] [CrossRef]
- Praschberger, R.; Jacquemyn, J.; Verstreken, P. Molecule-to-Circuit Disease Mechanisms of a Synaptic SNAREopathy. Neuron 2021, 109, 1–3. [Google Scholar] [CrossRef]
- Soler, J.; Fañanás, L.; Parellada, M.; Krebs, M.O.; Rouleau, G.A. Genetic variability in scaffolding proteins and risk for schizophrenia and autism-spectrum disorders: A systematic review. J. Psychiatry Neurosci. 2018, 3, 223–244. [Google Scholar] [CrossRef] [PubMed]
- Kuriu, T.; Inoue, A.; Bito, H.; Sobue, K.; Okabe, S. Differential control of postsynaptic density scaffolds via actin-dependent and -independent mechanisms. J. Neurosci. 2006, 3, 7693–7706. [Google Scholar] [CrossRef] [PubMed]
- Star, E.; Kwiatkowski, D.; Murthy, V. Rapid turnover of actin in dendritic spines and its regulation by activity. Nat. Neurosci. 2002, 3, 239–246. [Google Scholar] [CrossRef]
- Minatohara, K.; Akiyoshi, M.; Okuno, H. Role of Immediate-Early Genes in Synaptic Plasticity and Neuronal Ensembles Underlying the Memory Trace. Front. Mol. Neurosci. 2016, 8, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Miyashita, T.; Kubik, S.; Haghighi, N.; Steward, O.; Guzowski, J.F. Rapid activation of plasticity-associated gene transcription in hippocampal neurons provides a mechanism for encoding of one-trial experience. J. Neurosci. 2009, 29, 898–906. [Google Scholar] [CrossRef] [PubMed]
- Dragunow, M.; Abraham, W.C.; Goulding, M.; Mason, S.E.; Robertson, H.A.; Faull, R.L. Long-term potentiation and the induction of c-fos mRNA and proteins in the dentate gyrus of unanesthetized rats. Neurosci. Lett. 1989, 3, 274–280. [Google Scholar] [CrossRef]
- Kemp, A.; Tischmeyer, W.; Manahan-Vaughan, D. Learning-facilitated long-term depression requires activation of the immediate early gene, c-fos, and is transcription dependent. Behav. Brain Res. 2013, 254, 83–91. [Google Scholar] [CrossRef]
- Denny, C.A.; Kheirbek, M.A.; Alba, E.A.; Tanaka, K.F.; Brachman, R.A. Hippocampal memory traces are differentially modulated by experience, time, and adult. Neuron 2014, 83, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Loebrich, S.; Nedivi, E. The function of activity-regulated genes in the nervous system. Physiol. Rev. 2009, 89, 1079–1103. [Google Scholar] [CrossRef]
- Penke, Z.; Morice, E.; Veyrac, A.; Gros, A.; Chagneau, C.; LeBlanc, P.; Samson, N.; Baumgärtel, K.; Mansuy, I.M.; Davis, S.; et al. Zif268/Egr1 gain of function facilitates hippocampal synaptic plasticity and long-term spatial recognition memory. Philos. Trans. R. Soc. B Biol. Sci. 2014, 5, 20130159. [Google Scholar] [CrossRef]
- Baghel, M.S.; Singh, B.; Patro, N.; Khanna, V.K.; Patro, I.K.; Thakur, M.K. Poly (I:C) Exposure in Early Life Alters Methylation of DNA and Acetylation of Histone at Synaptic Plasticity Gene Promoter in Developing Rat Brain Leading to Memory Impairment. Ann. Neurosci. 2019, 26, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Pollina, E.A.; Gilliam, D.T.; Landau, A.T.; Lin, C.; Pajarillo, N.; Davis, C.P.; Harmin, D.A.; Yap, E.; Vogel, I.R.; Griffith, E.C.; et al. A NPAS4–NuA4 complex couples synaptic activity to DNA repair. Nature 2023, 614, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Park, D.; Lee, D.; Hong, S.; Yang, E.; Jeon, J.; Mori, T.; Kim, H.; Kim, S.; Tabuchi, K.; et al. IQSEC3 Mediates Npas4-dependent GABAergic Synaptic Transmission and Depressive-like Behavior. bioRxiv 2019. [Google Scholar] [CrossRef]
- James, A.B.; Conway, A.; Morris, B.J. Regulation of the Neuronal Proteasome by Zif268 (Egr1). J. Neurosci. 2006, 26, 1624–1634. [Google Scholar] [CrossRef]
- Clark, P.J.; Bhattacharya, T.K.; Miller, D.S.; Rhodes, J.S. Induction of c-Fos, Zif268, and Arc from acute bouts of voluntary wheel running in new and pre-existing adult mouse hippocampal granule neurons. Neuroscience 2011, 184, 16–27. [Google Scholar] [CrossRef]
- Ingi, T.; Krumins, A.M.; Chidiac, P.; Brothers, G.M.; Chung, S.; Snow, B.E.; Barnes, C.A.; Lanahan, A.A.; Siderovski, D.P.; Ross, E.M.; et al. Dynamic Regulation of RGS2 Suggests a Novel Mechanism in G-Protein Signaling and Neuronal Plasticity. J. Neurosci. 1998, 18, 7178–7188. [Google Scholar] [CrossRef]
- Tao-Cheng, J.; Thein, S.; Yang, Y.; Reese, T.S.; Gallant, P.E. Homer is concentrated at the postsynaptic density and does not redistribute after acute synaptic stimulation. Neuroscience 2014, 266, 80–90. [Google Scholar] [CrossRef]
- Yoshii, A.; Constantine-Paton, M. BDNF induces transport of PSD-95 to dendrites through PI3K-AKT signaling after NMDA receptor activation. Nat. Neurosci. 2007, 6, 702–711. [Google Scholar] [CrossRef]
- Mizui, T.; Ishikawa, Y.; Kumanogoh, H.; Lume, M.; Matsumoto, T.; Hara, T.; Yamawaki, S.; Takahashi, M.; Shiosaka, S.; Itami, S.; et al. BDNF pro-peptide actions facilitate hippocampal LTD and are altered by the common BDNF polymorphism Val66Met. Proc. Natl. Acad. Sci. USA 2015, 23, E3067–E3074. [Google Scholar] [CrossRef]
- Nambu, M.F.; Lin, Y.; Reuschenbach, J.; Tanaka, K.Z. What does engram encode?: Heterogeneous memory engrams for different aspects of experience. Curr. Opin. Neurobiol. 2022, 75, 102568. [Google Scholar] [CrossRef]
- Zhu, X.O.; Brown, M.W.; McCabe, B.J.; Aggleton, J.P. Effects of the novelty or familiarity of visual stimuli on the expression of the immediate early gene c-fos in rat brain. Neuroscience 1995, 69, 821–829. [Google Scholar] [CrossRef] [PubMed]
- Mehta, K.; Yentsch, H.; Lee, J.; Yook, Y.; Lee, K.Y.; Gao, T.T.; Tsai, N.P.; Zhang, K. Phosphatidylinositol-3-phosphate mediates Arc capsid secretion through the multivesicular body pathway. Proc. Natl. Acad. Sci. USA 2024, 121, e2322422121. [Google Scholar] [CrossRef]
- Zinin, N.; Adameyko, I.; Wilhelm, M.; Fritz, N.; Uhlén, P.; Ernfors, P.; Henriksson, M.A. MYC proteins promote neuronal differentiation by controlling the mode of progenitor cell division. EMBO Rep. 2014, 4, 383–391. [Google Scholar] [CrossRef]
- West, A.E.; Greenberg, M.E. Neuronal Activity-Regulated Gene Transcription in Synapse Development and Cognitive Function. Cold Spring Harb. Perspect. Biol. 2011, 3, a005744. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, T.; Okuno, H.; Bito, H. A new era for functional labeling of neurons: Activity-dependent promoters have come of age. Front. Neural Circuits 2014, 8, 37. [Google Scholar] [CrossRef]
- Matsuoka, K.; Bakiri, L.; Bilban, M.; Toegel, S.; Haschemi, A.; Yuan, H.; Kasper, M.; Windhager, R.; Wagner, E.F. Metabolic rewiring controlled by c-Fos governs cartilage integrity in osteoarthritis. Ann. Rheum. Dis. 2023, 82, 1227–1239. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Berdini, L.; Caputto, B.L. Lipid Metabolism in Neurons: A Brief Story of a Novel c-Fos-Dependent Mechanism for the Regulation of Their Synthesis. Front. Cell Neurosci. 2019, 13, 198. [Google Scholar]
- Ryan, M.M.; Mason-Parker, S.E.; Tate, W.P.; Abraham, W.C.; Williams, J.M. Rapidly induced gene networks following induction of long-term potentiation at perforant path synapses in vivo. Hippocampus 2011, 21, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Mahringer, D.; Petersen, A.V.; Fiser, A.; Okuno, H.; Bito, H.; Perrier, J.; Keller, G.B. Expression of c-Fos and Arc in hippocampal region CA1 marks neurons that exhibit learning-related activity changes. bioRxiv 2019, 644526. [Google Scholar] [CrossRef]
- Qiao, Q.; Wu, C.; Ma, L.; Zhang, H.; Li, M.; Wu, X.; Gan, W. Motor learning-induced new dendritic spines are preferentially involved in the learned task than existing spines. Cell Rep. 2022, 40, 111229. [Google Scholar] [CrossRef] [PubMed]
- Heo, S.; Kang, T.; Bygrave, A.M.; Larsen, M.R.; Huganir, R.L. Experience-Induced Remodeling of the Hippocampal Post-synaptic Proteome and Phosphoproteome. Mol. Cell Proteom. 2023, 22, 100661. [Google Scholar] [CrossRef] [PubMed]
- Léveillé, F.; Papadia, S.; Fricker, M.; Bell, K.F.S.; Soriano, F.X.; Martel, M.; Puddifoot, C.; Habel, M.; Wyllie, D.J.; Ikonomidou, C.; et al. Suppression of the Intrinsic Apoptosis Pathway by Synaptic Activity. J. Neurosci. 2010, 30, 2623–2635. [Google Scholar] [CrossRef]
- Györffy, B.A.; Kun, J.; Török, G.; Kardos, J. Local apoptotic-like mechanisms underlie complement-mediated synaptic pruning. Proc. Natl. Acad. Sci. USA 2018, 115, 6303–6308. [Google Scholar] [CrossRef]
- Costa-Rodrigues, C.; Couceiro, J.; Moreno, E. Cell competition from development to neurodegeneration. Dis. Model. Mech. 2021, 14, 048926. [Google Scholar] [CrossRef] [PubMed]
- Leuner, B.; Mendolia-Loffredo, S.; Kozorovitskiy, Y.; Samburg, D.; Gould, E.; Shors, T.J. Learning Enhances the Survival of New Neurons beyond the Time when the Hippocampus Is Required for Memory. J. Neurosci. 2004, 24, 7477–7481. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.; Cho, H.; Kim, M.; Oh, J.; Kang, M.S.; Yoo, M.; Lee, H.; Han, J. Synaptic plasticity-dependent competition rule influences memory formation. Nat. Commun. 2021, 12, 4289. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.I.; Curran, T. Stimulus-transcription coupling in neurons: Role of cellular immediate-early genes. Trends Neurosci. 1989, 12, 459–462. [Google Scholar] [CrossRef] [PubMed]
- The Human Protein Atlas. FOS Protein Expression Summary. Available online: https://www.proteinatlas.org/ENSG00000170345-FOS (accessed on 14 January 2025).
- Miyashita, T.; Kikuchi, E.; Horiuchi, J.; Saito, M. Long-Term Memory Engram Cells Are Established by c-Fos/CREB Transcriptional Cycling. Cell Rep. 2018, 25, 2716–2728. [Google Scholar] [CrossRef] [PubMed]
- Bito, H.; Deisseroth, K.; Tsien, R.W. Ca2+-dependent regulation in neuronal gene expression. Curr. Opin. Neurobiol. 1997, 7, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Sheng, H.Z.; Fields, R.D.; Nelson, P.G. Specific regulation of immediate early genes by patterned neuronal activity. J. Neurosci. Res. 1993, 35, 459–467. [Google Scholar] [CrossRef]
- Velazquez, F.N.; Caputto, B.L.; Boussin, F.D. c-Fos importance for brain development. Aging 2015, 7, 1028–1029. [Google Scholar] [CrossRef] [PubMed]
- Bussolino, D.F.; Guido, M.E.; Gil, G.A.; Borioli, G.A.; Renner, M.L.; Grabois, V.R.; Conde, C.B.; Caputto, B.L. c-Fos associates with the endoplasmic reticulum and activates phospholipid metabolism. FASEB J. 2001, 15, 556–558. [Google Scholar] [CrossRef] [PubMed]
- Kutz, S.M.; Providence, K.M.; Higgins, P.J. Antisense targeting of c-fos transcripts inhibits serum- and TGF-beta 1-stimulated PAI-1 gene expression and directed motility in renal epithelial cells. Cell Motil. Cytoskelet. 2001, 48, 163–174. [Google Scholar] [CrossRef]
- Lara Aparicio, S.Y.; Laureani Fierro, Á.J.; Aranda Abreu, G.E.; Toledo Cárdenas, R.; García Hernández, L.I.; Coria Ávila, G.A.; Rojas Durán, F.; Aguilar, M.E.H.; Manzo Denes, J.; Chi-Castañeda, L.D. Current Opinion on the Use of c-Fos in Neuroscience. NeuroSci 2022, 3, 687–702. [Google Scholar] [CrossRef]
- Gandolfi, D.; Cerri, S.; Mapelli, J.; Polimeni, M.; Tritto, S.; Fuzzati-Armentero, M.T.; Bigiani, A.; Blandini, F.; Mapelli, L.; D’Angelo, E. Activation of the CREB/c-Fos Pathway during Long-Term Synaptic Plasticity in the Cerebellum Granular Layer. Front. Cell Neurosci. 2017, 11, 184. [Google Scholar] [CrossRef]
- Lisachev, P.D.; Shtark, M.B. Long-Term Potentiation-Associated Gene Expression: Involvement of the Tumour Protein p53. In The Hippocampus-Plasticity and Functions; InTech: London, UK, 2018; p. 73219. [Google Scholar]
- Dragunow, M.; Faull, R. The use of c-Fos as a metabolic marker in neuronal pathway tracing. J. Neurosci. Methods 1989, 29, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Nakagami, Y.; Watakabe, A.; Yamamori, T. Monocular inhibition reveals temporal and spatial changes in gene expression in the primary visual cortex of marmoset. Front. Neural Circuits 2013, 7, 43. [Google Scholar] [CrossRef] [PubMed]
- Benn, A.; Barker, G.R.; Stuart, S.A.; Roloff, E.V.; Teschemacher, A.G.; Warburton, E.C.; Robinson, E.S. Optogenetic Stimulation of Prefrontal Glutamatergic Neurons Enhances Recognition Memory. J. Neurosci. 2016, 36, 4930–4939. [Google Scholar] [CrossRef] [PubMed]
- Katche, C.; Bekinschtein, P.; Slipczuk, L.; Medina, J.H. Delayed wave of c-Fos expression in the dorsal hippocampus involved specifically in persistence of long-term memory storage. Proc. Natl. Acad. Sci. USA 2009, 106, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Haghparast, A.; Taslimi, Z.; Ramin, M.; Azizi, P.; Khodagholi, F.; Hassanpour-Ezatti, M. Changes in phosphorylation of CREB, ERK, and c-fos induction in rat ventral tegmental area, hippocampus and prefrontal cortex after conditioned place preference induced by chemical stimulation of lateral hypothalamus. Behav. Brain Res. 2011, 220, 112–118. [Google Scholar] [CrossRef]
- Nestler, E.J. Molecular mechanisms of drug addiction. Neuropharmacology 2004, 47, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, J.T.; Mifflin, S.W.; Gould, G.G.; Frazer, A. Induction of c-Fos and ΔFosB Immunoreactivity in Rat Brain by Vagal Nerve Stimulation. Neuropsychopharmacology 2008, 33, 1884–1895. [Google Scholar] [CrossRef] [PubMed]
- Pompeiano, M.; Colonnese, M.T. cFos as a biomarker of activity maturation in the hippocampal formation. Neural Dev. 2023, 18, 8. [Google Scholar]
- Cruz-Mendoza, F.; Jauregui-Huerta, F.; Aguilar-Delgadillo, A.; García-Estrada, J.; Luquin, S. Immediate Early Gene c-Fos in the Brain: Focus on Glial Cells. Brain Sci. 2022, 12, 687. [Google Scholar] [CrossRef] [PubMed]
- Murphy, L.O.; MacKeigan, J.P.; Blenis, J. A network of immediate early gene products propagates subtle differences in mitogen-activated protein kinase signal amplitude and duration. Mol. Cell Biol. 2004, 24, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, D.; McQuade, J.S.; Behbehani, M.; Tsien, J.Z.; Xu, M. c-Fos regulates neuronal excitability and survival. Nat. Genet. 2002, 30, 416–420. [Google Scholar] [CrossRef]
- Flavell, S.W.; Greenberg, M.E. Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu. Rev. Neurosci. 2008, 31, 563–590. [Google Scholar] [CrossRef] [PubMed]
- Yelhekar, T.D.; Meng, M.; Doupe, J.; Lin, Y. All IEGs Are Not Created Equal-Molecular Sorting Within the Memory Engram. Adv. Neurobiol. 2024, 38, 81–109. [Google Scholar] [PubMed]
- Fleischmann, A.; Hvalby, O.; Jensen, V.; Strekalova, T.; Zacher, C.; Layer, L.E.; Kvello, A.; Reschke, M.; Spanagel, R.; Sprengel, R.; et al. Impaired long-term memory and NR2A-type NMDA receptor-dependent synaptic plasticity in mice lacking c-Fos in the CNS. J. Neurosci. 2003, 23, 9116–9122. [Google Scholar] [CrossRef]
- Lyford, G.L.; Yamagata, K.; Kaufmann, W.E.; Barnes, C.A.; Sanders, L.K. Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron 1995, 14, 433–445. [Google Scholar] [CrossRef]
- The Human Protein Atlas. ARC Protein Expression Summary. Available online: https://www.proteinatlas.org/ENSG00000198576-ARC (accessed on 14 January 2025).
- Epstein, I.; Finkbeiner, S. The Arc of cognition: Signaling cascades regulating Arc and implications for cognitive function and disease. Semin. Cell Dev. Biol. 2018, 77, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wu, J.; Ward, M.D.; Yang, S.; Chuang, Y.A.; Xiao, M. Structural basis of arc binding to synaptic proteins: Implications for cognitive disease. Neuron 2015, 86, 490–500. [Google Scholar] [CrossRef]
- Zhang, H.; Bramham, C.R. Arc/Arg3.1 function in long-term synaptic plasticity: Emerging mechanisms and unresolved issues. Eur. J. Neurosci. 2021, 53, 6696–6712. [Google Scholar] [CrossRef] [PubMed]
- Steward, O.; Worley, P.F. Selective Targeting of Newly Synthesized Arc mRNA to Active Synapses Requires NMDA Receptor Activation. Neuron 2001, 30, 227–240. [Google Scholar] [CrossRef]
- Guzowski, J.F.; McNaughton, B.L.; Barnes, C.A.; Worley, P.F. Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat. Neurosci. 1999, 2, 1120–1124. [Google Scholar] [CrossRef]
- Farris, S.; Lewandowski, G.; Cox, C.D.; Steward, O. Selective localization of arc mRNA in dendrites involves activity and translation-dependent mRNA degradation. J. Neurosci. 2014, 34, 4481–4493. [Google Scholar] [CrossRef]
- Steward, O.; Farris, S.; Pirbhoy, P.S.; Darnell, J.; Van Driesche, S.J. Localization and local translation of Arc/Arg3.1 mRNA at synapses: Some observations and paradoxes. Front. Mol. Neurosci. 2015, 8, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chuang, Y.A.; Na, Y.; Ye, Z.; Yang, L. Arc oligomerization is regulated by CaMKII phosphorylation of the GAG domain: An essential mechanism for plasticity and memory formation. Mol. Cell 2019, 75, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Bramham, C.R.; Alme, M.N.; Bittins, M.; Kuipers, S.D.; Nair, R.R. The Arc of synaptic memory. Exp. Brain Res. 2010, 200, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Patterson, M.A.; Szatmari, E.M.; Yasuda, R. AMPA receptors are exocytosed in stimulated spines and adjacent dendrites in a Ras-ERK-dependent manner during long-term potentiation. Proc. Natl. Acad. Sci. USA 2010, 107, 15951–15956. [Google Scholar] [CrossRef] [PubMed]
- Peebles, C.L.; Yoo, J.; Thwin, M.T.; Palop, J.J.; Noebels, J.L.; Finkbeiner, S. Arc regulates spine morphology and maintains network stability in vivo. Proc. Natl. Acad. Sci. USA 2010, 107, 18173–18178. [Google Scholar] [CrossRef]
- Albanesi, J.P.; Barylko, B.; DeMartino, G.N.; Jameson, D.M. Palmitoylated proteins in dendritic spine remodeling. Front. Synaptic Neurosci. 2020, 12, 22. [Google Scholar] [CrossRef] [PubMed]
- Jakkamsetti, V.; Tsai, N.P.; Gross, C.; Molinaro, G.; Collins, K.A. Experience-induced Arc/Arg3.1 primes CA1 pyramidal neurons for metabotropic glutamate receptor-dependent long-term synaptic depression. Neuron 2013, 80, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Jenks, K.R.; Tsimring, K.; Ip, J.P.; Zepeda, J.C.; Sur, M. Heterosynaptic plasticity and the experience-dependent refinement of developing neuronal circuits. Front. Neural Circuits 2021, 15, 803401. [Google Scholar] [CrossRef] [PubMed]
- Gong, W.K.; Ni, J.; Yu, L.F.; Wang, L.; Huang, Z.L. Temporal dynamics of Arc/Arg3.1 expression in the dorsal striatum during acquisition and consolidation of a motor skill in mice. Neurobiol. Learn. Mem. 2020, 168, 107156. [Google Scholar] [CrossRef]
- Messaoudi, E.; Kanhema, T.; Soulé, J.; Tiron, A.; Dagyte, G.; DaSilva, B. Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo. J. Neurosci. 2007, 27, 10445–10455. [Google Scholar] [CrossRef] [PubMed]
- DaSilva, L.L.; Wall, M.J.; Almeida, P.L.; Wauters, S.C.; Januário, Y.C.; Müller, J.; Corrêa, S.A. Activity-Regulated Cytoskeleton-Associated Protein Controls AMPAR Endocytosis through a Direct Interaction with Clathrin-Adaptor Protein. eNeuro 2016, 3, 0144-15. [Google Scholar] [CrossRef]
- Wall, M.J.; Corrêa, S.A. The mechanistic link between Arc/Arg3.1 expression and AMPA receptor endocytosis. Semin. Cell Dev. Biol. 2018, 77, 17–24. [Google Scholar] [CrossRef]
- Hallin, E.I.; Bramham, C.R.; Kursula, P. Structural properties and peptide ligand binding of the capsid homology domains of human Arc. Biochem. Biophys. Rep. 2021, 26, 100975. [Google Scholar] [CrossRef] [PubMed]
- Wall, M.J.; Collins, D.R.; Chery, S.L.; Allen, Z.D.; Pastuzyn, E.D.; George, A.J.; Nikolova, V.D.; Moy, S.S.; Philpot, B.D.; Shepherd, J.D.; et al. The Temporal Dynamics of Arc Expression Regulate Cognitive Flexibility. Neuron 2018, 98, 1124–1132. [Google Scholar] [CrossRef] [PubMed]
- Kyrke-Smith, M.; Volk, L.J.; Cooke, S.F.; Bear, M.F.; Huganir, R.L.; Shepherd, J.D. The immediate early gene Arc is not required for hippocampal long-term potentiation. J. Neurosci. 2021, 41, 4202–4211. [Google Scholar] [CrossRef] [PubMed]
- Haley, M.; Bertrand, J.; Anderson, V.T.; Fuad, M.; Frenguelli, B.G.; Corrêa, S.A.L.; Wall, M.J. Arc expression regulates long-term potentiation magnitude and metaplasticity in area CA1 of the hippocampus in ArcKR mice. Eur. J. Neurosci. 2023, 58, 4166–4180. [Google Scholar] [CrossRef] [PubMed]
- Wee, C.L.; Teo, S.; Oey, N.E.; Wright, G.D.; Van Dongen, H.M.; Van Dongen, A.M. Nuclear Arc interacts with the histone acetyltransferase Tip60 to modify H4K12 acetylation. eNeuro 2014, 1, 0019-14. [Google Scholar] [CrossRef]
- Urban, I.; Kerimoglu, C.; Sakib, M.S.; Wang, H.; Benito, E. TIP60/KAT5 is required for neuronal viability in hippocampal CA1. Sci. Rep. 2019, 9, 16173. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, J.D.; Rumbaugh, G.; Wu, J.; Chowdhury, S.; Plath, N.; Kuhl, D.; Huganir, R.L.; Worley, P.F. Arc/Arg3.1 mediates homeostatic synaptic scaling of AMPA receptors. Neuron 2006, 52, 475–484. [Google Scholar] [CrossRef]
- Bloomer, W.A.; Van Dongen, H.M.; Van Dongen, A.M. Activity-regulated cytoskeleton-associated protein Arc/Arg3.1 binds to spectrin and associates with nuclear promyelocytic leukemia (PML) bodies. Brain Res. 2007, 1153, 20–33. [Google Scholar] [CrossRef]
- Miller, D.M.; Thomas, S.D.; Islam, A.; Muench, D.; Sedoris, K. c-Myc and Cancer Metabolism. Clin. Cancer Res. 2012, 18, 5546–5553. [Google Scholar] [CrossRef] [PubMed]
- Conacci-Sorrell, M.; McFerrin, L.; Eisenman, R.N. An overview of MYC and its interactome. Cold Spring Harb. Perspect. Med. 2014, 4, a014357. [Google Scholar] [CrossRef] [PubMed]
- Stine, Z.E.; Walton, Z.E.; Altman, B.J.; Hsieh, A.L.; Dang, C.V. MYC, metabolism, and cancer. Cancer Discov. 2015, 5, 1024–1039. [Google Scholar] [CrossRef] [PubMed]
- Lancho, O.; Herranz, D. The MYC Enhancer-ome: Long-range transcriptional regulation of MYC in cancer. Trends Cancer 2018, 4, 810–822. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.V.D. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol. Cell Biol. 1999, 19, 1–11. [Google Scholar]
- Kokai, E.; Voss, F.; Fleischer, F. Myc regulates embryonic vascular permeability and remodeling. Circ. Res. 2009, 104, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Marinkovic, D.; Marinkovic, T. The new role for an old guy: MYC as an immunoplayer. J. Cell Physiol. 2021, 236, 3234–3243. [Google Scholar] [CrossRef] [PubMed]
- The Human Protein Atlas. MYC Protein Expression Summary. Available online: https://www.proteinatlas.org/ENSG00000136997-MYC (accessed on 14 January 2025).
- Kress, T.R.; Sabo, A.; Amati, B. MYC: Connecting selective transcriptional control to global RNA production. Nat. Rev. Cancer 2015, 15, 593–607. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Li, T.; Schipper, J. Sequence specificity incompletely defines the genome-wide occupancy of Myc. Genome Biol. 2014, 15, 482. [Google Scholar] [CrossRef] [PubMed]
- Von Der Lehr, N.; Johansson, S.; Wu, S. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol. Cell 2003, 11, 1189–1200. [Google Scholar] [CrossRef] [PubMed]
- MacPherson-Hawthorne, K.; Sears, R.C. Hold the MYCrophone: MYC Invades Enhancers to Control Cancer-Type Gene Programs. Cancer Res. 2024, 84, 2227–2228. [Google Scholar] [CrossRef]
- Levine, M.; Cattoglio, C.; Tjian, R. Looping back to leap forward: Transcription enters a new era. Cell 2014, 157, 13–25. [Google Scholar] [CrossRef]
- Schinelli, S.; Zanassi, P.; Paolillo, M.; Wang, H.; Feliciello, A.; Gallo, V. Stimulation of endothelin B receptors in astrocytes induces cAMP response element-binding protein phosphorylation and c-fos expression via multiple mitogen-activated protein kinase signaling pathways. J. Neurosci. 2001, 21, 8842–8853. [Google Scholar] [CrossRef]
- Yoshii, A.; Constantine-Paton, M. Postsynaptic localization of PSD-95 is regulated by all three pathways downstream of TrkB signaling. Front. Mol. Neurosci. 2014, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wey, A.; Knoepfler, P.S. C-myc and N-myc in the developing brain. Genes. Cancer 2010, 1, 261–262. [Google Scholar] [CrossRef]
- Li, H.L.; Dong, L.L.; Jin, M.J.; Li, Q.Y.; Wang, X.; Jia, M.Q.; Song, J.; Zhang, S.Y.; Yuan, S. A Review of the Regulatory Mechanisms of N-Myc on Cell Cycle. Molecules 2023, 28, 1141. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.P.; Kudo, W.; Zhu, X.; Smith, M.A.; Lee, H.G. Early induction of c-Myc is associated with neuronal cell death. Neurosci. Lett. 2011, 505, 124–127. [Google Scholar] [CrossRef] [PubMed]
- Marinkovic, T.; Marinkovic, D. Obscure Involvement of MYC in Neurodegenerative Diseases and Neuronal Repair. Mol. Neurobiol. 2021, 58, 4169–4177. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, I.; Blanco, R.; Carmona, M.; Puig, B. Phosphorylated c-MYC expression in Alzheimer disease, Pick’s disease, progressive supranuclear palsy and corticobasal degeneration. Neuropathol. Appl. Neurobiol. 2001, 27, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, A.; Omura, T.; Costigan, M. CNS repair and axon regeneration: Using genetic variation to determine mechanisms. Exp. Neurol. 2017, 287, 409–422. [Google Scholar] [CrossRef]
- Ma, J.J.; Ju, X.; Xu, R.J. Telomerase reverse transcriptase and p53 regulate mammalian peripheral nervous system and CNS axon regeneration downstream of c-Myc. J. Neurosci. 2019, 39, 9107–9118. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Hu, X.; Dai, P.; Zhang, T.; Jiang, M.; Wang, L.; Hua, W.; Fan, Y.; Han, X.X.; Gao, Z. c-Myc regulates neural stem cell quiescence and activation by coordinating the cell cycle and mitochondrial remodeling. Signal Transduct. Target. Ther. 2021, 6, 306. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Chang, W.W.; Lai, Y.; Wu, C.W. c-Myc regulates the coordinated transcription of brain disease-related PDCD10-SERPINI1 bidirectional gene pair. Mol. Cell Neurosci. 2009, 42, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Ma, Y.X.; Xu, R.J.; Ma, J.J.; Zhang, H.C.; Qi, S.B.; Xu, J.H.; Qin, X.Z.; Zhang, H.N.; Liu, C.M.; et al. c-Myc controls the fate of neural progenitor cells during cerebral cortex development. J. Cell Physiol. 2020, 235, 4011–4021. [Google Scholar] [CrossRef] [PubMed]
- Koseoglu, M.M.; Norambuena, A.; Sharlow, E.R.; Lazo, J.S.; Bloom, G.S. Aberrant Neuronal Cell Cycle Re-Entry: The Pathological Confluence of Alzheimer’s Disease and Brain Insulin Resistance, and Its Relation to Cancer. J. Alzheimer’s Dis. 2019, 67, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, I.; Blanco, R. N-myc and c-myc expression in Alzheimer disease, Huntington disease and Parkinson disease. Brain Res. Mol. Brain Res. 2000, 77, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.Y.; Kwon, M.J.; Lee, E.M.; Kim, K.; Oh, Y.J.; Kim, H.S.; Hwang, D.H.; Kim, B.G. Role of Myc Proto-Oncogene as a Transcriptional Hub to Regulate the Expression of Regeneration-Associated Genes following Preconditioning Peripheral Nerve Injury. J. Neurosci. 2021, 41, 446–460. [Google Scholar] [CrossRef] [PubMed]
- Refaeli, R.; Kreisel, T.; Groysman, M.; Adamsky, A.; Goshen, I. Engram stability and maturation during systems consolidation. Proc. Natl. Acad. Sci. USA 2023, 120, 3942–3950. [Google Scholar] [CrossRef] [PubMed]
- Pettit, N.L.; Yap, E.L.; Greenberg, M.E. Fos ensembles encode and shape stable spatial maps in the hippocampus. Nature 2022, 609, 327–334. [Google Scholar] [CrossRef]
- Ghandour, K.; Ohkawa, N.; Fung, C.C.A. Orchestrated ensemble activities constitute a hippocampal memory engram. Nat. Commun. 2019, 10, 2637. [Google Scholar] [CrossRef]
- Adamsky, A.; Kol, A.; Kreisel, T.; Doron, A.; Ozeri-Engelhard, N.; Melcer, T.; Refaeli, R.; Horn, H.; Regev, L.; Groysman, M. Astrocytic Activation Generates De Novo Neuronal Potentiation and Memory Enhancement. Cell 2018, 174, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Lamothe-Molina, P.J.; Franzelin, A.; Beck, L.; Li, D.; Auksutat, L.; Fieblinger, T.; Laprell, L.; Alhbeck, J.; Gee, C.E.; Kneussel, M.; et al. cFos ensembles in the dentate gyrus rapidly segregate over time and do not form a stable map of space. bioRxiv 2020, 1–27. [Google Scholar]
- Ivashkina, O.I.; Gruzdeva, A.M.; Roshchina, M.A.; Toropova, K.A.; Anokhin, K.V. Imaging of C-Fos Activity in Neurons of the Mouse Parietal Association Cortex during Acquisition and Retrieval of Associative Fear Memory. Int. J. Mol. Sci. 2021, 15, 8244. [Google Scholar] [CrossRef]
- Lin, X.; Itoga, C.A.; Taha, S.; Li, M.H.; Chen, R.; Sami, K.; Berton, F.; Francesconi, W.; Xu, X. c-Fos mapping of brain regions activated by multi-modal and electric foot shock stress. Neurobiol. Stress. 2018, 8, 92–102. [Google Scholar] [CrossRef]
- Mazurkiewicz, M.; Kambham, A.; Pace, B.; Skwarzynska, D.; Wagley, P.; Burnsed, J. Neuronal activity mapping during exploration of a novel environment. Brain Res. 2022, 1776, 147748. [Google Scholar] [CrossRef] [PubMed]
- Lopez, M.R.; Wasberg, S.M.H.; Gagliardi, C.M.; Normandin, M.E.; Muzzio, I.A. Mystery of the memory engram: History, current knowledge, and unanswered questions. Neurosci. Biobehav. Rev. 2024, 150, 105574. [Google Scholar] [CrossRef]
- Tanaka, K.Z.; He, H.; Tomar, A.; Niisato, K.; McHugh, T.J. The hippocampal engram maps experience but not place. Science 2018, 361, 392–397. [Google Scholar] [CrossRef]
- Wang, C.H.; McHugh, T.J. Putting memories in their place. Cell Res. 2023, 33, 91–92. [Google Scholar] [CrossRef]
- Sun, X.; Bernstein, M.J.; Meng, M.; Rao, S.; Sørensen, A.T.; Yao, L.; Zhang, X.; Anikeeva, P.O.; Lin, Y. Functionally Distinct Neuronal Ensembles Within the Memory Engram. Cell 2020, 2, 410–423. [Google Scholar] [CrossRef]
- Jiang, Y.; VanDongen, A.M.J. Selective Increase of Correlated Activity in Arc-Positive Neurons after Chemically Induced Long-Term Potentiation in Cultured Hippocampal Neurons. eNeuro 2021, 8, 0540–20. [Google Scholar] [CrossRef] [PubMed]
- Pastuzyn, E.D.; Day, C.E.; Kearns, R.B.; Kyrke-Smith, M.; Taibi, A.V.; McCormick, J. The neuronal gene Arc encodes a repurposed retrotransposon Gag protein that mediates intercellular RNA transfer. Cell 2018, 172, 275–288. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, K.D.; Semler, B.L. Bridging IRES elements in mRNAs to the eukaryotic translation apparatus. Biochim. Biophys. Acta 2009, 1789, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Hellen, C.U. IRES-induced conformational changes in the ribosome and the mechanism of translation initiation by internal ribosomal entry. Biochim. Biophys. Acta 2009, 1789, 558–570. [Google Scholar] [CrossRef] [PubMed]
- Schnatz, A.; Müller, C.; Brahmer, A.; Krämer-Albers, E.M. Extracellular vesicles in neural cell interaction and CNS homeostasis. FASEB Bioadvances 2021, 3, 577–592. [Google Scholar] [CrossRef] [PubMed]
- Ashley, J.; Cordy, B.; Lucia, D.; Fradkin, L.G.; Budnik, V.; Thomson, T. Retrovirus-like Gag protein Arc1 binds RNA and traffics across synaptic boutons. Cell 2018, 172, 262–274. [Google Scholar] [CrossRef]
- Erlendsson, S.; Morado, D.R.; Cullen, H.B. Structures of virus-like capsids formed by the Drosophila neuronal Arc proteins. Nat. Neurosci. 2020, 23, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Van Dongen, A.M. Neuronal Activity-Dependent Accumulation of Arc in Astrocytes. bioRxiv 2020, 1–24. [Google Scholar] [CrossRef]
- Otmakhov, N.; Khibnik, L.; Otmakhova, N.; Carpenter, S.; Riahi, S. Forskolin-induced LTP in the CA1 hippocampal region is NMDA receptor dependent. J. Neurophysiol. 2004, 91, 1955–1962. [Google Scholar] [CrossRef]
- Kim, D.W.; Moon, H.C.; Lee, B.H.; Park, H.Y. Decoding Arc transcription: A live-cell study of stimulation patterns and transcriptional output. Learn Mem. 2024, 31, a054024. [Google Scholar] [CrossRef] [PubMed]
- Nikolaienko, O.; Eriksen, M.S.; Patil, S.; Bito, H.; Bramham, C.R. Stimulus-evoked ERK-dependent phosphorylation of activity-regulated cytoskeleton-associated protein (Arc) regulates its neuronal subcellular localization. Neuroscience 2017, 360, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Gozdz, A.; Nikolaienko, O.; Urbanska, M.; Cymerman, I.A.; Sitkiewicz, E.; Blazejczyk, M.; Dadlez, M.; Bramham, C.R.; Jaworski, J. GSK3α and GSK3β Phosphorylate Arc and Regulate its Degradation. Front. Mol. Neurosci. 2017, 10, 192–206. [Google Scholar] [CrossRef]
- Hedde, P.; Malacrida, L.; Barylko, B.; Binns, D.; Albanesi, J. Membrane remodeling by Arc/Arg3.1. Sci. Adv. 2021, 8, 630625. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, L.; Pedersen, C.; Erlendsson, S.; Teilum, K. The Capsid Domain of Arc Changes Its Oligomerization Propensity through Direct Interaction with the NMDA Receptor. Chem. Biol. 2019, 27, 1071–1081. [Google Scholar] [CrossRef]
- Segel, M.; Lash, B.; Song, J.; Ladha, A.; Liu, C.C.; Jin, X. Mammalian retrovirus-like protein PEG10 packages its own mRNA and can be pseudotyped for mRNA delivery. Science 2021, 373, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Paolicelli, R.C.; Bergamini, G.; Rajendran, L. Cell-to-cell communication by extracellular vesicles: Focus on microglia. Neuroscience 2019, 405, 148–157. [Google Scholar] [CrossRef]
- Tatavarty, V.; Ifrim, M.F.; Levin, M.; Korza, G.; Barbarese, E.; Yu, J.; Carson, J.H. Single-molecule imaging of translational output from individual RNA granules in neurons. Mol. Biol. Cell 2012, 23, 751–964. [Google Scholar] [CrossRef] [PubMed]
- Pinkstaff, J.K.; Chappell, S.A.; Mauro, V.P.; Edelman, G.M.; Krushel, L.A. Internal initiation of translation of five dendritically localized neuronal mRNAs. Proc. Natl. Acad. Sci. USA 2001, 98, 2770–2775. [Google Scholar] [CrossRef]
- Jensen, S.; Thomsen, A.R. Sensing of RNA viruses: A review of innate immune receptors involved in recognizing RNA virus invasion. J. Virol. 2012, 86, 2900–2910. [Google Scholar] [CrossRef]
- Amoyel, M.; Bach, E.A. Cell competition: How to eliminate your neighbors. Development 2014, 141, 988–1000. [Google Scholar] [CrossRef] [PubMed]
- Hamburger, V.; Levi-Montalcini, R. Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J. Exp. Zool. 1949, 111, 457–501. [Google Scholar] [CrossRef] [PubMed]
- Hamburger, V.; Levi-Montalcini, R. Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J. Exp. Zool. 1951, 116, 321–361. [Google Scholar]
- Baker, N.E. Emerging mechanisms of cell competition. Nat. Rev. Genet. 2020, 21, 683–697. [Google Scholar] [CrossRef]
- Madan, E.; Gogna, R.; Moreno, E. Cell competition in development: Information from flies and vertebrates. Curr. Opin. Cell Biol. 2018, 55, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Banreti, A.R.; Meier, P. The NMDA receptor regulates competition of epithelial cells in the Drosophila wing. Nat. Commun. 2020, 11, 2228. [Google Scholar] [CrossRef]
- Kim, W.; Jain, R. Picking winners and losers: Cell competition in tissue development and homeostasis. Trends Genet. 2020, 36, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Coelho, D.S.; Moreno, E. Emerging links between cell competition and Alzheimer’s disease. J. Cell Biol. 2019, 132, jcs231258. [Google Scholar] [CrossRef]
- Nagata, R.; Igaki, T. Cell competition: Emerging signaling and unsolved questions. Development 2024, 598, 379–389. [Google Scholar] [CrossRef]
- Valon, L.; Davidović, A.; Levillayer, F.; Villars, A.; Chouly, M.; Cerqueira-Campos, F.; Levayer, R. Robustness of epithelial sealing is an emerging property of local ERK feedback driven by cell elimination. Cell 2021, 56, 1700–1711. [Google Scholar] [CrossRef]
- Azraq, I.; Craveiro, R.B.; Niederau, C.; Brockhaus, J.; Bastian, A.; Knaup, I.; Neuss, S.; Wolf, M. Gene expression and phosphorylation of ERK and AKT are regulated depending on mechanical force and cell confluence in murine cementoblasts. Ann. Anat. 2021, 234, 151668. [Google Scholar] [CrossRef] [PubMed]
- Ramiro-Cortes, Y.; Hobbiss, A.F.; Israely, I. Synaptic competition in structural plasticity and cognitive function. Philos. Trans. R. Soc. B 2013, 369, 20130157. [Google Scholar] [CrossRef] [PubMed]
- Morciano, P.; Grifoni, D. Breaking the brain barrier: Cell competition in neural development and disease. Neural Regen. Res. 2023, 19, 1863–1864. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Kuang, H.; Wu, X.; Huang, Y.; Wang, J.; Wen, Z. Cell competition for neuron-derived trophic factor controls the turnover and lifespan of microglia. Sci. Adv. 2023, 9, eadf9790. [Google Scholar] [CrossRef] [PubMed]
- Säljö, A.; Bao, F.; Shi, J.; Hamberger, A.; Hansson, H.; Haglid, K.G. Expression of c-Fos and c-Myc and Deposition of β-APP in Neurons in the Adult Rat Brain as a Result of Exposure to Short-Lasting Impulse Noise. J. Neurotrauma 2004, 19, 379–385. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Miura, M. Programmed Cell Death and Caspase Functions During Neural Development. Curr. Top. Dev. Biol. 2015, 114, 159–184. [Google Scholar] [PubMed]
- Jam, F.A.; Morimune, T.; Tsukamura, A.; Tano, A.; Tanaka, Y.; Mori, Y.; Yamamoto, T.; Nishimura, M.; Tooyama, I.; Mori, M. Neuroepithelial cell competition triggers loss of cellular juvenescence. Sci. Adv. 2020, 10, 18044. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Chen, Z.; Guo, X.; Yao, M.; Johnston, L.A.; Wu, Q. Stem cell competition driven by the Axin2-p53 axis controls brain size during murine development. Nat. Commun. 2023, 58, 744–759. [Google Scholar] [CrossRef] [PubMed]
- Salmina, A.B. Metabolic Plasticity in Developing and Aging Brain. Neurochemistry 2023, 17, 325–337. [Google Scholar]
- Gilman, C.P.; Mattson, M.P. Do apoptotic mechanisms regulate synaptic plasticity and growth-cone motility? Neuromolecular Med. 2002, 2, 197–214. [Google Scholar] [CrossRef]
- Salmina, A.B.; Gorina, Y.V.; Komleva, Y.K.; Panina, Y.A.; Malinovskaya, N.A.; Lopatina, O.L. Early Life Stress and Metabolic Plasticity of Brain Cells: Impact on Neurogenesis and Angiogenesis. Biomedicines 2021, 9, 1092. [Google Scholar] [CrossRef] [PubMed]
- Chambers, R.; Potenza, M.; Hoffman, R.; Miranker, W. Simulated Apoptosis/Neurogenesis Regulates Learning and Memory Capabilities of Adaptive Neural Networks. Neuropsychopharmacology 2004, 29, 747–758. [Google Scholar] [CrossRef]
- Shors, T.J.; Anderson, L.M.; Curlik, D.M.; Nokia, S.M. Use it or lose it: How neurogenesis keeps the brain fit for learning. Behav. Brain Res. 2011, 227, 450–458. [Google Scholar] [CrossRef]
- Bengzon, J.; Kokaia, Z.; Elmér, E.; Nanobashvili, A.; Kokaia, M.; Lindvall, O. Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proc. Natl. Acad. Sci. USA 1997, 94, 10432–10437. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Moreno, M.; Batlle, M.; Ortega, F.J.; Gimeno-Bayón, J.; Andrade, C.; Mahy, N.; Rodríguez, M.J. Diazoxide enhances excitotoxicity-induced neurogenesis and attenuates neurodegeneration in the rat non-neurogenic hippocampus. Neuroscience 2016, 333, 229–243. [Google Scholar] [CrossRef]
- Kittaka, M.; Mayahara, K.; Mukai, T.; Yoshimoto, T.; Yoshitaka, T.; Gorski, J.P.; Ueki, Y. Cherubism Mice Also Deficient in c-Fos Exhibit Inflammatory Bone Destruction Executed by Macrophages That Express MMP14 Despite the Absence of TRAP+ Osteoclasts. J. Bone Miner. Res. 2018, 33, 167–181. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, Y.; Nakamura, K.; Seno, M.; Mochizuki, M.; Kawai, K.; Koba, S.; Watanabe, T. Generation of c-Fos knockout rats, and observation of their phenotype. Exp. Anim. 2023, 1, 95–102. [Google Scholar] [CrossRef]
- Kurushima, H.; Ohno, M.; Miura, T.; Nakamura, T.Y.; Horie, H.; Kadoya, T.; Ooboshi, H.; Kitazono, T.; Ibayashi, S.; Iida, M.; et al. Selective induction of ΔFosB in the brain after transient forebrain ischemia accompanied by an increased expression of galectin-1, and the implication of ΔFosB and galectin-1 in neuroprotection and neurogenesis. Cell Death Differ. 2005, 12, 1078–1096. [Google Scholar] [CrossRef]
- Tresini, M.; Lorenzini, A.; Frisoni, L.; Allen, R.G.; Cristofalo, V.J. Lack of Elk-1 phosphorylation and dysregulation of the extracellular regulated kinase signaling pathway in senescent human fibroblast. Exp. Cell Res. 2001, 269, 287–300. [Google Scholar] [CrossRef] [PubMed]
- Moreno, E.; Valon, L.; Levillayer, F.; Levayer, R. Competition for Space Induces Cell Elimination through Compaction-Driven ERK Downregulation. Curr. Biol. 2019, 29, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Knoepfler, P.S.; Cheng, P.F.; Eisenman, R.N. N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes. Dev. 2002, 16, 2699–2712. [Google Scholar] [CrossRef]
- Chen, J.; Guan, Z. Function of Oncogene Mycn in Adult Neurogenesis and Oligodendrogenesis. Curr. Top. Dev. Biol. 2021, 59, 77–92. [Google Scholar] [CrossRef] [PubMed]
- Wey, A.; Knoepfler, P.S. c-myc and N-myc promote active stem cell metabolism and cycling as architects of the developing brain. Oncotarget 2010, 1, 120–130. [Google Scholar] [CrossRef]
- Angeletti, P.U.; Levi-Montalcini, R.; Calissano, P. The nerve growth factor (NGF): Chemical properties and metabolic effects. Adv. Enzymol. 1968, 31, 51–75. [Google Scholar] [PubMed]
- Johnston, L.A. Socializing with MYC: Cell competition in development and as a model for premalignant cancer. Cold Spring Harb. Perspect. Med. 2014, 4, a014274. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Tchernyshyov, I.; Semenza, G.L.; Dang, C.V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006, 3, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Guido, C.; Whitaker-Menezes, D.; Lin, Z.; Pestell, R.G.; Howell, A.; Zimmers, T.A.; Casimiro, M.C.; Aquila, S.; Ando, S.; Martinez-Outschoorn, U.E.; et al. Mitochondrial fission induces glycolytic reprogramming in cancer-associated myofibroblasts, driving stromal lactate production and early tumor growth. Oncotarget 2012, 3, 798–810. [Google Scholar] [CrossRef]
- Jolivalt, C.G.; Lee, C.A.; Beiswenger, K.K.; Smith, J.L.; Orlov, M.; Torrance, M.A.; Masliah, E. Defective insulin signaling pathway and increased GSK-3 activity in the brain of diabetic mice: Parallels with Alzheimer’s disease and correction by insulin. J. Neurosci. Res. 2008, 86, 3265–3274. [Google Scholar] [CrossRef] [PubMed]
- Böhni, R.; Riesgo-Escovar, J.; Oldham, S.; Brogiolo, W.; Stocker, H.; Andruss, B.F.; Beckingham, K.; Hafen, E. Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4. Cell 1999, 7, 865–875. [Google Scholar] [CrossRef] [PubMed]
- Sanaki, Y.; Nagata, R.; Kizawa, D.; Léopold, P.; Igaki, T. Hyperinsulinemia Drives Epithelial Tumorigenesis by Abrogating Cell Competition. Dev. Cell 2020, 4, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Rardin, M.J.; Wiley, S.E.; Naviaux, R.K.; Murphy, A.N.; Dixon, J.E. Monitoring phosphorylation of the pyruvate dehydrogenase complex. Anal. Biochem. 2009, 389, 157–164. [Google Scholar] [CrossRef]
- Zhou, Q.; Lam, P.Y.; Han, D.; Cadenas, E. Activation of C-Jun-N-Terminal Kinase and Decline of Mitochondrial Pyruvate Dehydrogenase Activity during Brain Aging. FEBS Lett. 2009, 583, 1132–1140. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Wang, Y.; Qi, T.; Zhang, X.; Shen, L.; Ma, J.; Pang, Z.; Lal, N.K.; McClatchy, D.B.; Seradj, S.H.; et al. Phosphorylation of pyruvate dehydrogenase inversely associates with neuronal activity. Neuron 2024, 112, 959–971. [Google Scholar] [PubMed]
- Zhou, Q.; Lam, P.Y.; Han, D.; Cadenas, E. c-Jun N-terminal kinase regulates mitochondrial bioenergetics by modulating pyruvate dehydrogenase activity in primary cortical neurons. J. Neurochem. 2008, 104, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Papa, S.; Choy, P.M.; Bubici, C. The ERK and JNK pathways in the regulation of metabolic reprogramming. Oncogene 2019, 38, 2223–2240. [Google Scholar] [CrossRef] [PubMed]
- Wilde, L.; Roche, M.; Domingo-Vidal, M.; Tanson, K.; Philp, N.; Curry, J.; Martinez-Outschoorn, U. Metabolic coupling and the Reverse Warburg Effect in cancer: Implications for novel biomarker and anticancer agent development. Semin. Oncol. 2017, 7, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Salmina, A.B.; Okuneva, S.O.; Taranushenko, T.E.; Fursov, A.A.; Prokopenko, S.V.; Mikhutkina, S.V.; Malinovskaya, N.A.; Tagaeva, G.A. Neuron-astroglial interactions in dysregulation of energy metabolism in perinatal ischemic brain damage. Ann. Clin. Exp. Neurol. 2008, 2, 44–51. [Google Scholar]
- De la Cova, C.; Senoo-Matsuda, N.; Ziosi, M.; Wu, D.C.; Bellosta, P.; Quinzii, C.M.; Johnston, L.A. Supercompetitor status of Drosophila Myc cells requires p53 as a fitness sensor to reprogram metabolism and promote viability. Cell Metab. 2014, 19, 470–483. [Google Scholar] [CrossRef] [PubMed]
- Morrish, F.; Noonan, J.; Perez-Olsen, C.; Gafken, P.R.; Fitzgibbon, M.; Kelleher, J.; VanGilst, M.; Hockenbery, D. Myc-dependent mitochondrial generation of acetyl-CoA contributes to fatty acid biosynthesis and histone acetylation during cell cycle entry. J. Biol. Chem. 2010, 285, 36267–36274. [Google Scholar] [CrossRef]
- Morrish, F.; Hockenbery, D. MYC and mitochondrial biogenesis. Cold Spring Harb. Perspect. Med. 2014, 4, a014225. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Feng, Y.; Chen, X.; Li, W.; Xue, L. Myc inhibits JNK-mediated cell death in vivo. Apoptosis 2017, 22, 479–490. [Google Scholar] [CrossRef]
- Gardner, L.B.; Lee, L.A.; Dang, C.V. c-myc Protooncogene. Encycl. Cancer 2002, 555–561. [Google Scholar]
- Edmunds, L.R.; Sharma, L.; Wang, H.; Kang, A.; d’Souza, S.; Lu, J.; McLaughlin, M.; Dolezal, J.M.; Gao, X.; Weintraub, S.T.; et al. c-Myc and AMPK Control Cellular Energy Levels by Cooperatively Regulating Mitochondrial Structure and Function. PLoS ONE 2015, 7, e0134049. [Google Scholar] [CrossRef] [PubMed]
- Bowling, S.; Di Gregorio, A.; Sancho, M.; Pozzi, S.; Aarts, M.; Signore, M.; Schneider, M.D.; Martinez-Barbera, J.P.; Gil, J.; Rodríguez, T.A. P53 and mTOR signalling determine fitness selection through cell competition during early mouse embryonic development. Nat. Commun. 2018, 9, 1763. [Google Scholar] [CrossRef] [PubMed]
- Tamori, Y.; Deng, W.M. Tissue repair through cell competition and compensatory cellular hypertrophy in postmitotic epithelia. Dev. Cell 2013, 4, 350–363. [Google Scholar] [CrossRef]
- Yoon, M.S. mTOR as a Key Regulator in Maintaining Skeletal Muscle Mass. Front. Physiol. 2017, 8, 788. [Google Scholar] [CrossRef] [PubMed]
- Sciarretta, S.; Volpe, M.; Sadoshima, J. Mammalian target of rapamycin signaling in cardiac physiology and disease. Circ. Res. 2014, 3, 549–564. [Google Scholar] [CrossRef]
- Kwon, C.H.; Luikart, B.W.; Powell, C.M.; Zhou, J.; Matheny, S.A.; Zhang, W.; Li, Y.; Baker, S.J.; Parada, L.F. Pten regulates neuronal arborization and social interaction in mice. Neuron 2006, 3, 377–388. [Google Scholar] [CrossRef]
- Kleinert, M.; Sylow, L.; Fazakerley, D.J.; Krycer, J.R.; Thomas, K.C.; Oxbøll, A.J.; Jordy, A.B.; Jensen, T.E.; Yang, G.; Schjerling, P.; et al. Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo. Mol. Metab. 2014, 6, 630–641. [Google Scholar] [CrossRef] [PubMed]
- Gwinn, D.M.; Shaw, R.J. AMPK Control of mTOR Signaling and Growth. Enzymes 2010, 28, 49–75. [Google Scholar]
- Mannick, J.B.; Lamming, D.W. Targeting the biology of aging with mTOR inhibitors. Nat. Aging 2023, 3, 642–660. [Google Scholar] [CrossRef] [PubMed]
- Szwed, A.; Kim, E.; Jacinto, E. Regulation and metabolic functions of mTORC1 and mTORC2. Physiol. Rev. 2021, 3, 1371–1426. [Google Scholar] [CrossRef] [PubMed]
- Yoon, M.S. The Role of Mammalian Target of Rapamycin (mTOR) in Insulin Signaling. Nutrients 2017, 11, 1176. [Google Scholar] [CrossRef] [PubMed]
- Ardestani, A.; Lupse, B.; Kido, Y.; Leibowitz, G.; Maedler, K. mTORC1 Signaling: A Double-Edged Sword in Diabetic β Cells. Cell Metab. 2018, 2, 314–331. [Google Scholar] [CrossRef] [PubMed]
- Altas, B.; Romanowski, A.J.; Bunce, G.W.; Poulopoulos, A. Neuronal mTOR Outposts: Implications for Translation, Signaling, and Plasticity. Front. Cell. Neurosci. 2022, 16, 853634. [Google Scholar] [CrossRef] [PubMed]
- Rawat, V.; Goux, W.; Piechaczyk, M.D.; Mello, S.R. c-Fos Protects Neurons Through a Noncanonical Mechanism Involving HDAC3 Interaction: Identification of a 21-Amino Acid Fragment with Neuroprotective Activity. Mol. Neurobiol. 2016, 2, 1165–1180. [Google Scholar] [CrossRef] [PubMed]
- Gallo, F.T.; Katche, C.; Morici, J.F.; Medina, J.H.; Weisstaub, N.V. Immediate Early Genes, Memory and Psychiatric Disorders: Focus on c-Fos, Egr1 and Arc. Front. Behav. Neurosci. 2018, 12, 79. [Google Scholar] [CrossRef]
- Ibrahim, M.Z.B.; Benoy, A.; Sajikumar, S. Long-term plasticity in the hippocampus: Maintaining within and ’tagging’ between synapses. FEBS J. 2021, 288, 2422–2442. [Google Scholar] [CrossRef] [PubMed]
- Anastacio, H.T.D.; Matosin, N.; Ooi, L. Neuronal hyperexcitability in Alzheimer’s disease: What are the drivers behind this aberrant phenotype? Transl. Psychiatry 2022, 12, 257–271. [Google Scholar] [CrossRef]
- Guzowski, J.F.; Lyford, G.L.; Stevenson, G.D.; Houston, F.P.; McGaugh, J.L.; Worley, P.F.; Barnes, C.A. Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. J. Neurosci. 2000, 20, 3993–4001. [Google Scholar] [CrossRef] [PubMed]
- Peineau, S.; Taghibiglou, C.; Bradley, C.; Wong, T.P.; Liu, L.; Lu, J.; Lo, E.; Wu, D.; Saule, E.; Bouschet, T.; et al. LTP inhibits LTD in the hippocampus via regulation of GSK3beta. Neuron 2007, 53, 703–717. [Google Scholar] [CrossRef]
- Draffin, J.E.; Sánchez-Castillo, C.; Fernández-Rodrigo, A.; Sánchez-Sáez, X.; Ávila, J.; Wagner, F.F.; Esteban, J.A. GSK3α, not GSK3β, drives hippocampal NMDAR-dependent LTD via tau-mediated spine anchoring. EMBO J. 2021, 40, e105513. [Google Scholar] [CrossRef] [PubMed]
- Duffy, D.J.; Krstic, A.; Schwarzl, T.; Higgins, D.G.; Kolch, W. GSK3 inhibitors regulate MYCN mRNA levels and reduce neuroblastoma cell viability through multiple mechanisms, including p53 and Wnt signaling. Mol. Cancer Ther. 2014, 13, 454–467. [Google Scholar] [CrossRef]
- Alejandre-García, T.; Kim, S.; Pérez-Ortega, J.; Yuste, R. Intrinsic excitability mechanisms of neuronal ensemble formation. eLife 2022, 11, e77470. [Google Scholar] [CrossRef]
- Campanac, E.; Gasselin, C.; Baude, A.; Rama, S.; Ankri, N.; Debanne, D. Enhanced intrinsic excitability in basket cells maintains excitatory-inhibitory balance in hippocampal circuits. Neuron 2013, 77, 712–722. [Google Scholar] [CrossRef] [PubMed]
- Sammari, M.; Inglebert, Y.; Ankri, N.; Russier, M.; Incontro, S.; Debanne, D. Theta patterns of stimulation induce synaptic and intrinsic potentiation in O-LM interneurons. Proc. Natl. Acad. Sci. USA 2022, 119, e2205264119. [Google Scholar] [CrossRef] [PubMed]
- Márquez, L.A.; Griego, E.; López Rubalcava, C.; Galván, E.J. NMDA receptor activity during postnatal development determines intrinsic excitability and mossy fiber long-term potentiation of CA3 pyramidal cells. Hippocampus 2023, 33, 906–921. [Google Scholar] [CrossRef]
- Redondo, R.L.; Morris, R.G.M. Making memories last: The synaptic tagging and capture hypothesis. Nat. Rev. Neurosci. 2011, 12, 17–30. [Google Scholar] [CrossRef]
- Sossin, W.S. Memory synapses are defined by distinct molecular complexes: A proposal. Front. Synaptic Neurosci. 2018, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- Kimura, F.; Itami, C. A Hypothetical Model Concerning How Spike-Timing-Dependent Plasticity Contributes to Neural Circuit Formation and Initiation of the Critical Period in Barrel Cortex. J. Neurosci. 2019, 39, 3784–3791. [Google Scholar] [CrossRef]
- Letzkus, J.J.; Kampa, B.M.; Stuart, G.J. Does spike timing-dependent synaptic plasticity underlie memory formation? Clin. Exp. Pharmacol. Physiol. 2007, 34, 1070–1076. [Google Scholar] [CrossRef]
- Debanne, D.; Inglebert, Y. Spike timing-dependent plasticity and memory. Curr. Opin. Neurobiol. 2023, 80, 102707. [Google Scholar] [CrossRef]
- Nevian, T.; Sakmann, B. Spine Ca2+ signaling in spike-timing-dependent plasticity. J. Neurosci. 2006, 26, 11001–11013. [Google Scholar] [CrossRef] [PubMed]
- Lube, A.J.; Ma, X.; Carlson, B.A. Spike timing-dependent plasticity alters electrosensory neuron synaptic strength in vitro but does not consistently predict changes in sensory tuning in vivo. J. Neurophysiol. 2023, 129, 1127–1144. [Google Scholar] [CrossRef] [PubMed]
- Maheden, K.; Zhang, V.W.; Shakiba, N. The Field of Cell Competition Comes of Age: Semantics and Technological Synergy. Front. Cell Dev. Biol. 2022, 10, 891569. [Google Scholar] [CrossRef]
- Marques-Reis, M.; Moreno, E. Role of cell competition in ageing. Dev. Biol. 2021, 476, 79–87. [Google Scholar] [CrossRef]
- Coelho, D.S.; Schwartz, S.; Merino, M.M.l; Hauert, B.; Topfel, B.; Tieche, C.; Rhiner, C.; Moreno, E. Culling Less Fit Neurons Protects against Amyloid-β-Induced Brain Damage and Cognitive and Motor Decline. Cell Rep. 2018, 25, 3661–3673.e3. [Google Scholar] [CrossRef] [PubMed]
- Wrigglesworth, J.; Ward, P.; Harding, I.H. Factors associated with brain ageing—A systematic review. BMC Neurol. 2021, 21, 312–324. [Google Scholar] [CrossRef]
- Sikora, E.; Bielak-Zmijewska, A.; Dudkowska, M.; Krzystyniak, A.; Mosieniak, G.; Wesierska, M.; Wlodarczyk, J. Cellular Senescence in Brain Aging. Front. Aging Neurosci. 2021, 13, 646–924. [Google Scholar] [CrossRef]
- Patel, M.; Antala, B.; Shrivastava, N. Cell Competition: Roles and Importance as a Central Phenomenon. Crit. Rev. Eukaryot. Gene Expr. 2015, 25, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, S.; Mayo, W.; Vallée, M.; Hancock, D.; Le Moal, M.; Simon, H.; Abrous, D.N. Effect of aging on the basal expression of c-Fos, c-Jun, and Egr-1 proteins in the hippocampus. Neurobiol. Aging 1997, 1, 37–44. [Google Scholar] [CrossRef]
- Kitraki, E.; Bozas, E.; Philippidis, H.; Stylianopoulou, F. Aging-related changes in IGF-II and c-fos gene expression in the rat brain. Int. J. Dev. Neurosci. 1993, 1, 1–9. [Google Scholar] [CrossRef]
- Irwin, M.; Tare, M.; Singh, A.; Puli, O.R.; Gogia, N.; Riccetti, M.; Deshpande, P.; Kango-Singh, M.; Singh, A. A Positive Feedback Loop of Hippo- and c-Jun-Amino-Terminal Kinase Signaling Pathways Regulates Amyloid-Beta-Mediated Neurodegeneration. Front. Cell Dev. Biol. 2020, 8, 117–129. [Google Scholar] [CrossRef]
- L’Esperance, O.J.; McGhee, J.; Davidson, G.; Niraula, S.; Smith, A.S.; Sosunov, A.A.; Yan, S.S.; Subramanian, J. Functional Connectivity Favors Aberrant Visual Network c-Fos Expression Accompanied by Cortical Synapse Loss in a Mouse Model of Alzheimer’s Disease. J. Alzheimer’s Dis. 2024, 1, 111–131. [Google Scholar] [CrossRef]
- Lu, W.; Mi, R.; Tang, H.; Liu, S.; Fan, M.; Wang, L. Over-expression of c-fos mRNA in the hippocampal neurons in Alzheimer’s disease. Neurosci. Lett. 1998, 1, 35–37. [Google Scholar]
- Nandakumar, S.; Grushko, O.; Buttitta, L.A. Polyploidy in the adult Drosophila brain. eLife 2020, 9, 54385–54399. [Google Scholar] [CrossRef] [PubMed]
- Jungas, T.; Joseph, M.; Fawal, M.-A.; Davy, A. Population dynamics and neuronal polyploidy in the developing neocortex. bioRxiv 2020, 177469. [Google Scholar] [CrossRef]
- Nandakumar, S.; Rozich, E.; Buttitta, L. Cell Cycle Re-entry in the Nervous System: From Polyploidy to Neurodegeneration. Front. Cell Dev. Biol. 2021, 9, 698661. [Google Scholar] [CrossRef]
- Choudhury, D.; Ghosh, D.; Mondal, M.; Manna, S.; Chakraborty, S. Polyploidy and mTOR signaling: A possible molecular link. Cell Commun. Signal. 2024, 22, 196. [Google Scholar] [CrossRef] [PubMed]
- Esteban-Martínez, L.; Torres, M. Metabolic regulation of cell competition. Dev. Biol. 2021, 475, 30–36. [Google Scholar] [CrossRef]
- Lee, H.G.; Casadesus, G.; Nunomura, A.; Zhu, X.; Castellani, R.J.; Richardson, S.L.; Perry, G.; Felsher, D.W.; Petersen, R.B.; Smith, M.A. The neuronal expression of MYC causes a neurodegenerative phenotype in a novel transgenic mouse. Am. J. Pathol. 2009, 174, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Lungu, R.; Fernandes, F.F.; Outeiro, T.F.; Shemesh, N. Brain-wide sensory aberrations in a Parkinson’s Disease mouse model revealed by functional MRI. Neuroscience 2022, 487, 227–239. [Google Scholar]
- Lanke, V.; Moolamalla, S.T.R.; Roy, D.; Vinod, P.K. Integrative Analysis of Hippocampus Gene Expression Profiles Identifies Network Alterations in Aging and Alzheimer’s Disease. Front. Aging Neurosci. 2018, 10, 153–167. [Google Scholar] [CrossRef]
- Bi, R.; Kong, L.L.; Xu, M.; Li, G.D.; Zhang, D.F. The Arc Gene Confers Genetic Susceptibility to Alzheimer’s Disease in Han Chinese. Mol. Neurobiol. 2018, 55, 1217–1226. [Google Scholar] [CrossRef]
- Schulz, L.; Ramirez, P.; Lemieux, A.; Gonzalez, E.; Thomson, T.; Frost, B. Tau-Induced Elevation of the Activity-Regulated Cytoskeleton Associated Protein Arc1 Causally Mediates Neurodegeneration in the Adult Drosophila Brain. Neuroscience 2022, 22, 306–4522. [Google Scholar] [CrossRef]
- Zuniga, G.; Levy, S.; Ramirez, P.; De Mange, J.; Gonzalez, E. Tau-induced deficits in nonsense-mediated mRNA decay contribute to neurodegeneration. Alzheimer’s Dement. 2022, 18, 1265–1278. [Google Scholar] [CrossRef] [PubMed]
- Plagg, B.; Ehrlich, D.; Kniewallner, K.M.; Marksteiner, J.; Humpel, C. Increased Acetylation of Histone H4 at Lysine 12 (H4K12) in Monocytes of Transgenic Alzheimer’s Mice and in Human Patients. Curr. Alzheimer Res. 2015, 12, 752–760. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Y.; Lee, K.C.; Pei, Z.; Khan, A.; Bakshi, K.; Burns, L.H. PTI-125 binds and reverses an altered conformation of filamin A to reduce Alzheimer’s disease pathogenesis. Neurobiol. Aging 2017, 55, 99–114. [Google Scholar] [CrossRef]
- Nagele, R.G.; D’Andrea, M.R.; Anderson, W.J.; Wang, H.Y. Intracellular accumulation of beta-amyloid in neurons is facilitated by the alpha 7 nicotinic acetylcholine receptor in Alzheimer’s disease. Neuroscience 2002, 110, 199–211. [Google Scholar] [CrossRef]
- Alberi, L.; Liu, S.; Wang, Y.; Badie, R.; Smith-Hicks, C.; Wu, J.; Pierfelice, T.J.; Abazyan, B.; Mattson, M.P.; Kuhl, D.; et al. Activity-induced Notch signaling in neurons requires Arc/Arg3.1 and is essential for synaptic plasticity in hippocampal networks. Neuron 2011, 69, 437–444. [Google Scholar] [CrossRef]
- Salazar, J.L.; Yang, S.; Yamamoto, S. Post-Developmental Roles of Notch Signaling in the Nervous System. Biomolecules 2020, 10, 985. [Google Scholar] [CrossRef] [PubMed]
- Müller, U.; Deller, T.; Korte, M. Not just amyloid: Physiological functions of the amyloid precursor protein family. Nat. Rev. Neurosci. 2017, 18, 281–298. [Google Scholar] [CrossRef] [PubMed]
- Grimm, M.; Mett, J.; Stahlmann, C.; Grösgen, S.; Haupenthal, V. APP intracellular domain derived from amyloidogenic β- and γ-secretase cleavage regulates neprilysin expression. Front. Aging Neurosci. 2017, 7, 77. [Google Scholar]
- Wu, J.; Petralia, R.; Kurushima, H.; Pate, H.; Jung, M. Arc/Arg3.1 regulates an endosomal pathway essential for activity-dependent beta amyloid generation. Cell 2011, 147, 615–628. [Google Scholar] [CrossRef]
- Rao, C.V.; Farooqui, M.; Madhavaram, A.; Zhang, Y.; Aschb, A.S.; Yamada, H.Y. GSK3-ARC/Arg3.1 and GSK3-Wnt signaling axes trigger amyloid-β accumulation and neuroinflammation in middle-aged Shugoshin 1 mice. Aging Cell 2020, 19, e13221. [Google Scholar] [CrossRef]
- Manago, F.; Mereu, M.; Mastwal, S.; Mastrogiacomo, R.; Scheggia, D.; Emanuele, M.; De Luca, M.A.; Weinberger, D.R.; Wang, K.H.; Papaleo, F. Genetic disruption of Arc/Arg3.1 in mice causes alterations in dopamine and neurobehavioral phenotypes related to schizophrenia. Cell Rep. 2016, 8, 2116–2128. [Google Scholar] [CrossRef] [PubMed]
- Myrum, C.; Kittleson, J.; De, S.; Fletcher, B.R.; Castellano, J.; Kundu, G.; Becker, K.G.; Rapp, P.R. Survey of the Arc Epigenetic Landscape in Normal Cognitive Aging. Mol. Neurobiol. 2020, 57, 2727–2740. [Google Scholar] [CrossRef] [PubMed]
- Myrum, C.; Moreno-Castilla, P.; Rapp, P.R. ’Arc’-hitecture of normal cognitive aging. Ageing Res. Rev. 2022, 78, 101678–101691. [Google Scholar] [CrossRef] [PubMed]
- Micheli, L.; Creanza, T.M.; Ceccarelli, M.; D’Andrea, G.; Giacovazzo, G.; Ancona, N.; Coccurello, R.; Scardigli, R.; Tirone, F. Transcriptome Analysis in a Mouse Model of Premature Aging of Dentate Gyrus: Rescue of Alpha-Synuclein Deficit by Virus-Driven Expression or by Running Restores the Defective Neurogenesis. Front. Cell Dev. Biol. 2021, 9, 696684–696699. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Liu, C.; Zhang, Y. Aging-related histone modification changes in brain function. iBrain 2023, 2, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Myrum, C.; Giddaluru, S.; Jacobsen, K.; Espeseth, T.; Nyberg, L.; Lundervold, A.J.; Haavik, J.; Nilsson, L.G.; Reinvang, I.; Steen, V.M.; et al. Common variants in the ARC gene are not associated with cognitive abilities. Brain Behav. 2015, 10, 376–389. [Google Scholar] [CrossRef] [PubMed]
- Subbanna, S.; Nagre, N.N.; Umapathy, N.S.; Pace, B.S.; Basavarajappa, B.S. Ethanol exposure induces neonatal neurodegeneration by enhancing CB1R Exon1 histone H4K8 acetylation and up-regulating CB1R function causing neurobehavioral abnormalities in adult mice. Int. J. Neuropsychopharmacol. 2014, 5, 18–29. [Google Scholar] [CrossRef]
- Shivakumar, M.; Subbanna, S.; Joshi, V.; Basavarajappa, B.S. Postnatal Ethanol Exposure Activates HDAC-Mediated Histone Deacetylation, Impairs Synaptic Plasticity Gene Expression and Behavior in Mice. Int. J. Neuropsychopharmacol. 2020, 23, 324–338. [Google Scholar] [CrossRef]
- Subbanna, S.; Nagre, N.N.; Shivakumar, M.; Basavarajappa, B.S. A single day of 5-azacytidine exposure during development induces neurodegeneration in neonatal mice and neurobehavioral deficits in adult mice. Physiol. Behav. 2016, 167, 16–27. [Google Scholar] [CrossRef]
- Kempf, S.J.; Casciati, A.; Buratovic, S.; Janik, D.; Toerne, C.; Ueffing, M.; Neff, F.; Moertl, S.; Stenerlöw, B.; Saran, A.; et al. The cognitive defects of neonatally irradiated mice are accompanied by changed synaptic plasticity, adult neurogenesis and neuroinflammation. Mol. Neurodegener. 2014, 9, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Okuno, H.; Minatohara, K.; Bito, H. Inverse synaptic tagging: An inactive synapse-specific mechanism to capture activity-induced Arc/arg3.1 and to locally regulate spatial distribution of synaptic weights. Semin. Cell Dev. Biol. 2018, 77, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Cho, H.; Hoyt, C.R.; Naegele, J.R.; Obrietan, K. IGF-1 receptor-mediated ERK/MAPK signaling couples status epilepticus to progenitor cell proliferation in the subgranular layer of the dentate gyrus. Glia 2008, 56, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Yang, X.; Geng, M.; Huang, M. Targeting ERK, an Achilles’ Heel of the MAPK pathway, in cancer therapy. Acta Pharm. Sin. B 2018, 8, 552–562. [Google Scholar] [CrossRef] [PubMed]
- Ryazanova, M.V.; Averchuk, A.S.; Stavrovskaya, A.V.; Rozanova, N.A.; Novikova, S.V.; Salmina, A.B. Arc/Arg3.1 expression in the brain tissues during the learning process in Alzheimer’s disease animal models. Acta Clin. Exp. Neurol. 2023, 13, 49–56. [Google Scholar] [CrossRef]
Parameters | Confirmed Regulatory Activity of IEG-Encoded Proteins in Neuronal Cells |
---|---|
Balance of LTP and LTD, effective synaptic remodeling |
|
Metabolic reprogramming in activated cells |
|
Key genes expression in cellular stress |
|
Cell integration into multicellular networks |
|
Viability of activated cells vs. non-activated or damaged cells |
|
Effective replenishment of cells |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tregub, P.P.; Komleva, Y.K.; Kukla, M.V.; Averchuk, A.S.; Vetchinova, A.S.; Rozanova, N.A.; Illarioshkin, S.N.; Salmina, A.B. Brain Plasticity and Cell Competition: Immediate Early Genes Are the Focus. Cells 2025, 14, 143. https://doi.org/10.3390/cells14020143
Tregub PP, Komleva YK, Kukla MV, Averchuk AS, Vetchinova AS, Rozanova NA, Illarioshkin SN, Salmina AB. Brain Plasticity and Cell Competition: Immediate Early Genes Are the Focus. Cells. 2025; 14(2):143. https://doi.org/10.3390/cells14020143
Chicago/Turabian StyleTregub, Pavel P., Yulia K. Komleva, Maria V. Kukla, Anton S. Averchuk, Anna S. Vetchinova, Natalia A. Rozanova, Sergey N. Illarioshkin, and Alla B. Salmina. 2025. "Brain Plasticity and Cell Competition: Immediate Early Genes Are the Focus" Cells 14, no. 2: 143. https://doi.org/10.3390/cells14020143
APA StyleTregub, P. P., Komleva, Y. K., Kukla, M. V., Averchuk, A. S., Vetchinova, A. S., Rozanova, N. A., Illarioshkin, S. N., & Salmina, A. B. (2025). Brain Plasticity and Cell Competition: Immediate Early Genes Are the Focus. Cells, 14(2), 143. https://doi.org/10.3390/cells14020143