The Link Between Venous and Arterial Thrombosis: Is There a Role for Endothelial Dysfunction?
Abstract
:1. Introduction
2. Venous Thromboembolism and Arterial Thrombosis: Similarities and Differences
3. The Role of Endothelial Dysfunction in Thrombosis
3.1. Mechanisms of ED in Thrombosis
3.1.1. ED in Arterial Thrombosis
3.1.2. ED in Venous Thrombosis
4. Classical and Novel Biomarkers of Endothelial Dysfunction
4.1. Soluble Biomarkers
4.2. Cellular Biomarkers
4.3. Multi-Biomarker Approach and Future Directions
5. Clinical Detection of Endothelial Dysfunction by Imaging Testing
6. Future Clinical Scenarios
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poredoš, P. Interrelationship between Venous and Arterial Thrombosis. Int. Angiol. 2017, 36, 295–298. [Google Scholar] [CrossRef] [PubMed]
- Prandoni, P. Venous and Arterial Thrombosis: Is There a Link? Adv. Exp. Med. Biol. 2017, 906, 273–283. [Google Scholar] [PubMed]
- Battinelli, E.M.; Murphy, D.L.; Connors, J.M. Venous Thromboembolism Overview. Hematol. Oncol. Clin. N. Am. 2012, 26, 345–367. [Google Scholar] [CrossRef] [PubMed]
- Prandoni, P.; Bilora, F.; Marchiori, A.; Bernardi, E.; Petrobelli, F.; Lensing, A.W.A.; Prins, M.H.; Girolami, A. An Association between Atherosclerosis and Venous Thrombosis. N. Engl. J. Med. 2003, 348, 1435–1441. [Google Scholar] [CrossRef]
- Jezovnik, M.K.; Poredos, P. Idiopathic Venous Thrombosis Is Related to Systemic Inflammatory Response and to Increased Levels of Circulating Markers of Endothelial Dysfunction. Int. Angiol. 2010, 29, 226–231. [Google Scholar]
- Riva, N.; Donadini, M.P.; Ageno, W. Epidemiology and Pathophysiology of Venous Thromboembolism: Similarities with Atherothrombosis and the Role of Inflammation. Thromb. Haemost. 2015, 113, 1176–1183. [Google Scholar] [CrossRef]
- Ageno, W.; Di Minno, M.N.D.; Ay, C.; Jang, M.J.; Hansen, J.-B.; Steffen, L.M.; Vayà, A.; Rattazzi, M.; Pabinger, I.; Oh, D.; et al. Association Between the Metabolic Syndrome, Its Individual Components, and Unprovoked Venous Thromboembolism. Arter. Thromb. Vasc. Biol. 2014, 34, 2478–2485. [Google Scholar] [CrossRef]
- Wang, H.; Rosendaal, F.R.; Cushman, M.; van Hylckama Vlieg, A. Association between Cardiovascular Risk Factors and Venous Thromboembolism in the Elderly. Res. Prac. Thromb. Haemost. 2022, 6, e12671. [Google Scholar] [CrossRef]
- Hebbel, R.P.; Vercellotti, G.M. Multiple Inducers of Endothelial NOS (ENOS) Dysfunction in Sickle Cell Disease. Am. J. Hematol. 2021, 96, 1505–1517. [Google Scholar] [CrossRef]
- Obeagu, E.I.; Obeagu, G.U. Thromboinflammation in COVID-19: Unraveling the Interplay of Coagulation and Inflammation. Medicine 2024, 103, e38922. [Google Scholar] [CrossRef]
- Rossetti, P.; Goldoni, M.; Pengo, V.; Vescovini, R.; Mozzoni, P.; Tassoni, M.I.; Lombardi, M.; Rubino, P.; Bernuzzi, G.; Verzicco, I.; et al. MiRNA 126 as a New Predictor Biomarker in Venous Thromboembolism of Persistent Residual Vein Obstruction: A Review of the Literature Plus a Pilot Study. Semin. Thromb. Hemost. 2021, 47, 982–991. [Google Scholar] [CrossRef] [PubMed]
- Teruel-Montoya, R.; Rosendaal, F.R.; Martínez, C. MicroRNAs in Hemostasis. J. Thromb. Haemost. 2015, 13, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Prandoni, P.; Ghirarduzzi, A.; Prins, M.H.; Pengo, V.; Davidson, B.L.; Sørensen, H.; Pesavento, R.; Iotti, M.; Casiglia, E.; Iliceto, S.; et al. Venous Thromboembolism and the Risk of Subsequent Symptomatic Atherosclerosis. J. Thromb. Haemost. 2006, 4, 1891–1896. [Google Scholar] [CrossRef] [PubMed]
- Schulman, S.; Rhedin, A.-S.; Lindmarker, P.; Carlsson, A.; Lärfars, G.; Nicol, P.; Loogna, E.; Svensson, E.; Ljungberg, B.; Walter, H.; et al. A Comparison of Six Weeks with Six Months of Oral Anticoagulant Therapy after a First Episode of Venous Thromboembolism. N. Engl. J. Med. 1995, 332, 1661–1665. [Google Scholar] [CrossRef]
- Becattini, C.; Agnelli, G.; Prandoni, P.; Silingardi, M.; Salvi, R.; Taliani, M.R.; Poggio, R.; Imberti, D.; Ageno, W.; Pogliani, E.; et al. A Prospective Study on Cardiovascular Events after Acute Pulmonary Embolism. Eur. Heart J. 2005, 26, 77–83. [Google Scholar] [CrossRef]
- Ageno, W.; Becattini, C.; Brighton, T.; Selby, R.; Kamphuisen, P.W. Cardiovascular Risk Factors and Venous Thromboembolism: A Meta-Analysis. Circulation 2008, 117, 93–102. [Google Scholar] [CrossRef]
- Caiano, L.M.; Costanzo, S.; Panzera, T.; Di Castelnuovo, A.; de Gaetano, G.; Donati, M.B.; Ageno, W.; Iacoviello, L. Association between Body Mass Index, Waist Circumference, and Relative Fat Mass with the Risk of First Unprovoked Venous Thromboembolism. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 3122–3130. [Google Scholar] [CrossRef]
- Mahmoodi, B.K. Microalbuminuria and Risk of Venous Thromboembolism. JAMA 2009, 301, 1790. [Google Scholar] [CrossRef]
- Simes, J.; Robledo, K.P.; White, H.D.; Espinoza, D.; Stewart, R.A.; Sullivan, D.R.; Zeller, T.; Hague, W.; Nestel, P.J.; Glasziou, P.P.; et al. D-Dimer Predicts Long-Term Cause-Specific Mortality, Cardiovascular Events, and Cancer in Patients With Stable Coronary Heart Disease. Circulation 2018, 138, 712–723. [Google Scholar] [CrossRef]
- Cavallari, I.; Morrow, D.A.; Creager, M.A.; Olin, J.; Bhatt, D.L.; Steg, P.G.; Storey, R.F.; Cohen, M.; Scirica, B.S.; Piazza, G.; et al. Frequency, Predictors, and Impact of Combined Antiplatelet Therapy on Venous Thromboembolism in Patients with Symptomatic Atherosclerosis. Circulation 2018, 137, 684–692. [Google Scholar] [CrossRef]
- Godo, S.; Shimokawa, H. Endothelial Functions. Arter. Thromb. Vasc. Biol. 2017, 37, e108–e114. [Google Scholar] [CrossRef] [PubMed]
- Hennigs, J.K.; Matuszcak, C.; Trepel, M.; Körbelin, J. Vascular Endothelial Cells: Heterogeneity and Targeting Approaches. Cells 2021, 10, 2712. [Google Scholar] [CrossRef] [PubMed]
- Jay Widmer, R.; Lerman, A. Endothelial Dysfunction and Cardiovascular Disease. Glob. Cardiol. Sci. Prac. 2014, 2014, 43. [Google Scholar] [CrossRef] [PubMed]
- Krüger-Genge, A.; Blocki, A.; Franke, R.-P.; Jung, F. Vascular Endothelial Cell Biology: An Update. Int. J. Mol. Sci. 2019, 20, 4411. [Google Scholar] [CrossRef]
- Theofilis, P.; Sagris, M.; Oikonomou, E.; Antonopoulos, A.S.; Siasos, G.; Tsioufis, C.; Tousoulis, D. Inflammatory Mechanisms Contributing to Endothelial Dysfunction. Biomedicines 2021, 9, 781. [Google Scholar] [CrossRef]
- Stark, K.; Massberg, S. Interplay between Inflammation and Thrombosis in Cardiovascular Pathology. Nat. Rev. Cardiol. 2021, 18, 666–682. [Google Scholar] [CrossRef]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric Oxide and Peroxynitrite in Health and Disease. Physiol. Rev. 2007, 87, 315–424. [Google Scholar] [CrossRef]
- Gimbrone, M.A.; García-Cardeña, G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ. Res. 2016, 118, 620–636. [Google Scholar] [CrossRef]
- Higashi, Y.; Maruhashi, T.; Noma, K.; Kihara, Y. Oxidative Stress and Endothelial Dysfunction: Clinical Evidence and Therapeutic Implications. Trends Cardiovasc. Med. 2014, 24, 165–169. [Google Scholar] [CrossRef]
- Alp, N.J.; Channon, K.M. Regulation of Endothelial Nitric Oxide Synthase by Tetrahydrobiopterin in Vascular Disease. Arter. Thromb. Vasc. Biol. 2004, 24, 413–420. [Google Scholar] [CrossRef]
- Shi, W.; Meininger, C.J.; Haynes, T.E.; Hatakeyama, K.; Wu, G. Regulation of Tetrahydrobiopterin Synthesis and Bioavailability in Endothelial Cells. Cell Biochem. Biophys. 2004, 41, 415–434. [Google Scholar] [CrossRef] [PubMed]
- Chalupsky, K.; Cai, H. Endothelial Dihydrofolate Reductase: Critical for Nitric Oxide Bioavailability and Role in Angiotensin II Uncoupling of Endothelial Nitric Oxide Synthase. Proc. Natl. Acad. Sci. USA 2005, 102, 9056–9061. [Google Scholar] [CrossRef]
- ElKeeb, A.; Collier, M.; Maraveyas, A.; Ettelaie, C. Accumulation of Tissue Factor in Endothelial Cells Induces Cell Apoptosis, Mediated through P38 and P53 Activation. Thromb. Haemost. 2015, 114, 364–378. [Google Scholar] [CrossRef] [PubMed]
- Steyers, C.; Miller, F. Endothelial Dysfunction in Chronic Inflammatory Diseases. Int. J. Mol. Sci. 2014, 15, 11324–11349. [Google Scholar] [CrossRef] [PubMed]
- Corban, M.T.; Prasad, A.; Nesbitt, L.; Loeffler, D.; Herrmann, J.; Lerman, L.O.; Lerman, A. Local Production of Soluble Urokinase Plasminogen Activator Receptor and Plasminogen Activator Inhibitor-1 in the Coronary Circulation Is Associated With Coronary Endothelial Dysfunction in Humans. J. Am. Heart Assoc. 2018, 7, e009881. [Google Scholar] [CrossRef] [PubMed]
- Morrow, G.B.; Mutch, N.J. Past, Present, and Future Perspectives of Plasminogen Activator Inhibitor 1 (PAI-1). Semin. Thromb. Hemost. 2023, 49, 305–313. [Google Scholar] [CrossRef]
- Vanhoutte, P.M.; Shimokawa, H.; Feletou, M.; Tang, E.H.C. Endothelial Dysfunction and Vascular Disease—A 30th Anniversary Update. Acta Physiol. 2017, 219, 22–96. [Google Scholar] [CrossRef]
- Qi, H.; Yang, S.; Zhang, L. Neutrophil Extracellular Traps and Endothelial Dysfunction in Atherosclerosis and Thrombosis. Front. Immunol. 2017, 8, 928. [Google Scholar] [CrossRef]
- Davignon, J.; Ganz, P. Role of Endothelial Dysfunction in Atherosclerosis. Circulation 2004, 109, III27–III32. [Google Scholar] [CrossRef]
- White, T.A.; Johnson, T.; Zarzhevsky, N.; Tom, C.; Delacroix, S.; Holroyd, E.W.; Maroney, S.A.; Singh, R.; Pan, S.; Fay, W.P.; et al. Endothelial-Derived Tissue Factor Pathway Inhibitor Regulates Arterial Thrombosis but Is Not Required for Development or Hemostasis. Blood 2010, 116, 1787–1794. [Google Scholar] [CrossRef]
- Soeki, T.; Tamura, Y.; Shinohara, H.; Sakabe, K.; Onose, Y.; Fukuda, N. Elevated Concentration of Soluble Vascular Endothelial Cadherin Is Associated With Coronary Atherosclerosis. Circ. J. 2004, 68, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.J.; Nangaku, M. Endothelial Dysfunction: The Secret Agent Driving Kidney Disease. J. Am. Soc. Nephrol. 2016, 27, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Poredos, P.; Jezovnik, M.K. Endothelial Dysfunction and Venous Thrombosis. Angiology 2018, 69, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Simonneau, G.; Torbicki, A.; Dorfmüller, P.; Kim, N. The Pathophysiology of Chronic Thromboembolic Pulmonary Hypertension. Eur. Respir. Rev. 2017, 26, 160112. [Google Scholar] [CrossRef]
- Chibana, H.; Tahara, N.; Itaya, N.; Ishimatsu, T.; Sasaki, M.; Sasaki, M.; Nakayoshi, T.; Ohtsuka, M.; Yokoyama, S.; Sasaki, K.; et al. Pulmonary Artery Dysfunction in Chronic Thromboembolic Pulmonary Hypertension. IJC Heart Vasc. 2017, 17, 30–32. [Google Scholar] [CrossRef]
- Zhang, J. Biomarkers of Endothelial Activation and Dysfunction in Cardiovascular Diseases. Rev. Cardiovasc. Med. 2022, 23, 73. [Google Scholar] [CrossRef]
- Hwang, S.-J.; Ballantyne, C.M.; Sharrett, A.R.; Smith, L.C.; Davis, C.E.; Gotto, A.M.; Boerwinkle, E. Circulating Adhesion Molecules VCAM-1, ICAM-1, and E-Selectin in Carotid Atherosclerosis and Incident Coronary Heart Disease Cases. Circulation 1997, 96, 4219–4225. [Google Scholar] [CrossRef]
- Troncoso, M.F.; Ortiz-Quintero, J.; Garrido-Moreno, V.; Sanhueza-Olivares, F.; Guerrero-Moncayo, A.; Chiong, M.; Castro, P.F.; García, L.; Gabrielli, L.; Corbalán, R.; et al. VCAM-1 as a Predictor Biomarker in Cardiovascular Disease. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2021, 1867, 166170. [Google Scholar] [CrossRef]
- Kaur, R.; Singh, V.; Kumari, P.; Singh, R.; Chopra, H.; Emran, T. Bin Novel Insights on the Role of VCAM-1 and ICAM-1: Potential Biomarkers for Cardiovascular Diseases. Ann. Med. Surg. 2022, 84, 104802. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, L.; Yu, X.-H.; Hu, M.; Zhang, Y.-K.; Liu, X.; He, P.; Ouyang, X. Endocan: A Key Player of Cardiovascular Disease. Front. Cardiovasc. Med. 2022, 8, 798699. [Google Scholar] [CrossRef]
- Elkamshoushi, A.A.M.; Hassan, E.M.; El Abd, A.M.; Hassan, S.Z.; Maher, A.A. Serum Endocan as a Predictive Biomarker of Cardiovascular Risk in Erectile Dysfunction Patients. Andrologia 2018, 50, e13113. [Google Scholar] [CrossRef] [PubMed]
- Sığırcı, S. Can Biomarkers Help Us Understand the Pathogenesis of Coronary Slow Flow? Endocan and Omentin-I in Slow Coronary Flow Phenomena. Turk. Kardiyol. Dern. Ars. Arch. Turk. Soc. Cardiol. 2019, 47, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, K.; Mysliwiec, M.; Pawlak, D. Endocan—The New Endothelial Activation Marker Independently Associated with Soluble Endothelial Adhesion Molecules in Uraemic Patients with Cardiovascular Disease. Clin. Biochem. 2015, 48, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Scuruchi, M.; D’Ascola, A.; Avenoso, A.; Mandraffino, G.; Campo, S.; Campo, G.M. Endocan, a Novel Inflammatory Marker, Is Upregulated in Human Chondrocytes Stimulated with IL-1 Beta. Mol. Cell Biochem. 2021, 476, 1589–1597. [Google Scholar] [CrossRef]
- Güzel, A.; Duran, L.; Köksal, N.; Torun, A.Ç.; Alaçam, H.; Ekiz, B.C.; Murat, N. Evaluation of Serum Endothelial Cell Specific Molecule-1 (Endocan) Levels as a Biomarker in Patients with Pulmonary Thromboembolism. Blood Coagul. Fibrinolysis 2014, 25, 272–276. [Google Scholar] [CrossRef]
- Mosevoll, K.A.; Lindås, R.; Wendelbo, Ø.; Bruserud, Ø.; Reikvam, H. Systemic Levels of the Endothelium-Derived Soluble Adhesion Molecules Endocan and E-Selectin in Patients with Suspected Deep Vein Thrombosis. Springerplus 2014, 3, 571. [Google Scholar] [CrossRef]
- Kapur, N.; Morine, K.; Letarte, M. Endoglin: A Critical Mediator of Cardiovascular Health. Vasc. Health Risk Manag. 2013, 9, 195–206. [Google Scholar] [CrossRef]
- Blanco, F.J.; Grande, M.T.; Langa, C.; Oujo, B.; Velasco, S.; Rodriguez-Barbero, A.; Perez-Gomez, E.; Quintanilla, M.; López-Novoa, J.M.; Bernabeu, C. S-Endoglin Expression Is Induced in Senescent Endothelial Cells and Contributes to Vascular Pathology. Circ. Res. 2008, 103, 1383–1392. [Google Scholar] [CrossRef]
- Goumans, M.-J.; ten Dijke, P. TGF-β Signaling in Control of Cardiovascular Function. Cold Spring Harb. Perspect. Biol. 2018, 10, a022210. [Google Scholar] [CrossRef]
- Santibanez, J.F.; Letamendia, A.; Perez-Barriocanal, F.; Silvestri, C.; Saura, M.; Vary, C.P.H.; Lopez-Novoa, J.M.; Attisano, L.; Bernabeu, C. Endoglin Increases ENOS Expression by Modulating Smad2 Protein Levels and Smad2-dependent TGF-β Signaling. J. Cell Physiol. 2007, 210, 456–468. [Google Scholar] [CrossRef]
- Leite, A.R.; Borges-Canha, M.; Cardoso, R.; Neves, J.S.; Castro-Ferreira, R.; Leite-Moreira, A. Novel Biomarkers for Evaluation of Endothelial Dysfunction. Angiology 2020, 71, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Blázquez-Medela, A.M.; García-Ortiz, L.; Gómez-Marcos, M.A.; Recio-Rodríguez, J.I.; Sánchez-Rodríguez, A.; López-Novoa, J.M.; Martínez-Salgado, C. Increased Plasma Soluble Endoglin Levels as an Indicator of Cardiovascular Alterations in Hypertensive and Diabetic Patients. BMC Med. 2010, 8, 86. [Google Scholar] [CrossRef] [PubMed]
- Rossi, E.; Bernabeu, C. Novel Vascular Roles of Human Endoglin in Pathophysiology. J. Thromb. Haemost. 2023, 21, 2327–2338. [Google Scholar] [CrossRef] [PubMed]
- Tain, Y.; Hsu, C. Toxic Dimethylarginines: Asymmetric Dimethylarginine (ADMA) and Symmetric Dimethylarginine (SDMA). Toxins 2017, 9, 92. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hou, L.; Xu, D.; Chen, A.; Yang, L.; Zhuang, Y.; Xu, Y.; Fassett, J.T.; Chen, Y. Effect of Asymmetric Dimethylarginine (ADMA) on Heart Failure Development. Nitric Oxide 2016, 54, 73–81. [Google Scholar] [CrossRef]
- Alpoim, P.N.; Sousa, L.P.N.; Mota, A.P.L.; Rios, D.R.A.; Dusse, L.M.S. Asymmetric Dimethylarginine (ADMA) in Cardiovascular and Renal Disease. Clin. Chim. Acta 2015, 440, 36–39. [Google Scholar] [CrossRef]
- Mangoni, A.A.; Tommasi, S.; Sotgia, S.; Zinellu, A.; Paliogiannis, P.; Piga, M.; Cauli, A.; Pintus, G.; Carru, C.; Erre, G.L. Asymmetric Dimethylarginine: A Key Player in the Pathophysiology of Endothelial Dysfunction, Vascular Inflammation and Atherosclerosis in Rheumatoid Arthritis? Curr. Pharm. Des. 2021, 27, 2131–2140. [Google Scholar] [CrossRef]
- Rodionov, R.N.; Beyer-Westendorf, J.; Bode-Böger, S.M.; Eggebrecht, L.; Konstantinides, S.; Martens-Lobenhoffer, J.; Nagler, M.; Prochaska, J.; Wild, P. Homoarginine and Methylarginines Independently Predict Long-Term Outcome in Patients Presenting with Suspicion of Venous Thromboembolism. Sci. Rep. 2021, 11, 9569. [Google Scholar] [CrossRef]
- Wadham, C.; Mangoni, A.A. Dimethylarginine Dimethylaminohydrolase Regulation: A Novel Therapeutic Target in Cardiovascular Disease. Expert. Opin. Drug Metab. Toxicol. 2009, 5, 303–319. [Google Scholar] [CrossRef]
- Lugo-Gavidia, L.M.; Burger, D.; Matthews, V.B.; Nolde, J.M.; Galindo Kiuchi, M.; Carnagarin, R.; Kannenkeril, D.; Chan, J.; Joyson, A.; Herat, L.Y.; et al. Role of Microparticles in Cardiovascular Disease: Implications for Endothelial Dysfunction, Thrombosis, and Inflammation. Hypertension 2021, 77, 1825–1844. [Google Scholar] [CrossRef]
- Burger, D.; Schock, S.; Thompson, C.S.; Montezano, A.C.; Hakim, A.M.; Touyz, R.M. Microparticles: Biomarkers and Beyond. Clin. Sci. 2013, 124, 423–441. [Google Scholar] [CrossRef] [PubMed]
- Berezin, A.; Zulli, A.; Kerrigan, S.; Petrovic, D.; Kruzliak, P. Predictive Role of Circulating Endothelial-Derived Microparticles in Cardiovascular Diseases. Clin. Biochem. 2015, 48, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Brodsky, S.V.; Zhang, F.; Nasjletti, A.; Goligorsky, M.S. Endothelium-Derived Microparticles Impair Endothelial Function in Vitro. Am. J. Physiol. Heart Circ. Physiol. 2004, 286, H1910–H1915. [Google Scholar] [CrossRef]
- Petrozella, L.; Mahendroo, M.; Timmons, B.; Roberts, S.; McIntire, D.; Alexander, J.M. Endothelial Microparticles and the Antiangiogenic State in Preeclampsia and the Postpartum Period. Am. J. Obs. Gynecol. 2012, 207, 140.e20–140.e26. [Google Scholar] [CrossRef] [PubMed]
- Sena, C.M.; Gonçalves, L.; Seiça, R. Methods to Evaluate Vascular Function: A Crucial Approach towards Predictive, Preventive, and Personalised Medicine. EPMA J. 2022, 13, 209–235. [Google Scholar] [CrossRef]
- Guervilly, C.; Burtey, S.; Sabatier, F.; Cauchois, R.; Lano, G.; Abdili, E.; Daviet, F.; Arnaud, L.; Brunet, P.; Hraiech, S.; et al. Circulating Endothelial Cells as a Marker of Endothelial Injury in Severe COVID-19. J. Infect. Dis. 2020, 222, 1789–1793. [Google Scholar] [CrossRef]
- Bradbury, C.; Buckley, T.; Sun, Y.Z.; Rose, P.; Fitzmaurice, D. Patients with High Levels of Circulating Endothelial Progenitor Cells (EPC) Following at Least Three Months of Anticoagulation for Unprovoked Venous Thromboembolism (VTE) Are at Low Risk of Recurrent VTE-Results from the ExACT Randomised Controlled Trial. eClinicalMedicine 2019, 17, 100218. [Google Scholar] [CrossRef]
- King, T.F.J.; McDermott, J.H. Endothelial Progenitor Cells and Cardiovascular Disease. J. Stem Cells 2014, 9, 93–106. [Google Scholar] [CrossRef]
- Melero-Martin, J.M. Human Endothelial Colony-Forming Cells. Cold Spring Harb. Perspect. Med. 2022, 12, a041154. [Google Scholar] [CrossRef]
- Bacci, M.; Cancellara, A.; Ciceri, R.; Romualdi, E.; Pessi, V.; Tumminello, F.; Fantuzzi, M.; Donadini, M.P.; Lodigiani, C.; Della Bella, S.; et al. Development of Personalized Thrombogenesis and Thrombin Generation Assays to Assess Endothelial Dysfunction in Cardiovascular Diseases. Biomedicines 2023, 11, 1669. [Google Scholar] [CrossRef]
- Paschalaki, K.E.; Randi, A.M. Recent Advances in Endothelial Colony Forming Cells Toward Their Use in Clinical Translation. Front. Med. 2018, 5, 295. [Google Scholar] [CrossRef] [PubMed]
- Della Bella, S.; Calcaterra, F.; Bacci, M.; Carenza, C.; Pandolfo, C.; Ferrazzi, P.; Uva, P.; Pagani, M.; Lodigiani, C.; Mavilio, D. Pathologic Up-Regulation of TNFSF15-TNFRSF25 Axis Sustains Endothelial Dysfunction in Unprovoked Venous Thromboembolism. Cardiovasc. Res. 2020, 116, 698–707. [Google Scholar] [CrossRef] [PubMed]
- Società Italiana per lo Studio dell’Emostasi e Trombosi—SISET’s scientific contributions. 27th SISET National Congress | Perugia, 2–5 November 2022. Bleeding Thromb. Vasc. Biol. 2022, 1, 19–20. [Google Scholar] [CrossRef]
- Olgasi, C.; Cucci, A.; Molineris, I.; Assanelli, S.; Anselmi, F.; Borsotti, C.; Sgromo, C.; Lauria, A.; Merlin, S.; Walker, G.E.; et al. Factor VIII Promotes Angiogenesis and Vessel Stability Regulating Extracellular Matrix Proteins. Haematologica 2024, 109, 3391–3397. [Google Scholar] [CrossRef]
- Tasev, D.; Koolwijk, P.; Van Hinsbergh, V.W.M. Therapeutic Potential of Human-Derived Endothelial Colony-Forming Cells in Animal Models. Tissue Eng. Part B Rev. 2016, 22, 371–382. [Google Scholar] [CrossRef]
- O’Neill, C.L.; McLoughlin, K.J.; Chambers, S.E.J.; Guduric-Fuchs, J.; Stitt, A.W.; Medina, R.J. The Vasoreparative Potential of Endothelial Colony Forming Cells: A Journey Through Pre-Clinical Studies. Front. Med. 2018, 5, 273. [Google Scholar] [CrossRef]
- Faris, P.; Negri, S.; Perna, A.; Rosti, V.; Guerra, G.; Moccia, F. Therapeutic Potential of Endothelial Colony-Forming Cells in Ischemic Disease: Strategies to Improve Their Regenerative Efficacy. Int. J. Mol. Sci. 2020, 21, 7406. [Google Scholar] [CrossRef]
- Corretti, M.C.; Anderson, T.J.; Benjamin, E.J.; Celermajer, D.; Charbonneau, F.; Creager, M.A.; Deanfield, J.; Drexler, H.; Gerhard-Herman, M.; Herrington, D.; et al. Guidelines for the Ultrasound Assessment of Endothelial-Dependent Flow-Mediated Vasodilation of the Brachial Artery. J. Am. Coll. Cardiol. 2002, 39, 257–265. [Google Scholar] [CrossRef]
- Lima, B.B.; Hammadah, M.; Kim, J.H.; Uphoff, I.; Shah, A.; Levantsevych, O.; Almuwaqqat, Z.; Moazzami, K.; Sullivan, S.; Ward, L.; et al. Association of Transient Endothelial Dysfunction Induced by Mental Stress With Major Adverse Cardiovascular Events in Men and Women With Coronary Artery Disease. JAMA Cardiol. 2019, 4, 988. [Google Scholar] [CrossRef]
- Jezovnik, M.K.; Poredos, P.; Stalc, M. Impairment of the Vasodilatation Capability of the Brachial Artery in Patients with Idiopathic Venous Thrombosis. J. Atheroscler. Thromb. 2010, 17, 1190–1198. [Google Scholar] [CrossRef]
- Valerio, F.; Stefano, P.; Michaela, K.; Santo, S.S. Arterial Wall Characteristics in Patients With Peripheral Arterial Disease. Preliminary Data Obtained at Different Arterial Sites by Radiofrequency-Based Wall Tracking System. Angiology 2018, 69, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Uejima, T.; Dunstan, F.D.; Arbustini, E.; Łoboz-Grudzień, K.; Hughes, A.D.; Carerj, S.; Favalli, V.; Antonini-Canterin, F.; Vriz, O.; Vinereanu, D.; et al. Age-Specific Reference Values for Carotid Arterial Stiffness Estimated by Ultrasonic Wall Tracking. J. Hum. Hypertens. 2020, 34, 214–222. [Google Scholar] [CrossRef]
- Teixeira, R.; Vieira, M.J.; Gonçalves, A.; Cardim, N.; Gonçalves, L. Ultrasonographic Vascular Mechanics to Assess Arterial Stiffness: A Review. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Glynn, R.J.; Danielson, E.; Fonseca, F.A.H.; Genest, J.; Gotto, A.M.; Kastelein, J.J.P.; Koenig, W.; Libby, P.; Lorenzatti, A.J.; MacFadyen, J.G.; et al. A Randomized Trial of Rosuvastatin in the Prevention of Venous Thromboembolism. N. Engl. J. Med. 2009, 360, 1851–1861. [Google Scholar] [CrossRef] [PubMed]
- Ayodele, O.; Cabral, H.; McManus, D.; Jick, S. Risk of Venous Thromboembolism in Statin Users Compared to Fibrate Users in the United Kingdom Clinical Practice Research Datalink (UK CPRD) GOLD. Clin. Epidemiol. 2024, 16, 683–697. [Google Scholar] [CrossRef]
- Li, R.; Yuan, M.; Yu, S.; Fu, W.; Yu, W.; Ling, S.; Sun, J.; Chen, Y. Effect of Statins on the Risk of Recurrent Venous Thromboembolism: A Systematic Review and Meta-Analysis. Pharmacol. Res. 2021, 165, 105413. [Google Scholar] [CrossRef]
- Satny, M.; Hubacek, J.A.; Vrablik, M. Statins and Inflammation. Curr. Atheroscler. Rep. 2021, 23, 80. [Google Scholar] [CrossRef]
- Li, Z.; Lin, C.; Cai, X.; Hu, S.; Lv, F.; Yang, W.; Zhu, X.; Ji, L. Anti-Inflammatory Therapies Were Associated with Reduced Risk of Myocardial Infarction in Patients with Established Cardiovascular Disease or High Cardiovascular Risks: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Atherosclerosis 2023, 379, 117181. [Google Scholar] [CrossRef]
- Banno, K.; Yoder, M.C. Tissue Regeneration Using Endothelial Colony-Forming Cells: Promising Cells for Vascular Repair. Pediatr. Res. 2018, 83, 283–290. [Google Scholar] [CrossRef]
- Liu, Y.; Paauwe, M.; Nixon, A.B.; Hawinkels, L.J.A.C. Endoglin Targeting: Lessons Learned and Questions That Remain. Int. J. Mol. Sci. 2020, 22, 147. [Google Scholar] [CrossRef]
- Rossi, E.; Pericacho, M.; Kauskot, A.; Gamella-Pozuelo, L.; Reboul, E.; Leuci, A.; Egido-Turrion, C.; El Hamaoui, D.; Marchelli, A.; Fernández, F.J.; et al. Soluble Endoglin Reduces Thrombus Formation and Platelet Aggregation via Interaction with AIIbβ3 Integrin. J. Thromb. Haemost. 2023, 21, 1943–1956. [Google Scholar] [CrossRef] [PubMed]
- Donadini, M.P.; Ageno, W. Unusual Site Thrombosis. Semin. Hematol. 2011, 48, 264–270. [Google Scholar] [CrossRef] [PubMed]
Arterial Thrombosis | Venous Thrombosis | Similarities | |
---|---|---|---|
Epidemiology | Commonest cardiovascular disease (approximately 3–6 cases per 1000 persons per year) | 3rd most common cardiovascular disease (approximately 1–2 cases per 1000 persons per year) | Very common causes of vascular disease |
Primary Pathogenesis | Primary platelet activation | Primary coagulation cascade activation | Thrombus formation |
Composition of clots | Platelet-rich with limited fibrin (white thrombi). | Rich in fibrin and red blood cells (red thrombi). | Interplay between platelet activation and coagulation cascade |
Pathophysiology | Atherosclerotic plaque complications causing platelet adhesion | Coagulation around vein valves activated by venous stasis, hypercoagulability, and endothelial damage (Virchow’s triad) | Endothelial cells damaged/activated by inflammation, oxidative stress, and metabolic disorders |
Tissue ischemia and infarction | Pulmonary embolization | Abnormal clot that obstructs blood flow and can result in ischemic damage to tissues downstream | |
Major risk factors | Smoking, hypertension, diabetes, dyslipidemia | Major surgery, major trauma, cancer, puerperium, acute illness with immobilization, thrombophilia | Several risk factors overlap (increasing age, cancer, obesity, dyslipidemia, inflammatory disorders) |
Most common locations | Brain, heart, lower limbs | Lower limbs, lung, upper limbs | Virtually any vascular bed can be involved |
Clinical manifestations | Signs and symptoms of tissue ischemia and infarction (depending on location: chest pain, stroke symptoms, lower limb pain and paleness) | Signs and symptoms of venous obstruction and/or embolization (depending on location: leg swelling, pain, redness, dyspnea, chest pain) | Emergency conditions requiring rapid diagnosis and treatment |
Mortality | Leading cause of death globally, especially from myocardial infarction and stroke (case fatality rate around 10–20%) | Case fatality rate associated with pulmonary embolism around 10% | Commonest cause of morbidity and mortality worldwide |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donadini, M.P.; Calcaterra, F.; Romualdi, E.; Ciceri, R.; Cancellara, A.; Lodigiani, C.; Bacci, M.; Della Bella, S.; Ageno, W.; Mavilio, D. The Link Between Venous and Arterial Thrombosis: Is There a Role for Endothelial Dysfunction? Cells 2025, 14, 144. https://doi.org/10.3390/cells14020144
Donadini MP, Calcaterra F, Romualdi E, Ciceri R, Cancellara A, Lodigiani C, Bacci M, Della Bella S, Ageno W, Mavilio D. The Link Between Venous and Arterial Thrombosis: Is There a Role for Endothelial Dysfunction? Cells. 2025; 14(2):144. https://doi.org/10.3390/cells14020144
Chicago/Turabian StyleDonadini, Marco Paolo, Francesca Calcaterra, Erica Romualdi, Roberta Ciceri, Assunta Cancellara, Corrado Lodigiani, Monica Bacci, Silvia Della Bella, Walter Ageno, and Domenico Mavilio. 2025. "The Link Between Venous and Arterial Thrombosis: Is There a Role for Endothelial Dysfunction?" Cells 14, no. 2: 144. https://doi.org/10.3390/cells14020144
APA StyleDonadini, M. P., Calcaterra, F., Romualdi, E., Ciceri, R., Cancellara, A., Lodigiani, C., Bacci, M., Della Bella, S., Ageno, W., & Mavilio, D. (2025). The Link Between Venous and Arterial Thrombosis: Is There a Role for Endothelial Dysfunction? Cells, 14(2), 144. https://doi.org/10.3390/cells14020144