Association of Structural Maintenance of Chromosome-1A Phosphorylation with Progression of Breast Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Histological Tumor Tissue Samples and Tissue Microarray (TMA)
2.3. Cell Lines and Cultures
2.4. Immunohistochemistry (IHC)
2.5. Evaluation of Staining
2.6. Immunocytochemistry (ICC)
2.7. Cell Surface Localization of p-SMC1A by Flow Cytometry (FACS)
2.8. Cell Surface Localization of p-SMC1A by On-Cell Western (OCW) Assay (LICOR)
2.9. Cellular Fractionation and Western Blot Analysis
2.10. Expression of SMC1A in Tumor and Normal Samples by Data Mining
2.11. Statistical Analysis
3. Results
3.1. Phosphorylation of SMC1A and Localization of pSMC1A in Normal and Tumor Tissues
3.2. Expression and Cellular Localization of pSMC1A in Breast Cancer and Normal Cells
4. Discussion
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Dewanjee, S.; Li, Y.; Jha, N.K.; Chen, Z.S.; Kumar, A.; Vishakha, B.T.; Jha, S.K.; Tang, H. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol. Cancer 2023, 22, 105. [Google Scholar] [CrossRef] [PubMed]
- Masoud, V.; Pagès, G. Targeted therapies in breast cancer: New challenges to fight against resistance. World J. Clin. Oncol. 2017, 8, 120–134. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Investig. 2011, 121, 2750–2767. [Google Scholar] [CrossRef] [PubMed]
- Zagami, P.; Carey, L.A. Triple negative breast cancer: Pitfalls and progress. NPJ Breast Cancer 2022, 8, 95. [Google Scholar] [CrossRef] [PubMed]
- Stebbing, J.; Ellis, P. An overview of drug development for metastatic breast cancer. Br. J. Nurs. 2012, 21, S18–S22. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, J.; Peng, L.; Sahin, A.; Huo, L.; Ward, K.; O’Regan, R.; Torres, M.A.; Meisel, J.L. Triple-negative breast cancer has worse overall survival and cause-specific survival than non-triple-negative breast cancer. Breast Cancer Res. Treat. 2017, 161, 279–287. [Google Scholar] [CrossRef]
- Yavuz, B.B.; Aktan, M.; Kanyilmaz, G. Prognostic Factors in Patients with Triple Negative Breast Cancer Undergoing Adjuvant Radiotherapy: A 10-Year Single Center Experience: Triple negative breast cancer. Arch. Breast Cancer 2022, 9, 377–385. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, S.; Tang, H.; Meng, X.; Zheng, Q. Molecular mechanisms of immunotherapy resistance in triple-negative breast cancer. Front. Immunol. 2023, 14, 1153990. [Google Scholar] [CrossRef] [PubMed]
- Greenup, R.; Buchanan, A.; Lorizio, W.; Rhoads, K.; Chan, S.; Leedom, T.; King, R.; McLennan, J.; Crawford, B.; Kelly, M.P.; et al. Prevalence of BRCA mutations among women with triple-negative breast cancer (TNBC) in a genetic counseling cohort. Ann. Surg. Oncol. 2013, 20, 3254–3258. [Google Scholar] [CrossRef] [PubMed]
- Young, S.R.; Pilarski, R.T.; Donenberg, T.; Shapiro, C.; Hammond, L.S.; Miller, J.; Brooks, K.A.; Cohen, S.; Tenenholz, B.; Desai, D.; et al. The prevalence of BRCA1 mutations among young women with triple-negative breast cancer. BMC Cancer 2009, 19, 86. [Google Scholar] [CrossRef]
- Tun, N.M.; Villani, G.M.; Ong, N. Prevalence of BRCA1 mutations in women with triple-negative breast cancer: A systematic review. J. Clin. Oncol. 2011, 29 (Suppl. S27), 181. [Google Scholar] [CrossRef]
- Sadeghi, F.; Asgari, M.; Matloubi, M.; Ranjbar, M.; Karkhaneh, Y.N.; Azari, T.; Zaki-Dizaji, M. Molecular contribution of BRCA1 and BRCA2 to genome instability in breast cancer patients: Review of radiosensitivity assays. Biol. Proced. Online 2020, 22, 23. [Google Scholar] [CrossRef]
- Bau, D.T.; Mau, Y.C.; Ding, S.L.; Wu, P.E.; Shen, C.Y. DNA double-strand break repair capacity and risk of breast cancer. Carcinogenesis 2007, 28, 1726–1730. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, R.; Bakkenist, C.J.; McKinnon, P.J.; Kastan, M.B. Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway. Genes. Dev. 2004, 18, 1423–1438. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.T.; Xu, B.; Kastan, M.B. Involvement of the cohesin protein, Smc1, in atm-dependent and independent responses to DNA damage. Genes Dev. 2002, 16, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Yazdi, P.T.; Wang, Y.; Zhao, S.; Patel, N.; Lee, E.Y.; Qin, J. SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes Dev. 2002, 16, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Ying, M.; Feng, D.; Chen, Y.; Wang, J.; Wang, Y. SMC1 promotes epithelial-mesenchymal transition in triple-negative breast cancer through upregulating Brachyury. Oncol. Rep. 2016, 35, 2405–2412. [Google Scholar] [CrossRef]
- Antoccia, A.; Sakamoto, S.; Matsuura, S.; Tauchi, H.; Komatsu, K. NBS1 Prevents Chromatid-Type Aberrations through ATM-Dependent Interactions with SMC1. Radiat. Res. 2008, 170, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Tomaszewski, J.M.; McKay, M.J. Can corruption of chromosome cohesion create a conduit to cancer? Nat. Rev. Cancer 2011, 11, 199–210. [Google Scholar] [CrossRef]
- Arumugam, P.; Gruber, S.; Tanaka, K.; Haering, C.H.; Mechtler, K.; Nasmyth, K. ATP hydrolysis is required for cohesin’s association with chromosomes. Curr. Biol. 2003, 13, 1941–1953. [Google Scholar] [CrossRef] [PubMed]
- Yi, F.; Wang, Z.; Liu, J.; Zhang, Y.; Wang, Z.; Xu, H.; Li, X.; Bai, N.; Cao, L.; Song, X. Structural Maintenance of Chromosomes protein 1: Role in Genome Stability and Tumorigenesis. Int. J. Biol. Sci. 2017, 13, 1092–1099. [Google Scholar] [CrossRef]
- Rhodes, J.M.; McEwan, M.; Horsfield, J.A. Gene regulation by cohesin in cancer: Is the ring an unexpected party to proliferation? Mol. Cancer Res. 2011, 9, 1587–1607. [Google Scholar] [CrossRef] [PubMed]
- Jemal, A.; Ward, E.; Thun, M.J. Recent trends in breast cancer incidence rates by age and tumour characteristics among United States women. Breast Cancer Res. 2007, 9, R28. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fang, X.; Wang, Q.; Xiao, D.; Zhou, T.; Kang, K.; Peng, Z.; Ren, F.; Zhou, J. SMC1A facilitates gastric cancer cell proliferation, migration, and invasion via promoting SNAIL activated EMT. BMC Gastroenterol. 2023, 23, 268. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Wang, K.; Mo, J.; Wang, L.; Song, Z.; Jiang, H.; Wang, C.; Jin, C. PIK3R3 is upregulated in liver cancer and activates Akt signaling to control cancer growth by regulation of CDKN1C and SMC1A. Cancer Med. 2023, 12, 14413–14425. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Sehrawat, A.; Eroglu, Z.; Somlo, G.; Hickey, R.; Yadav, S.; Liu, X.; Awasthi, Y.C.; Awasthi, S. Role of SMC1 in overcoming drug resistance in triple negative breast cancer. PLoS ONE 2013, 8, e64338. [Google Scholar] [CrossRef] [PubMed]
- Jianwei, W.; Shaojun, Y.; Liming, C. Role of SMC1A overexpression as a predictor of poor prognosis in late-stage colorectal cancer. BMC Cancer 2015, 15, 90. [Google Scholar]
- Zhang, Y.F.; Jiang, R.; Li, J.D.; Zhang, X.Y.; Zhao, P.; He, M.; Zhang, H.Z.; Sun, L.P.; Shi, D.L.; Zhang, G.X.; et al. SMC1A knockdown induces growth suppression of human lung adenocarcinoma cells through G1/S cell cycle phase arrest and apoptosis pathways in vitro. Oncol. Lett. 2013, 5, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Lin, M.; Li, K.; Fu, Y.; Liu, X.; Yang, D.; Zhao, Y.; Zheng, J.; Sun, B. Knocking down SMC1A inhibits growth and leads to G2/M arrest in human glioma cells. Int. J. Clin. Exp. Pathol. 2013, 6, 862–869. [Google Scholar]
- Li, J.; Zhou, Q.; Liu, L.; He, J. Effects of SMC1A on immune microenvironment and cancer stem cells in colon adenocarcinoma. Cancer Med. 2023, 12, 12881–12895. [Google Scholar] [CrossRef]
- Pan, X.W.; Gan, S.S.; Ye, J.Q.; Fan, Y.H.; Hong, Y.; Chu, C.M.; Gao, Y.; Li, L.; Liu, X.; Chen, L.; et al. SMC1A promotes growth and migration of prostate cancer in vitro and in vivo. Int. J. Oncol. 2016, 49, 1963–1972. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Kowolik, C.M.; Lin, M.; Zuro, D.; Hui, S.K.; Riggs, A.D.; Horne, D.A. SMC1A is associated with radioresistance in prostate cancer by regulating epithelial-mesenchymal transition and cancer stem-like cells. Mol. Carcinog. 2018, 58, 113–125. [Google Scholar] [CrossRef]
- Stokes, M.P.; Rush, J.; MacNeill, J. Profiling of UV-induced ATM/ATR signaling pathways. Proc. Natl. Acad. Sci. USA 2007, 50, 19855–19860. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yi, F.; Wang, L.; Wang, Z.; Zhang, N.; Wang, Z.; Li, Z.; Song, X.; Wei, S.; Cao, L. Phosphorylation of SMC1A promotes hepatocellular carcinoma cell proliferation and migration. Int. J. Biol. Sci. 2018, 14, 1081–1089. [Google Scholar] [CrossRef]
- Bartha, B.; Gyorffy, B. TNMplot.com: A Web Tool for the Comparison of Gene Expression in Normal, Tumor and Metastatic Tissues. Int. J. Mol. Sci. 2021, 22, 2622. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/ajcc-staging-system (accessed on 9 September 2024).
- Freedman, D.A.; Pisani, R.; Purves, R. Statistics, 4th ed.; W.W. Norton & Company: New York, NY, USA, 2007; ISBN 978-0-393-92972-0. [Google Scholar]
- Acent Trial. Available online: https://www.nejm.org/doi/full/10.1056/NEJMoa2028485 (accessed on 9 September 2024).
- Destiny Breast 04 Trial. Available online: https://pubmed.ncbi.nlm.nih.gov/35665782 (accessed on 9 September 2024).
- Musio, A. The multiple facets of the SMC1A gene. Gene 2020, 743, 144612. [Google Scholar] [CrossRef]
- Inouye, S.; Soberon, X.; Franceschini, T.; Nakamura, K.; Itakura, K.; Inouye, M. Role of positive charge on the amino-terminal region of the signal peptide in protein secretion across the membrane. Proc. Natl. Acad. Sci. USA 1982, 79, 3438–3441. [Google Scholar] [CrossRef] [PubMed]
- Boyd, D.; Beckwith, J. Positively charged amino acid residues can act as topogenic determinants in membrane proteins. Proc. Natl. Acad. Sci. USA 1989, 86, 9446–9450. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.W.; Blobel, G. Cohesin subunit SMC1 associates with mitotic microtubules at the spindle pole. Proc. Natl. Acad. Sci. USA 2008, 105, 15441–15445. [Google Scholar] [CrossRef]
- Mohan, K.V.; Zhang, C.X.; Atreya, C.D. The proteoglycan bamacan is a host cellular ligand of vaccinia virus neurovirulence factor N1L. J. Neurovirol. 2009, 15, 229–237. [Google Scholar] [CrossRef]
- Wu, R.; Couchman, J.R. cDNA cloning of the basement membrane chondroitin sulfate proteoglycan core protein, bamacan: A five domain structure including coiled-coil motifs. J. Cell Biol. 1997, 136, 433–444. [Google Scholar] [CrossRef]
- Bard, M.P.; Hegmans, J.P.; Hemmes, A.; Luider, T.M.; Willemsen, R.; Severijnen, L.A.; van Meerbeeck, J.P.; Burgers, S.A.; Hoogsteden, H.C.; Lambrecht, B.N. Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am. J. Respir. Cell Mol. Biol. 2004, 31, 114–121. [Google Scholar] [CrossRef] [PubMed]
Breast Cancer Progression Tissue Array and TNBC Patients Cohort Characteristics | N | % |
---|---|---|
Tissue Array; Age at diagnosis (N = 161) | ||
<50 | 99 | 61 |
50+ | 62 | 39 |
Stage at diagnosis | ||
Early (IA, IB) | 31 | 19 |
Late (IIA, B, IIIA, IIIB) | 63 | 39 |
Metastatic | 48 | 29 |
Unknown | 19 | 12 |
Histologic Grade | ||
Low/Intermediate | 35 | 21 |
High | 81 | 50 |
Unknown | 45 | 29 |
Histology | ||
Metastatic | 48 | 22 |
Invasive ductal (IDC) | 69 | 48 |
Invasive lobular (ILC) | 21 | 15 |
Squamous cell | 4 | 3 |
Normal/Other | 19 | 13 |
Molecular subtype | ||
TNBC | 59 | 47 |
HER2 rich | 33 | 26 |
Other | 34 | 27 |
TNBC patient samples from COH | ||
Age at diagnosis (N = 26) | ||
<50 | 10 | 38 |
50+ | 16 | 61 |
Stage at diagnosis | ||
Early (IA, IB) | 6 | 23 |
Late (IIA, IIB, IIIA, IIIB) | 13 | 50 |
Metastatic | 5 | 19 |
Unknown | 2 | 7 |
Histologic Grade | ||
Low/Intermediate | 3 | 10 |
High | 15 | 57 |
Unknown | 8 | 31 |
Histology | ||
Metastatic | 5 | 19 |
Invasive ductal (IDC) | 20 | 78 |
Invasive lobular (ILC) | 0 | 0 |
Squamous cell | 0 | 0 |
Normal/Other | 1 | 4 |
Molecular subtype | ||
TNBC | 26 | 100 |
HER2 rich | 0 | 0 |
Other | 0 | 0 |
p-SMC1A Localization in Normal vs. Breast Tumor Tissue. | ||||
---|---|---|---|---|
Membranous Score | Cytoplasmic Score | Nuclear Score | ||
Variable | N | # Cases % | # Cases % | # Cases % |
Metastatic | 53 | 11 21 | 22 42 | 47 89 |
Invasive Ductal (IDC) | 89 | 18 20 | 44 49 | 86 97 |
Invasive Lobular (ILC) | 21 | 0 0 | 2 10 | 21 100 |
Squamous Cell | 4 | 0 0 | 3 75 | 4 100 |
Adjacent Normal | 17 | 0 0 | 0 0 | 17 100 |
Normal | 3 | 0 0 | 0 0 | 3 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yadav, S.; Kowolik, C.M.; Schmolze, D.; Yuan, Y.; Lin, M.; Riggs, A.D.; Horne, D.A. Association of Structural Maintenance of Chromosome-1A Phosphorylation with Progression of Breast Cancer. Cells 2025, 14, 128. https://doi.org/10.3390/cells14020128
Yadav S, Kowolik CM, Schmolze D, Yuan Y, Lin M, Riggs AD, Horne DA. Association of Structural Maintenance of Chromosome-1A Phosphorylation with Progression of Breast Cancer. Cells. 2025; 14(2):128. https://doi.org/10.3390/cells14020128
Chicago/Turabian StyleYadav, Sushma, Claudia M. Kowolik, Daniel Schmolze, Yuan Yuan, Min Lin, Arthur D. Riggs, and David A. Horne. 2025. "Association of Structural Maintenance of Chromosome-1A Phosphorylation with Progression of Breast Cancer" Cells 14, no. 2: 128. https://doi.org/10.3390/cells14020128
APA StyleYadav, S., Kowolik, C. M., Schmolze, D., Yuan, Y., Lin, M., Riggs, A. D., & Horne, D. A. (2025). Association of Structural Maintenance of Chromosome-1A Phosphorylation with Progression of Breast Cancer. Cells, 14(2), 128. https://doi.org/10.3390/cells14020128