Peri-Implant Soft Tissue in Contact with Zirconium/Titanium Abutments from Histological and Biological Perspectives: A Concise Review
Abstract
:1. Introduction
2. Research Methodology
2.1. Identification
2.2. Removal of Duplicates
2.3. Screening
2.4. Eligibility Assessment
2.5. Inclusion
3. Histological Evaluation
3.1. Human Studies
3.2. Animal Studies
4. Immunohistochemical Assessment
4.1. Peri-Implant Soft Tissue Inflammatory Response
4.2. Peri-Implant Cell Adhesion Response
4.3. Effect of Abutment Surface Characteristics on Peri-Implant Soft Tissue Response
5. Proteins Expression in Peri-Implant Crevicular Fluid
6. Bacterial Colonization
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Full name |
A. actinomycetemcomitans | Aggregatibacter actinomycetemcomitans |
AM | Additive manufacturing |
Au | Gold |
BGS | Brownie plus Greenie plus Supergreenie |
BMZ | Blank machined zirconia |
BOB | Bleeding on probing |
BPG | Brownie plus Greenie |
BRO | Polished with brownie only |
CAD/CAM | Computer-aided design/computer-aided manufacturing |
CD | Cluster of differentiation |
CER | CeraMaster coarse |
CM | Conditioned medium |
COL | Collagen |
CSGZ | Coated self-glazed zirconia |
ELISA | Enzyme-linked immunosorbent assay |
EMD | Enamel matrix derivative |
F. nucleatum | Fusobacterium nucleatum |
FAK | Focal adhesion kinase |
FGF | Fibroblast growth factor |
FI | Failed implants |
FN | Fibronectin |
G-CSF | Granulocyte colony-stimulating factor |
GI | Gingival index |
GM-CSF | Granulocyte monocyte colony-stimulating factor |
HGF | Human gingival fibroblast |
HNEpC | Human nasal epithelial cells |
IHC | Immunohistochemical |
IL | Interleukin |
In | Integrin protein |
IRC | Immunoreactive score |
Ki | Kiel protein |
LCA | Leucocyte common antigen |
Ln | Laminin protein |
MIP | Macrophage inflammatory protein |
MMP | Matrix metalloproteinase |
NOS | Nitric Oxide synthase |
P. gingivalis | Porphyromonas gingivalis |
PCF | Peri-implant crevice fluid |
PCNA | Proliferating cell nuclear antigen |
PD | Probing depth |
PEEK | Polyetheretherketone |
PI | Plaque index |
PI3K/AKT pathway | Phosphoinositide-3-kinase-protein kinaseB/Activating receptor tyrosine kinases |
PICF | Peri-implant crevicular fluid |
PIE | Peri-implant epithelium |
Pt | Platinum |
Ra | Surface roughness |
RCT | Randomized control trial |
SGZ | Self-glazed zirconia |
SI | Successful implants |
SLA | Sandblasted, large grit, and acid-etched |
T. denticola | Treponema denticola |
T. forsythia | Tannerella forsythia |
TGF | Transforming growth factor |
Th | T-helper cell |
Ti | Titanium |
TIMP | Metallopeptidase inhibitor |
TNF | Tumor necrosis factor |
UNP | Unpolished |
VEGF | Vascular endothelial growth factor |
Zr | Zirconium |
References
- Ivanovski, S.; Lee, R. Comparison of peri-implant and periodontal marginal soft tissues in health and disease. Periodontology 2000 2018, 76, 116–130. [Google Scholar] [CrossRef]
- Bartold, P.M.; Walsh, L.J.; Narayanan, A.S. Molecular and cell biology of the gingiva. Periodontology 2000 2000, 24, 28–55. [Google Scholar] [CrossRef] [PubMed]
- Berglundh, T.; Lindhe, J.; Ericsson, I.; Marinello, C.; Liljenberg, B.; Thornsen, P. The soft tissue barrier at implants and teeth. Clin. Oral Implants Res. 1991, 2, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-J.; Lee, J.-H.; Kim, J.C.; Lee, J.-B.; Yeo, I.-S.L. Biological responses to the transitional area of dental implants: Material-and structure-dependent responses of peri-implant tissue to abutments. Materials 2019, 13, 72. [Google Scholar] [CrossRef] [PubMed]
- Manaf, J.B.A.; Rahman, S.A.; Haque, S.; Alam, M.K. Bacterial colonization and dental implants: A microbiological study. Pesqui. Bras. Odontopediatr. Clin. Integr. 2020, 20, e4979. [Google Scholar] [CrossRef]
- Fragkioudakis, I.; Tseleki, G.; Doufexi, A.-E.; Sakellari, D. Current concepts on the pathogenesis of peri-implantitis: A narrative review. Eur. J. Dent. 2021, 15, 379–387. [Google Scholar] [CrossRef]
- Dreyer, H.; Grischke, J.; Tiede, C.; Eberhard, J.; Schweitzer, A.; Toikkanen, S.; Glöckner, S.; Krause, G.; Stiesch, M. Epidemiology and risk factors of peri-implantitis: A systematic review. J. Periodontal Res. 2018, 53, 657–681. [Google Scholar] [CrossRef]
- Rozeik, A.S.; Chaar, M.S.; Sindt, S.; Wille, S.; Selhuber-Unkel, C.; Kern, M.; El-Kholy, S.; Dörfer, C.; El-Sayed, K.M.F. Cellular properties of human gingival fibroblasts on novel and conventional implant-abutment materials. Dent. Mater. J. 2022, 38, 540–548. [Google Scholar] [CrossRef]
- Qu, Y.; Liu, L. Zirconia materials for dental implants: A literature review. Front. Dent. Med. 2021, 2, 687983. [Google Scholar] [CrossRef]
- Sivaraman, K.; Chopra, A.; Narayan, A.I.; Balakrishnan, D. Is zirconia a viable alternative to titanium for oral implant? A critical review. J. Prosthodont. Res. 2018, 62, 121–133. [Google Scholar] [CrossRef]
- Jhingta, P. Zirconia Over Titanium Implants: The Evidences are not Enough. Dent. J. 2020, 2, 9–13. [Google Scholar]
- Padhye, N.M.; Calciolari, E.; Zuercher, A.N.; Tagliaferri, S.; Donos, N. Survival and success of zirconia compared with titanium implants: A systematic review and meta-analysis. Clin. Oral Investig. 2023, 27, 6279–6290. [Google Scholar] [CrossRef] [PubMed]
- Morena, D.; Leitão-Almeida, B.; Pereira, M.; Resende, R.; Fernandes, J.C.H.; Fernandes, G.V.O.; Borges, T. Comparative Clinical Behavior of Zirconia versus Titanium Dental Implants: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2024, 13, 4488. [Google Scholar] [CrossRef] [PubMed]
- Cinquini, C.; Marchio, V.; Di Donna, E.; Alfonsi, F.; Derchi, G.; Nisi, M.; Barone, A. Histologic evaluation of soft tissues around dental implant abutments: A narrative review. Materials 2022, 15, 3811. [Google Scholar] [CrossRef]
- Sampatanukul, T.; Serichetaphongse, P.; Pimkhaokham, A. Histological evaluations and inflammatory responses of different dental implant abutment materials: A human histology pilot study. Clin. Implant Dent. Relat. Res. 2018, 20, 160–169. [Google Scholar] [CrossRef]
- Van Brakel, R.; Meijer, G.J.; Verhoeven, J.W.; Jansen, J.; de Putter, C.; Cune, M.S. Soft tissue response to zirconia and titanium implant abutments: An in vivo within-subject comparison. J. Clin. Periodontol. 2012, 39, 995–1001. [Google Scholar] [CrossRef]
- Bienz, S.P.; Hilbe, M.; Hüsler, J.; Thoma, D.S.; Hämmerle, C.H.; Jung, R.E. Clinical and histological comparison of the soft tissue morphology between zirconia and titanium dental implants under healthy and experimental mucositis conditions—A randomized controlled clinical trial. J. Clin. Periodontol. 2021, 48, 721–733. [Google Scholar] [CrossRef]
- Degidi, M.; Artese, L.; Scarano, A.; Perrotti, V.; Gehrke, P.; Piattelli, A. Inflammatory infiltrate, microvessel density, nitric oxide synthase expression, vascular endothelial growth factor expression, and proliferative activity in peri-implant soft tissues around titanium and zirconium oxide healing caps. J. Periodontol. 2006, 77, 73–80. [Google Scholar] [CrossRef]
- Scarano, A.; Piattelli, M.; Caputi, S.; Favero, G.A.; Piattelli, A. Bacterial adhesion on commercially pure titanium and zirconium oxide disks: An in vivo human study. J. Periodontol. 2004, 75, 292–296. [Google Scholar] [CrossRef]
- Canullo, L.; Dehner, J.F.; Penarrocha, D.; Checchi, V.; Mazzoni, A.; Breschi, L. Soft tissue response to titanium abutments with different surface treatment: Preliminary histologic report of a randomized controlled trial. BioMed Res. Int. 2016, 2016, 2952530. [Google Scholar] [CrossRef]
- Schwarz, F.; Mihatovic, I.; Becker, J.; Bormann, K.H.; Keeve, P.L.; Friedmann, A. Histological evaluation of different abutments in the posterior maxilla and mandible: An experimental study in humans. J. Clin. Periodontol. 2013, 40, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Enkling, N.; Marder, M.; Bayer, S.; Götz, W.; Stoilov, M.; Kraus, D. Soft tissue response to different abutment materials: A controlled and randomized human study using an experimental model. Clin. Oral Implants Res. 2022, 33, 667–679. [Google Scholar] [CrossRef]
- Blanco, J.; Caneiro, L.; Liñares, A.; Batalla, P.; Muñoz, F.; Ramos, I. Peri-implant soft tissue analyses comparing Ti and ZrO2 abutments: An animal study on beagle dogs. Clin. Oral Implants Res. 2016, 27, 1221–1226. [Google Scholar] [CrossRef]
- Welander, M.; Abrahamsson, I.; Berglundh, T. The mucosal barrier at implant abutments of different materials. Clin. Oral Implants Res. 2008, 19, 635–641. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, S.; Chen, L.; Zou, H.; Wang, Y.; Xia, H. Early soft tissue response to zirconium oxide and titanium healing abutments in vivo: A study in dogs. BMC Oral Health 2021, 21, 416. [Google Scholar] [CrossRef]
- Mehl, C.; Gaßling, V.; Schultz-Langerhans, S.; Açil, Y.; Bähr, T.; Wiltfang, J.; Kern, M. Influence of Four Different Abutment Materials and the Adhesive Joint of Two-Piece Abutments on Cervical Implant Bone and Soft Tissue. Int. J. Oral Maxillofac. Implants 2016, 31, 1264. [Google Scholar] [CrossRef]
- Huang, C.; Miao, X.; Li, J.; Liang, J.; Xu, J.; Wu, Z. Promoted Abutment-Soft Tissue Integration Around Self-Glazed Zirconia Surfaces with Nanotopography Fabricated by Additive 3D Gel Deposition. Int. J. Nanomed. 2023, 18, 3141–3155. [Google Scholar] [CrossRef]
- Persson, L.; Lekholm, U.; Leonhardt, Å.; Dahlen, G.; Lindhe, J. Bacterial colonization on internal surfaces of Brånemark system® implant components. Clin. Oral Implants Res. 1996, 7, 90–95. [Google Scholar] [CrossRef]
- Tomasi, C.; Tessarolo, F.; Caola, I.; Piccoli, F.; Wennström, J.L.; Nollo, G.; Berglundh, T. Early healing of peri-implant mucosa in man. J. Clin. Periodontol. 2016, 43, 816–824. [Google Scholar] [CrossRef]
- Milinkovic, I.; Krasavcevic, A.D.; Jankovic, S.; Sopta, J.; Aleksic, Z. Immunohistochemical analysis of soft tissue response to polyetheretherketone (PEEK) and titanium healing abutments on dental implants: A randomized pilot clinical study. BMC Oral Health 2022, 22, 484. [Google Scholar] [CrossRef]
- Ünlü, F.; Güneri, P.G.; Hekimgil, M.; Yeşilbek, B.; Boyacioğlu, H. Expression of vascular endothelial growth factor in human periodontal tissues: Comparison of healthy and diabetic patients. J. Periodontol. 2003, 74, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Bambini, F.; Santarelli, A.; Marzo, G.; Rubini, C.; Orsini, G.; Di Iorio, D.; Russo, L.L.; Muzio, L.L. CD3 and CD20 expression in titanium vs zirconia peri-implant soft tissues: A human study. Eur. J. Inflamm. 2013, 11, 305–310. [Google Scholar] [CrossRef]
- Degidi, M.; Artese, L.; Franceschini, N.; Sulpizio, S.; Piattelli, A.; Piccirilli, M.; Perrotti, V.; Iezzi, G. Matrix metalloproteinases 2, 3, 8, 9, and 13 in the peri-implant soft tissues around titanium and zirconium oxide healing caps. Int. J. Oral Maxillofac. Implants 2013, 28, 1546. [Google Scholar] [CrossRef] [PubMed]
- Tabuchi, S.; Sakuta, T.; Oyama, T.; Tokuda, M.; Tatsuyama, S.; Kajihara, T.; Nagaoka, S.; Beppu, M.; Sugihara, K.; Ikebe, T. Runt-related gene 2 is involved in the inhibition of matrix metalloproteinase-13 expression by roxithromycin in human gingival epithelial cell cultures. J. Periodontal Res. 2009, 44, 283–288. [Google Scholar] [CrossRef]
- Shimada, Y.; Ichinose, S.; Sadr, A.; Burrow, M.; Tagami, J. Localization of matrix metalloproteinases (MMPs-2, 8, 9 and 20) in normal and carious dentine. Aust. Dent. J. 2009, 54, 347–354. [Google Scholar] [CrossRef]
- Serichetaphongse, P.; Chengprapakorn, W.; Thongmeearkom, S.; Pimkhaokham, A. Immunohistochemical assessment of the peri-implant soft tissue around different abutment materials: A human study. Clin. Implant Dent. Relat. Res. 2020, 22, 638–646. [Google Scholar] [CrossRef]
- Kheder, W.; Bouzid, A.; Venkatachalam, T.; Talaat, I.M.; Elemam, N.M.; Raju, T.K.; Sheela, S.; Jayakumar, M.N.; Maghazachi, A.A.; Samsudin, A.R. Titanium Particles Modulate Lymphocyte and Macrophage Polarization in Peri-Implant Gingival Tissues. Int. J. Mol. Sci. 2023, 24, 11644. [Google Scholar] [CrossRef]
- Romanos, G.E.; Schröter-Kermani, C.; Weingart, D.; Strub, J.R. Healthy Human Periodontal Versus Peri-implant Gingival Tissues: An Immunohistochemical Differentiation of the Extracellular Matrix. Int. J. Oral Maxillofac. Implants 1995, 10, 154. [Google Scholar]
- Carmichael, R.; McCulloch, C.; Zarb, G. Quantitative immunohistochemical analysis of keratins and desmoplakins in human gingiva and peri-implant mucosa. J. Dent. Res. 1991, 70, 899–905. [Google Scholar] [CrossRef]
- Atsuta, I.; Ayukawa, Y.; Furuhashi, A.; Narimatsu, I.; Kondo, R.; Oshiro, W.; Koyano, K. Epithelial sealing effectiveness against titanium or zirconia implants surface. J. Biomed. Mater. Res. A 2019, 107, 1379–1385. [Google Scholar] [CrossRef]
- Ayukawa, Y.; Atsuta, I.; Moriyama, Y.; Jinno, Y.; Koyano, K. Localization of integrin beta-4 subunit at soft tissue–titanium or zirconia interface. J. Clin. Med. 2020, 9, 3331. [Google Scholar] [CrossRef] [PubMed]
- Furuhashi, A.; Ayukawa, Y.; Atsuta, I.; Rakhmatia, Y.D.; Koyano, K. Soft tissue interface with various kinds of implant abutment materials. J. Clin. Med. 2021, 10, 2386. [Google Scholar] [CrossRef]
- Hu, M.; Chen, J.; Pei, X.; Han, J.; Wang, J. Network meta-analysis of survival rate and complications in implant-supported single crowns with different abutment materials. J. Dent. 2019, 88, 103115. [Google Scholar] [CrossRef] [PubMed]
- Harada, A.; Sasaki, H.; Asami, Y.; Hanazawa, K.; Miyazaki, S.; Sekine, H.; Yajima, Y. Effects of the application of low-temperature atmospheric plasma on titanium implants on wound healing in peri-implant connective tissue in rats. Int. J. Implant Dent. 2024, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Degidi, M.; Artese, L.; Piattelli, A.; Scarano, A.; Shibli, J.A.; Piccirilli, M.; Perrotti, V.; Iezzi, G. Histological and immunohistochemical evaluation of the peri-implant soft tissues around machined and acid-etched titanium healing abutments: A prospective randomised study. Clin. Oral Investig. 2012, 16, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Nothdurft, F.P.; Fontana, D.; Ruppenthal, S.; May, A.; Aktas, C.; Mehraein, Y.; Lipp, P.; Kaestner, L. Differential behavior of fibroblasts and epithelial cells on structured implant abutment materials: A comparison of materials and surface topographies. Clin. Implant Dent. Relat. Res. 2015, 17, 1237–1249. [Google Scholar] [CrossRef]
- Negahdari, R.; Rahbar, M.; Fakhrzadeh, V.; Eslami, H.; Akbari, T.; Bohluli, S. Comparison of proinflammatory cytokine levels in gingival crevicular fluid around dental implants with ceramic and titanium abutments. J. Contemp. Dent. Pract. 2015, 18, 831–836. [Google Scholar] [CrossRef]
- Roffel, S.; Wu, G.; Nedeljkovic, I.; Meyer, M.; Razafiarison, T.; Gibbs, S. Evaluation of a novel oral mucosa in vitro implantation model for analysis of molecular interactions with dental abutment surfaces. Clin. Implant Dent. Relat. Res. 2019, 21, 25–33. [Google Scholar] [CrossRef]
- Schwarz, F.; Herten, M.; Sager, M.; Wieland, M.; Dard, M.; Becker, J. Histological and immunohistochemical analysis of initial and early subepithelial connective tissue attachment at chemically modified and conventional SLA® titanium implants. A pilot study in dogs. Clin. Oral Investig. 2007, 11, 245–255. [Google Scholar] [CrossRef]
- Kumar, Y.; Jain, V.; Chauhan, S.S.; Bharate, V.; Koli, D.; Kumar, M. Influence of different forms and materials (zirconia or titanium) of abutments in peri-implant soft-tissue healing using matrix metalloproteinase-8: A randomized pilot study. J. Prosthet. Dent. 2017, 118, 475–480. [Google Scholar] [CrossRef]
- Barwacz, C.A.; Brogden, K.A.; Stanford, C.M.; Dawson, D.V.; Recker, E.N.; Blanchette, D. Comparison of pro-inflammatory cytokines and bone metabolism mediators around titanium and zirconia dental implant abutments following a minimum of 6 months of clinical function. Clin. Oral Implants Res. 2015, 26, e35–e41. [Google Scholar] [CrossRef] [PubMed]
- Cionca, N.; Hashim, D.; Cancela, J.; Giannopoulou, C.; Mombelli, A. Pro-inflammatory cytokines at zirconia implants and teeth. A cross-sectional assessment. Clin. Oral Investig. 2016, 20, 2285–2291. [Google Scholar] [CrossRef] [PubMed]
- Chandra, C.; Sisir, R.; Chandy, A.A.; Singh, S.K.; Saluja, J.S.; Loganathan, J. Inflammatory Impact on Tissues Surrounding the Dental Implant of Singular Abutments Bonded onto Titanium Base–A Randomized Controlled Trial. J. Pharm. Bioallied Sci. 2023, 15, S477–S480. [Google Scholar] [CrossRef] [PubMed]
- Yoshinari, M.; Oda, Y.; Kato, T.; Okuda, K.; Hirayama, A. Influence of surface modifications to titanium on oral bacterial adhesion in vitro. J. Biomed. Mater. Res. 2000, 52, 388–394. [Google Scholar] [CrossRef]
- Größner-Schreiber, B.; Griepentrog, M.; Haustein, I.; Müller, W.D.; Briedigkeit, H.; Göbel, U.B.; Lange, K.P. Plaque formation on surface modified dental implants: An in vitro study. Clin. Oral Implants Res. 2001, 12, 543–551. [Google Scholar] [CrossRef]
- Pongnarisorn, N.J.; Gemmell, E.; Tan, A.E.; Henry, P.J.; Marshall, R.I.; Seymour, G.J. Inflammation associated with implants with different surface types. Clin. Oral Implants Res. 2007, 18, 114–125. [Google Scholar] [CrossRef]
- Modica, F.; Pizzo, M.D.; Roccuzzo, M.; Romagnoli, R. Coronally advanced flap for the treatment of buccal gingival recessions with and without enamel matrix derivative. A split-mouth study. J. Periodontol. 2000, 71, 1693–1698. [Google Scholar]
- Esfahanizadeh, N.; Motalebi, S.; Daneshparvar, N.; Akhoundi, N.; Bonakdar, S. Morphology, proliferation, and gene expression of gingival fibroblasts on Laser-Lok, titanium, and zirconia surfaces. Lasers Med. Sci. 2016, 31, 863–873. [Google Scholar] [CrossRef]
- Dewez, J.-L.; Doren, A.; Schneider, Y.-J.; Rouxhet, P.G. Competitive adsorption of proteins: Key of the relationship between substratum surface properties and adhesion of epithelial cells. Biomaterials 1999, 20, 547–559. [Google Scholar] [CrossRef]
- Wei, J.; Yoshinari, M.; Takemoto, S.; Hattori, M.; Kawada, E.; Liu, B.; Oda, Y. Adhesion of mouse fibroblasts on hexamethyldisiloxane surfaces with wide range of wettability. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 81, 66–75. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Lu, R.; Gao, S.; Ling, Y.; Chen, S.J.C. Responses of human gingival fibroblasts to superhydrophilic hydrogenated titanium dioxide nanotubes. Colloids Surf. B Biointerfaces 2021, 198, 111489. [Google Scholar] [CrossRef] [PubMed]
- Roth, L.A.; Bastos, M.F.; Melo, M.A.; Barão, V.A.; Costa, R.C.; Giro, G.; Souza, J.G.S.; Grzech-Leśniak, K.; Shibli, J.A. The Potential Role of a Surface-Modified Additive-Manufactured Healing Abutment on the Expression of Integrins α2, β1, αv, and β6 in the Peri-Implant Mucosa: A Preliminary Human Study. Life 2022, 12, 937. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, H.; Yamaza, T.; Yoshinari, M.; Ohsaki, Y.; Ayukawa, Y.; Kido, M.A.; Inoue, T.; Shimono, M.; Koyano, K.; Tanaka, T. Ultrastructural and immunoelectron microscopic studies of the peri-implant epithelium-implant (Ti-6Al-4V) interface of rat maxilla. J. Periodontol. 2000, 71, 961–973. [Google Scholar] [CrossRef] [PubMed]
- Atsuta, I.; Yamaza, T.; Yoshinari, M.; Mino, S.; Goto, T.; Kido, M.A.; Terada, Y.; Tanaka, T. Changes in the distribution of laminin-5 during peri-implant epithelium formation after immediate titanium implantation in rats. Biomaterials 2005, 26, 1751–1760. [Google Scholar] [CrossRef]
- Kimura, Y.; Matsuzaka, K.; Yoshinari, M.; Inoue, T. Initial attachment of human oral keratinocytes cultured on zirconia or titanium. Dent. Mater. J. 2012, 31, 346–353. [Google Scholar] [CrossRef]
- Yoshinari, M.; Matsuzaka, K.; Inoue, T.; Oda, Y.; Shimono, M. Bio-functionalization of titanium surfaces for dental implants. Mater. Trans. 2002, 43, 2494–2501. [Google Scholar] [CrossRef]
- Yoshinari, M.; Matsuzaka, K.; Inoue, T. Surface modification by cold-plasma technique for dental implants—Bio-functionalization with binding pharmaceuticals. Jpn. Dent. Sci. Rev. 2011, 47, 89–101. [Google Scholar] [CrossRef]
- Larjava, H.; Koivisto, L.; Häkkinen, L.; Heino, J. Epithelial integrins with special reference to oral epithelia. J. Dent. Res. 2011, 90, 1367–1376. [Google Scholar] [CrossRef]
- Hu, J.; Atsuta, I.; Luo, Y.; Wang, X.; Jiang, Q. Promotional effect and molecular mechanism of synthesized zinc oxide nanocrystal on zirconia abutment surface for soft tissue sealing. J. Dent. Res. 2023, 102, 505–513. [Google Scholar] [CrossRef]
- Kwon, Y.-D.; Choi, H.-j.; Lee, H.; Lee, J.-W.; Weber, H.-P.; Pae, A. Cellular viability and genetic expression of human gingival fibroblasts to zirconia with enamel matrix derivative (Emdogain®). J. Adv. Prosthodont. 2014, 6, 406–414. [Google Scholar] [CrossRef]
- Akashi, Y.; Shimoo, Y.; Hashiguchi, H.; Nakajima, K.; Kokubun, K.; Matsuzaka, K. Effects of excimer laser treatment of zirconia disks on the adhesion of L929 fibroblasts. Materials 2022, 16, 115. [Google Scholar] [CrossRef] [PubMed]
- Kobune, K.; Miura, T.; Sato, T.; Yotsuya, M.; Yoshinari, M. Influence of plasma and ultraviolet treatment of zirconia on initial attachment of human oral keratinocytes: Expressions of laminin γ2 and integrin β4. Dent. Mater. J. 2014, 33, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Florit, M.; Xing, R.; Ramis, J.; Taxt-Lamolle, S.; Haugen, H.; Lyngstadaas, S.; Monjo, M.J.J.o.D. Human gingival fibroblasts function is stimulated on machined hydrided titanium zirconium dental implants. J. Dent. 2014, 42, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yu, P.; Lv, H.; Yang, S.; Wu, Z. Nanostructured zirconia surfaces regulate human gingival fibroblasts behavior through differential modulation of macrophage polarization. Front. Bioeng. Biotechnol. 2021, 8, 611–684. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, L.; Xie, B.; Lu, Y. The 50 most cited articles on soft tissue integration of dental implants: A bibliometric analysis. J. Prosthet. Dent. 2024; Online ahead of print. [Google Scholar] [CrossRef]
- Plagnat, D.; Giannopoulou, C.; Carrel, A.; Bernard, J.P.; Mombelli, A.; Belser, U.C. Elastase, α2-macroglobulin and alkaline phosphatase in crevicular fluid from implants with and without periimplantitis. Clin. Oral Implants Res. 2002, 13, 227–233. [Google Scholar] [CrossRef]
- van Brakel, R.; Cune, M.S.; van Winkelhoff, A.J.; de Putter, C.; Verhoeven, J.W.; van der Reijden, W. Early bacterial colonization and soft tissue health around zirconia and titanium abutments: An in vivo study in man. Clin. Oral Implants Res. 2011, 22, 571–577. [Google Scholar] [CrossRef]
- Heuer, W.; Elter, C.; Demling, A.; Neumann, A.; Suerbaum, S.; Hannig, M.; Heidenblut, T.; Bach, F.; Stiesch-Scholz, M. Analysis of early biofilm formation on oral implants in man. J. Oral Rehabil. 2007, 34, 377–382. [Google Scholar] [CrossRef]
- Elter, C.; Heuer, W.; Demling, A.; Hannig, M.; Heidenblut, T.; Bach, F.-W.; Stiesch-Scholz, M. Supra-and subgingival biofilm formation on implant abutments with different surface characteristics. Int. J. Oral Maxillofac. Implants 2008, 23, 327. [Google Scholar]
- Do Nascimento, C.; Pita, M.S.; de Souza Santos, E.; Monesi, N.; Pedrazzi, V.; de Albuquerque Junior, R.F.; Ribeiro, R.F. Microbiome of titanium and zirconia dental implants abutments. Dent. Mater. J. 2016, 32, 93–101. [Google Scholar] [CrossRef]
- De Oliveira Silva, T.S.; de Freitas, A.R.; de Albuquerque, R.F.; Pedrazzi, V.; Ribeiro, R.F.; do Nascimento, C. A 3-year longitudinal prospective study assessing microbial profile and clinical outcomes of single-unit cement-retained implant restorations: Zirconia versus titanium abutments. Clin. Implant Dent. Relat. Res. 2020, 22, 301–310. [Google Scholar] [CrossRef]
- Nascimento, C.d.; Pita, M.S.; Fernandes, F.H.N.C.; Pedrazzi, V.; de Albuquerque Junior, R.F.; Ribeiro, R.F. Bacterial adhesion on the titanium and zirconia abutment surfaces. Clin. Oral Implants Res. 2014, 25, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Poortinga, A.T.; Bos, R.; Busscher, H.J. Charge transfer during staphylococcal adhesion to TiNOX® coatings with different specific resistivity. Biophys. Chem. 2001, 91, 273–279. [Google Scholar] [CrossRef]
- De Freitas, A.R.; Silva, T.S.d.O.; Ribeiro, R.F.; de Albuquerque Junior, R.F.; Pedrazzi, V.; do Nascimento, C. Oral bacterial colonization on dental implants restored with titanium or zirconia abutments: 6-month follow-up. Clin. Oral Investig. 2018, 22, 2335–2343. [Google Scholar] [CrossRef]
- Do Nascimento, C.; da Rocha Aguiar, C.; Pita, M.S.; Pedrazzi, V.; de Albuquerque Jr, R.F.; Ribeiro, R.F. Oral biofilm formation on the titanium and zirconia substrates. Microsc. Res. Tech. 2013, 76, 126–132. [Google Scholar] [CrossRef]
- Herrmann, H.; Kern, J.S.; Kern, T.; Lautensack, J.; Conrads, G.; Wolfart, S. Early and mature biofilm on four different dental implant materials: An in vivo human study. Clin. Oral Implants Res. 2020, 31, 1094–1104. [Google Scholar] [CrossRef]
- Wassmann, T.; Kreis, S.; Behr, M.; Buergers, R. The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants. Int. J. Implant. Dent. 2017, 3, 32. [Google Scholar] [CrossRef]
- Egawa, M.; Miura, T.; Kato, T.; Saito, A.; Yoshinari, M. In vitro adherence of periodontopathic bacteria to zirconia and titanium surfaces. Dent. Mater. J. 2013, 32, 101–106. [Google Scholar] [CrossRef]
- Lima, E.M.C.X.; Koo, H.; Vacca Smith, A.M.; Rosalen, P.L.; Del Bel Cury, A.A. Adsorption of salivary and serum proteins, and bacterial adherence on titanium and zirconia ceramic surfaces. Clin. Oral Implants Res. 2008, 19, 780–785. [Google Scholar] [CrossRef]
- Ozer, F.; Anadioti, E.; Mack, Y.Y.; Sen, D.; DiRienzo, J.; Blatz, M.B.; Dent, M. Influence of Surface Modifications on Bacterial Adherence to Implant Abutment Materials. Int. J. Periodontics Restorative Dent. 2022, 42, 675. [Google Scholar] [CrossRef]
Study | Study Design | Intervention | Analysis | Marker | Results |
---|---|---|---|---|---|
Degidi et al., 2006 [18] | RCT | Ti and Zi | Immuno-histochemical | CD3, CD20, LCA, VEGF, NOS1, NOS 3 | Higher intensity expression around Ti More than Zi |
Wang et al., 2021 [25] | Animal | Ti and Zn abutments either with ligation (L) or without ligation (N) | ELISA | TNF-α and IL1β | -TNF-α was significantly higher Zn (L) than Zn (N) groups on day 28 -TNF-α level was significantly higher in Ti (L) group on day 28 than that on day 0 -No significant differences in the levels of IL-1β |
Tomasi et al., 2016 [29] | RCT | Ti | Immuno-histochemical | CD3, CD20, CD68, CD34 | Decreasing cell density from 4 to 8 weeks of healing |
Ilinkovic et al., 2022 [30] | RCT | Ti and PEEK | Immuno-histochemical | CD3, CD20, CD68, LCA | CD3 and CD20 were higher around Ti CD68, LCA higher around PEEK |
Bambini et al., 2013 [32] | RCT | Ti and Zi | Immuno-histochemical | CD3, CD20 | -More CD3 around Zi -More CD20 around Ti |
Degidi et al., 2013 [33] | RCT | Ti and Zi | Immuno-histochemical | MMP 2, 3, 8, 9, 13 | -MMP 8, 9 were higher around Ti -MMP 2, 3, 13 showed no difference among both groups |
Serichetaphongse et al., 2020 [36] | RCT | Ti and Zi | Immuno-histochemical | CD3, CD20, CD68, CD138 | -CD3 was higher in Zi group -CD20, CD68, and CD138 showed no difference between the 2 groups |
Kheder et al., 2023 [37] | Cross sectional study/Human | Ti abutments either with successful implants or unsuccessful implants | Immuno-histochemistry | CD68 and CD3 | In instances of unsuccessful implants, there was a greater degree of the positive expression of CD68 and CD3 |
Carmichael et al., 1991 [39] | RCT | Ti | Immuno-histochemical | Keratin 13, 19 and Desmoplakin I, II | -Different expression of keratin 13, 19 around Ti than around gingiva -Less expression of desmoplakin I, II around Ti than gingiva |
Atsuta et al., 2019 [40] | RCT | Ti and Zi | Immuno-histochemical | Laminin-332 | High expression around Ti than Zr |
Ayukawa et al., 2020 [41] | Animal study | Ti and Zi | Immuno-histochemical | IntegrinB4 | Similar results between both groups |
Furuhashi et al., 2021 [42] | Anim al study | Ti and Zr | Immuno-histochemical | Laminin-5 | Similar results between both groups |
Harada et al., 2024 [44] | Animal study | Ti abutments (plasma treated and Untreated surface) | Immuno-histochemistry | Integrins | integrin α2, α5, and β1 showed strong immunoreactions in PL group as compared to control group |
Degidi et al., 2012 [45] | RCT | Ti (acid etched, machined) | Immuno-histochemical | CD3, CD20, Histiocyte, VEGF, NOS1, NOS 3, Ki-67 | More expression around acid etched than machined group |
Nothdurft et al., 2015 [46] | In vitro | Ti and Zi | Immuno-histochemical | HGF-1, HNEpC | -Fibroblast showed higher expression around Zi -Vinoculin expression of epithilal cells showed higher expression around Ti |
Negahdari et al., 2017 [47] | Prospective clinical study | Ti and Zn abutments | ELISA | IL6 and IL1β | -IL6 higher in Ti. -No statistical significance in IL1β |
Roffel et al., 2019 [48] | In vitro | Ti (anodized, unmodified surface) | Immuno-histochemical | Keratin 4, 19, Ki-67, Laminin-5 Collagen IV | Similar results between both groups |
Schwarz et al., 2007 [49] | Animal study | Ti (modified, unmodified) | Immuno-histochemical | FN, PCNA | -PCNA showed more expression around modSLA -FN showed similar results around both groups |
Kumar et al., 2017 [50] | Prospective clinical study/human | Ti and Zn abutments | ELISA | Metalloproteinases (MMP-8) | -Ti abutments showed higher MMP-8 levels abutments at 1 and 3 months -No significant differences were found at 12 months |
Barwacz et al., 2015 [51] | Cross sectional study/human | Ti and Zn abutments | Fluorescent bead-based immunoassay | Proinflammatory cytokines as (IL2, IL4, IL7, IL8, IL12, IL 10, IL13, and TNF α) Leptin | -No significant differences in Pro-inflammatory cytokines -Leptin higher in Ti group |
Cionca et al., 2016 [52] | Cross sectional study/human | Ti, Zn abutments and natural teeth | Bio-Plex 200 suspension array | IL1β, IL1RA, IL6, IL8, IL17, b-FGF, G-CSF, GM-CSF, IFN, MIP-1β, and TNF-α and VEGF | -IL1β and TNF-α were significantly higher in zirconia implants than in teeth -No significant differences were found between zirconia and titanium implants |
Chandra et al., 2023 [53] | RCT | Ti (singular abutments bonded onto Ti bases and singular abutment) | ELISA | IL-1β | IL-1β showed no significant difference between singular abutments bonded onto Ti bases and singular abutments |
Study | Abutment Modifications | Adhesion Gene Expression in HGF/Epithelial Cell | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Titanium | Zirconia | COL1α1 | Integrin β1 | Integrin α2 | FN | FAK | Integrin β4 | Laminin γ2 | Laminin-332 | MMP-1 | TIMP-1 | TGF-β | Vinculin | |
Esfahanizad eh et al., 2016 [58] | Laser-lok | + | + | + | + | |||||||||
Wang et al., 2021 [61] | Super-hydrophilic TNTs | + | + | + | + | |||||||||
Roth et al., 2022 [62] | AM healing | + | ||||||||||||
Hu et al., 2023 [69] | ZnO nanocrystals | + | + | |||||||||||
Kwon et al., 2014 [70] | EMD | + | + | + | ||||||||||
Akashi et al., 2022 [71] | Excimer Laser | + | + | |||||||||||
Kobune et al., 2014 [72] | O2 plasma | + | + | |||||||||||
Gómez-Florit et al., 2014 [73] | Hydride implementation | - | + | |||||||||||
Wu et al., 2021 [74] | BMZ/CSGZ/S GZ | + | + | + |
Study | Study Design | Follow Up | Bacteria |
---|---|---|---|
Van Brakel R. et al., 2011 [77] | RCT | 2 weeks and 3 months | Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythia, Peptostreptococcus micros, Fusobacterium nucleatum, and Treponema denticola |
Do Nascimento. et al., 2016 [80] | RCT | Up to 6 months | Fusobacterium, Prevotella, Actinomyces, Porphyromonas, Veillonella, and Streptococcus |
de Oliveira. et al., 2020 [81] | RCT | 1, 2 and 3 years | A. actinomycetemcomitans serotype A and F. nucleatum |
Nascimento. et al., 2014 [82] | RCT | 24 h | Streptococcus spp. and L. casei as well as putative periodontal pathogens, such as T. denticola, T. forsythia, and P. gingivalis |
de Freitas. et al., 2018 [84] | RCT | 6 months | Firmicutes, Fusobacteria, Actinobacteria, Bacteroidetes, and Proteobacteria |
Do Nascimento. et al., 2013 [85] | RCT | 24 h | Initial biofilm bacterial components such as: Bacterial suspensions of Streptococcus sanguinis and Staphylococcus epidermidis |
Herrmann. et al., 2020 [86] | RCT | 3 days and 31 days | Streptococcus mitis group and Parvimonas micra |
Wassmann. et al., 2017 [87] | In vitro | 48 h | Staphylococcus epidermidis and S. sanguinis |
Egawa. et al., 2013 [88] | In vitro | Up to 2 days | P. gingivalis, P. intermedia, and Aggregatibacter actinomycetemcomitans |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abouel Maaty, F.A.N.; Ragab, M.A.; El-Ghazawy, Y.M.; Elfaiedi, F.I.; Abbass, M.M.S.; Radwan, I.A.; Rady, D.; El Moshy, S.; Korany, N.S.; Ahmed, G.M.; et al. Peri-Implant Soft Tissue in Contact with Zirconium/Titanium Abutments from Histological and Biological Perspectives: A Concise Review. Cells 2025, 14, 129. https://doi.org/10.3390/cells14020129
Abouel Maaty FAN, Ragab MA, El-Ghazawy YM, Elfaiedi FI, Abbass MMS, Radwan IA, Rady D, El Moshy S, Korany NS, Ahmed GM, et al. Peri-Implant Soft Tissue in Contact with Zirconium/Titanium Abutments from Histological and Biological Perspectives: A Concise Review. Cells. 2025; 14(2):129. https://doi.org/10.3390/cells14020129
Chicago/Turabian StyleAbouel Maaty, Fatma A. N., Mai A. Ragab, Yasmin M. El-Ghazawy, Fatma I. Elfaiedi, Marwa M. S. Abbass, Israa Ahmed Radwan, Dina Rady, Sara El Moshy, Nahed Sedky Korany, Geraldine M. Ahmed, and et al. 2025. "Peri-Implant Soft Tissue in Contact with Zirconium/Titanium Abutments from Histological and Biological Perspectives: A Concise Review" Cells 14, no. 2: 129. https://doi.org/10.3390/cells14020129
APA StyleAbouel Maaty, F. A. N., Ragab, M. A., El-Ghazawy, Y. M., Elfaiedi, F. I., Abbass, M. M. S., Radwan, I. A., Rady, D., El Moshy, S., Korany, N. S., Ahmed, G. M., Dörfer, C. E., & El-Sayed, K. M. F. (2025). Peri-Implant Soft Tissue in Contact with Zirconium/Titanium Abutments from Histological and Biological Perspectives: A Concise Review. Cells, 14(2), 129. https://doi.org/10.3390/cells14020129