Mesenchymal Stem/Stromal Cells Microencapsulation for Cell Therapy
Abstract
:1. Introduction
2. MSCs
3. Microencapsulation
4. Materials Used for MSC Microencapsulation
4.1. Alginate
4.2. Collagen
4.3. Cellulose
4.4. Agarose
4.5. Chitosan
4.6. Dextran
4.7. Gelatin
4.8. Hyaluronic Acid
4.9. Polyethylene Glycol
4.10. Poly (Lactic-Co-Glycolic Acid)
5. Microencapsulation Techniques
5.1. Extrusion
5.2. Emulsion
5.3. Microfluidics
5.4. Micromolding
6. Pre-Clinical Studies Using Microencapsulated MSCs
6.1. Musculoskeletal Diseases
6.2. Cardiovascular Diseases
6.3. Diabetes
6.4. Neurological Disorders
6.5. Cancer
6.6. Liver Diseases
Ref. | Cell Type | Encapsulation Material | Encapsulation Technique | Application | Outcomes |
---|---|---|---|---|---|
[11] | BM-MSCs | Alginate | Syringe droplet extrusion | Osteoarthritis | High G alginate prolonged the presence of metabolically active allogenic MSC in immune-competent rats. |
[88] | BM-MSCs | Collagen | Syringe droplet extrusion | Cartilage regeneration | Promotion of chondrogenic differentiation of MSCs when high cell density and high collagen concentration were applied. |
[90] | BM-MSCs | Alginate modified with glycine-arginine-glycine-aspartic acid-glycine | Microfluidic | Bone regeneration | Enhancement of osteogenic differentiation and acceleration of mineralization |
[91] | BM-MSCs | Fibrin/Alginate | Syringe droplet extrusion | Volumetric muscle loss (VML) injuries | Greater muscle regeneration of rat VML in a shorter period. |
[92] | BM-MSCs | Collagen-chitosan | Emulsion | Bone regeneration | Enhancement of ectopic bone formation |
[93] | SHED | RGD-modified alginate | Microfluidic | Bone regeneration | Enhanced cell viability and increased ectopic bone formation |
[116] | BM-MSCs | Alginate | Electrostatic extrusion | Bone regeneration | Enhanced bone formation and bone marrow growth |
[95] | BM-MSCs transduced with BMP2 and/or VEGF | Alginate | Electrostatic extrusion | Bone regeneration | Significant improvement in release of BMP2 and VEGF from genetically modified MSCs with enhancement in osteogenic differentiation. |
[96] | BM-MSCs | Alginate | Electrostatic extrusion | Bone regeneration | Promotion of the osteogenic differentiation of BM-MSCs. |
[97] | PDLSCs, GMSCs, and BM-MSCs | RGD-modified Alginate loaded with TGF-β3 ligand | Syringe droplet extrusion | Tendon regeneration | Effective differentiation into tendon tissue. |
[98] | ASCs | Alginate | Vibrational extrusion | Osteoarthritis | Enhancement of the viability of ASCs in the knee joint and significant reduction in the Osteoarthritis progression and extent. |
[117] | BM-MSCs | Alginate | Syringe droplet extrusion | Bone regeneration | Encapsulating MSCs with PEDF improves differentiation and release of cells compared to encapsulation of MSCs alone |
[118] | PDLSCs and GMSCs | RGD-modified alginate | Microfluidic | Bone regeneration | Higher amounts of ectopic bone regeneration. |
[119] | BM-MSCs | Alginate | Electrostatic extrusion | Orbital bone repair | -Effective induction of osteogenic differentiation. -Greatest bone repair of the orbital wall defect. |
[120] | BM-MSCs | Alginate | Electrostatic extrusion | Osteoarthritis | -Chondroprotective effect through paracrine signaling. -Augmentation of the compensatory increases in osteophyte formation. |
[121] | PDLSCs and GMSCs | RGD-modified Alginate | Microfluidic | Cartilage regeneration | Chondrogenic differentiation of encapsulated PDLSCs and GMSCs. |
[122] | BM-MSCs, PDLSCs, and GMSCs | Alginate | Syringe droplet extrusion | Bone regeneration | Ectopic bone formation around and inside the implemented microcapsules |
[13] | BM-MSCs | Alginate–poly-l-lysine–alginate | Emulsion | Enhancement of vascularization | Reduced immune reaction against grafted MSCs cells by microencapsulation |
[19] | UC-MSCs | GO/Alginate | Electrostatic extrusion | Myocardial infarction | -Enhancement of the therapeutic activity of the MSCs. -Reduction of post-injection oxidative stress. |
[37] | MSCs modified to express erythropoietin | Alginate | Electrostatic extrusion | Erythropoietin delivery | Capsules with lower cell loading showed higher erythropoietin secretion. |
[123] | BM-MSCs | Agarose | Syringe droplet extrusion | Vascular regeneration | -Improvement of viability and metabolic activity of the MSCs as well as cell–cytoskeletal patterning. -Significant increase in the number of engrafted cells. |
[99] | MSCs | Alginate | Electrostatic extrusion | Myocardial infarction | Higher cell retention and increase in vasculature around infarct site |
[101] | MSCs | RGD- modified Alginate | Electrostatic extrusion | Myocardial infarction | -Effective delivery of the MSCs to the site of infraction. -Maintaining the LV shape and preventing its negative remodeling. |
[103] | BM-MSCs | Alginate–poly-L-lysine–alginate | Electrostatic extrusion | Myocardial infarction | Angiogenesis augmentation and heart function improvement in acute myocardial infarction. |
[104] | BM-MSCs | Alginate | Electrostatic extrusion | Hindlimb ischemia | Significant enhancement of vascular recovery in mouse model of ischemic hindlimb. |
[124] | IX–engineered MSCs | Alginate | Electrostatic extrusion | Hemophilia treatment. | -Factor IX secretion was increased by encapsulated MSCs -osteogenic differentiation was also observed |
[125] | MSCs | Alginate-poly-L-lysine-alginate | Electrostatic Extrusion | Erythropoietin delivery | Long-lasting (up to 210 days) secretion of erythropoietin after loading the microcapsules in vivo. |
[1] | BM-MSCs | Alginate | Air jet extrusion | Islets transplantation | -Improvement of the viability of islets. -MSC–alginate beads exhibited an ability to interactively modulate their microenvironment by IDO activity and secreting several immunomodulatory and trophic factors over a long-term. |
[16] | UC-MSCs | Alginate | Syringe droplet extrusion | Type 1 diabetes | Reversal of hyperglycemic status by the synergistic effect of MSCs with pancreatic islet-derived progenitor cells. |
[23] | BM-MSCs | Alginate-chitosan | Electrostatic extrusion | Type 1 diabetes | Reduction of blood glucose to levels close to the normal blood glucose level of healthy mice. |
[106] | ASCs | Alginate | Air-jet extrusion | Co-encapsulation of MSCs with pancreatic Islets transplantation | Significant improvement in the functionality and viability of the transplanted islets. |
[25] | GLP-1 releasing MSCs | Alginate | Extrusion | Amyotrophic lateral sclerosis (ALS) | -Delayed symptom onset and reduction of inflammatory markers -Improved motor performance and prolonged survival. |
[110] | MSCs | Alginate poly-L-lysine | Electrostatic extrusion | Post-spinal cord injury | Microencapsulation of MSC is involved in the post-CNS traumatic tissue protective therapy through the conversion of macrophages to the M2 subset. |
[126] | BDNF-over-expressing BM-MSCs | Alginate | Air-jet extrusion | Deafness | Improved cochlear implant outcome; increased spiral ganglion neuron survival, bipolar morphology, and neurite outgrowth. |
[113] | BM-MSCs | Alginate | Air-jet extrusion | Glioma tumor | Suppression of the tumor growth. |
[22] | WJ-MSCs | Alginate | Syringe droplet extrusion | Breast cancer | Down-regulation of pro-proliferation markers, drug transporters, epithelial-mesenchymal transition-associated markers, and angiogenesis-related genes. |
[127] | BM-MSCs | Alginate-poly-L-lysine-alginate | Air-jet extrusion | Glioblastoma | A 3-fold decrease in cytokine expression compared to entrapped cell lines. |
[17] | BM-MSCs | Alginate-poly-L-lysine-alginate | Electrostatic extrusion | Acute liver failure | Significant enhancement of hepatocyte-specific functions, including albumin secretion and urea synthesis. |
[18] | BM-MSCs | Alginate | Air jet extrusion | Pericapsular fibrotic overgrowth around alginate microcapsule PFO | Dose-dependent reduction in PFO and improved graft survival with significantly higher cell viability. |
[20] | BM-MSCs | Alginate | Air jet extrusion | Liver fibrosis | Microencapsulated BM-MSCs showed anti-fibrotic effect |
[21] | BM-MSCs | Alginate/collagen | Electrostatic extrusion | Liver repair and regeneration | Co-encapsulation with AML12 hepatocytes allowed MSCs to differentiate into hepatocytes and be involved in hepatic regeneration |
[35] | ASCs | Alginate | Vibrational extrusion | Cell viability inside the microcapsule | Improved cell viability and retention in vivo. |
[128] | BM-MSCs | Alginate | Vibrational extrusion | Cell viability inside the microcapsule | Encapsulated cells remained viable under the kidney capsule with the release of factor bFGF. |
[129] | MSCs | Alginate | Extrusion | Cell viability inside the microcapsule | Encapsulated MSCs were active for several weeks and acted as a release system |
7. Current Challenges and Future Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaithilingam, V.; Evans, M.D.M.; Lewy, D.M.; Bean, P.A.; Bal, S.; Tuch, B.E. Co-encapsulation and co-transplantation of mesenchymal stem cells reduces pericapsular fibrosis and improves encapsulated islet survival and function when allografted. Sci. Rep. 2017, 7, 10059. [Google Scholar]
- Liu, S.; Zhou, J.; Zhang, X.; Liu, Y.; Chen, J.; Hu, B.; Song, J.; Zhang, Y. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration. Int. J. Mol. Sci. 2016, 17, 982. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Park, J.-S. Usage of Human Mesenchymal Stem Cells in Cell-based Therapy: Advantages and Disadvantages. Dev. Reprod. 2017, 21, 1–10. [Google Scholar] [PubMed]
- Chen, Q.; Shou, P.; Zheng, C.; Jiang, M.; Cao, G.; Yang, Q.; Cao, J.; Xie, N.; Velletri, T.; Zhang, X.; et al. Fate decision of mesenchymal stem cells: Adipocytes or osteoblasts? Cell Death Differ. 2016, 23, 1128–1139. [Google Scholar] [PubMed]
- Caplan, A.I. Mesenchymal stem cells. J. Orthop. Res. 1991, 9, 641–650. [Google Scholar] [PubMed]
- Caplan, A.I.; Dennis, J.E. Mesenchymal stem cells as trophic mediators. J. Cell. Biochem. 2006, 98, 1076–1084. [Google Scholar] [CrossRef]
- Li, C.; Zhao, H.; Wang, B. Challenges for Mesenchymal Stem Cell-Based Therapy for COVID-19. Drug Des. Dev. Ther. 2020, 14, 3995–4001. [Google Scholar]
- de Vos, P.; Bučko, M.; Gemeiner, P.; Navrátil, M.; Svitel, J.; Faas, M.; Strand, B.L.; Skjak-Braek, G.; Morch, Y.A.; Vikartovská, A.; et al. Multiscale requirements for bioencapsulation in medicine and biotechnology. Biomaterials 2009, 30, 2559–2570. [Google Scholar] [PubMed]
- Orive, G.; De Castro, M.; Ponce, S.; Hernández, R.M.; Gascón, A.R.; Bosch, M.; Alberch, J.; Pedraz, J.L. Long-term expression of erythropoietin from myoblasts immobilized in biocompatible and neovascularized microcapsules. Mol. Ther. 2005, 12, 283–289. [Google Scholar]
- Griffith, L.G.; Naughton, G. Tissue engineering—Current challenges and expanding opportunities. Science 2002, 295, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Khatab, S.; Leijs, M.J.; van Buul, G.; Haeck, J.; Kops, N.; Nieboer, M.; Bos, P.K.; Verhaar, J.A.N.; Bernsen, M.; van Osch, G.J.V.M. MSC encapsulation in alginate microcapsules prolongs survival after intra-articular injection, a longitudinal in vivo cell and bead integrity tracking study. Cell Biol. Toxicol. 2020, 36, 553–570. [Google Scholar] [CrossRef]
- Daly, A.C.; Riley, L.; Segura, T.; Burdick, J.A. Hydrogel microparticles for biomedical applications. Nat. Rev. Mater. 2020, 5, 20–43. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Fu, Y.; Shea, S.M.; Hegde, S.S.; Kraitchman, D.L. Quantitative CT and 19 F-MRI tracking of perfluorinated encapsulated mesenchymal stem cells to assess graft immunorejection. Magn. Reson. Mater. Phys. Biol. Med. 2019, 32, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Adams, G.; Buttery, L.; Falcone, F.H.; Stolnik, S. Alginate encapsulation technology supports embryonic stem cells differentiation into insulin-producing cells. J. Biotechnol. 2009, 144, 304–312. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Ma, J.; Khoo, T.S.; Abdullah, N.; Kahar, N.N.F.N.M.N.; Hamid, Z.A.A.; Mustapha, M. Polysaccharide-Based Hydrogels for Microencapsulation of Stem Cells in Regenerative Medicine. Front. Bioeng. Biotechnol. 2021, 9, 735090. [Google Scholar]
- Montanucci, P.; Pescara, T.; Greco, A.; Leonardi, G.; Marini, L.; Basta, G.; Calafiore, R. Co-microencapsulation of human umbilical cord-derived mesenchymal stem and pancreatic islet-derived insulin producing cells in experimental type 1 diabetes. Diabetes/Metab. Res. Rev. 2021, 37, e3372. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.-L.; Zhang, Y.; Gu, J.-Y.; Ding, Y.-T. Coencapsulation of hepatocytes with bone marrow mesenchymal stem cells improves hepatocyte-specific functions. Transplantation 2009, 88, 1178–1185. [Google Scholar] [CrossRef]
- Vaithilingam, V.; Evans, M.D.M.; Rowe, A.; Bean, P.A.; Tuch, B.E. Coencapsulation of Target Effector Cells with Mesenchymal Stem Cells Reduces Pericapsular Fibrosis and Improves Graft Survival in a Xenotransplanted Animal Model. Cell Transplant. 2016, 25, 1299–1317. [Google Scholar] [CrossRef]
- Choe, G.; Kim, S.W.; Park, J.; Park, J.; Kim, S.; Kim, Y.S.; Ahn, Y.; Jung, D.W.; Williams, D.R.; Lee, J.Y. Anti-oxidant activity reinforced reduced graphene oxide/alginate microgels: Mesenchymal stem cell encapsulation and regeneration of infarcted hearts. Biomaterials 2019, 225, 119513. [Google Scholar]
- Meier, R.P.; Mahou, R.; Morel, P.; Meyer, J.; Montanari, E.; Muller, Y.D.; Christofilopoulos, P.; Wandrey, C.; Gonelle-Gispert, C.; Bühler, L.H. Microencapsulated human mesenchymal stem cells decrease liver fibrosis in mice. J. Hepatol. 2015, 62, 634–641. [Google Scholar] [CrossRef]
- Chang, S.H.; Huang, H.H.; Kang, P.L.; Wu, Y.C.; Chang, M.-H.; Kuo, S.M. In vitro and in vivo study of the application of volvox spheres to co-culture vehicles in liver tissue engineering. Acta Biomater. 2017, 63, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Arfuso, F.; Sethi, G.; Dharmarajan, A.; Warrier, S. Encapsulated human mesenchymal stem cells (eMSCs) as a novel anti-cancer agent targeting breast cancer stem cells: Development of 3D primed therapeutic MSCs. Int. J. Biochem. Cell Biol. 2019, 110, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Long, R.; Liu, Y.; Wang, S.; Ye, L.; He, P. Co-microencapsulation of BMSCs and mouse pancreatic beta cells for improving the efficacy of type I diabetes therapy. Int. J. Artif. Organs 2017, 40, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Llacua, A.; de Haan, B.J.; Smink, S.A.; de Vos, P. Extracellular matrix components supporting human islet function in alginate-based immunoprotective microcapsules for treatment of diabetes. J. Biomed. Mater. Res A 2016, 104, 1788–1796. [Google Scholar] [CrossRef]
- Knippenberg, S.; Thau, N.; Dengler, R.; Brinker, T.; Petri, S. Intracerebroventricular injection of encapsulated human mesenchymal cells producing glucagon-like peptide 1 prolongs survival in a mouse model of ALS. PLoS ONE 2012, 7, e36857. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.J.; Bae, Y.K.; Kim, M.; Kwon, S.-J.; Jeon, H.B.; Choi, S.J.; Kim, S.W.; Yang, Y.S.; Oh, W.; Chang, J.W. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int. J. Mol. Sci. 2013, 14, 17986–18001. [Google Scholar] [CrossRef] [PubMed]
- Pittenger, M.F.; Discher, D.E.; Péault, B.M.; Phinney, D.G.; Hare, J.M.; Caplan, A.I. Mesenchymal stem cell perspective: Cell biology to clinical progress. NP Regen. Med. 2019, 4, 22. [Google Scholar] [CrossRef]
- Kyurkchiev, D.; Bochev, I.; Ivanova-Todorova, E.; Mourdjeva, M.; Oreshkova, T.; Belemezova, K.; Kyurkchiev, S. Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J. Stem Cells 2014, 6, 552–570. [Google Scholar] [CrossRef] [PubMed]
- Park, C.W.; Kim, K.-S.; Bae, S.; Son, H.K.; Myung, P.-K.; Hong, H.J.; Kim, H. Cytokine secretion profiling of human mesenchymal stem cells by antibody array. Int. J. Stem Cells 2009, 2, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Orive, G.; Santos, E.; Pedraz, J.L.; Hernández, R.M. Application of cell encapsulation for controlled delivery of biological therapeutics. Adv. Drug Deliv. Rev. 2014, 67–68, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Orive, G.; Hernandez, R.M.; Gascón, A.R.; Calafiore, R.; Chang, T.M.; Vos, P.D.; Hortelano, G.; Hunkeler, D.; Lacik, I.; Shapiro, A.J.; et al. Cell encapsulation: Promise and progress. Nat. Med. 2003, 9, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Orive, G.; Hernández, R.M.; Gascón, A.R.; Calafiore, R.; Chang, T.M.S.; de Vos, P.; Hortelano, G.; Hunkeler, D.; Lacík, I.; Pedraz, J.L. History, challenges and perspectives of cell microencapsulation. Trends Biotechnol. 2004, 22, 87–92. [Google Scholar] [CrossRef]
- Barnett, B.P.; Arepally, A.; Karmarkar, P.V.; Qian, D.; Gilson, W.D.; Walczak, P.; Howland, V.; Lawler, L.; Lauzon, C.; Stuber, M.; et al. Magnetic resonance–guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells. Nat. Med. 2007, 13, 986–991. [Google Scholar] [CrossRef]
- Orive, G.; De Castro, M.; Kong, H.-J.; Hernández, R.M.; Ponce, S.; Mooney, D.J.; Pedraz, J.L. Bioactive cell-hydrogel microcapsules for cell-based drug delivery. J. Control. Release 2009, 135, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Koh, E.; Jung, Y.C.; Woo, H.-M.; Kang, B.-J. Injectable alginate-microencapsulated canine adipose tissue-derived mesenchymal stem cells for enhanced viable cell retention. J. Vet. Med. Sci. 2017, 79, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Bae, C.; Kook, Y.-M.; Koh, W.-G.; Lee, K.; Park, M.H. Mesenchymal stem cell 3D encapsulation technologies for biomimetic microenvironment in tissue regeneration. Stem Cell Res. Ther. 2019, 10, 51. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Mendez, T.B.; Santos-Vizcaino, E.; Blanco, F.J.; Pedraz, J.L.; Hernandez, R.M.; Orive, G. Improved control over MSCs behavior within 3D matrices by using different cell loads in both in vitro and in vivo environments. Int. J. Pharm. 2017, 533, 62–72. [Google Scholar] [CrossRef]
- Ashimova, A.; Yegorov, S.; Negmetzhanov, B.; Hortelano, G. Cell Encapsulation Within Alginate Microcapsules: Immunological Challenges and Outlook. Front. Bioeng. Biotechnol. 2019, 7, 380. [Google Scholar] [CrossRef] [PubMed]
- Trucillo, P. Biomaterials for Drug Delivery and Human Applications. Materials 2024, 17, 456. [Google Scholar] [CrossRef]
- Li, H.; Xu, X.; Wu, L.; Chen, X.; Akhter, H.; Wang, Y.; Song, P.; Liao, X.; Zhang, Z.; Li, Z.; et al. Recent progress and clinical applications of advanced biomaterials in cosmetic surgery. Regen. Biomater. 2023, 10, rbad005. [Google Scholar] [CrossRef] [PubMed]
- Gryshkov, O.; Mutsenko, V.; Tarusin, D.; Khayyat, D.; Naujok, O.; Riabchenko, E.; Nemirovska, Y.; Danilov, A.; Petrenko, A.Y.; Glasmacher, B. Coaxial Alginate Hydrogels: From Self-Assembled 3D Cellular Constructs to Long-Term Storage. Int. J. Mol. Sci. 2021, 22, 3096. [Google Scholar] [CrossRef]
- Tam, S.K.; Dusseault, J.; Bilodeau, S.; Langlois, G.; Hallé, J.; Yahia, L. Factors influencing alginate gel biocompatibility. J. Biomed. Mater. Res. Part A 2011, 98, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Hached, F.; Vinatier, C.; Le Visage, C.; Gondé, H.; Guicheux, J.; Grimandi, G.; Billon-Chabaud, A. Biomaterial-assisted cell therapy in osteoarthritis: From mesenchymal stem cells to cell encapsulation. Best Pr. Res. Clin. Rheumatol. 2017, 31, 730–745. [Google Scholar] [CrossRef]
- de Vos, P.; Lazarjani, H.A.; Poncelet, D.; Faas, M.M. Polymers in cell encapsulation from an enveloped cell perspective. Adv. Drug Deliv. Rev. 2014, 67–68, 15–34. [Google Scholar] [CrossRef]
- Garate, A.; Ciriza, J.; Casado, J.G.; Blazquez, R.; Pedraz, J.L.; Orive, G.; Hernandez, R.M. Assessment of the Behavior of Mesenchymal Stem Cells Immobilized in Biomimetic Alginate Microcapsules. Mol. Pharm. 2015, 12, 3953–3962. [Google Scholar] [CrossRef] [PubMed]
- Paredes-Juarez, G.A.; de Haan, B.J.; Faas, M.M.; de Vos, P. A Technology Platform to Test the Efficacy of Purification of Alginate. Materials 2014, 7, 2087–2103. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, R.; Ko, D.; Foster, C.E., III; Liu, W.; Smink, A.M.; de Haan, B.; De Vos, P.; Lakey, J.R. Immunological Challenges Facing Translation of Alginate Encapsulated Porcine Islet Xenotransplantation to Human Clinical Trials. Methods Mol. Biol. 2017, 1479, 305–333. [Google Scholar] [PubMed]
- Dorrington, M.G.; Fraser, I.D.C. NF-kappaB Signaling in Macrophages: Dynamics, Crosstalk, and Signal Integration. Front. Immunol. 2019, 10, 705. [Google Scholar] [CrossRef]
- Pearl, J.I.; Ma, T.; Irani, A.R.; Huang, Z.; Robinson, W.H.; Smith, R.L.; Goodman, S.B. Role of the Toll-like receptor pathway in the recognition of orthopedic implant wear-debris particles. Biomaterials 2011, 32, 5535–5542. [Google Scholar] [CrossRef]
- Vaure, C.; Liu, Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front. Immunol. 2014, 5, 316. [Google Scholar] [CrossRef] [PubMed]
- Vaithilingam, V.; Kollarikova, G.; Qi, M.; Larsson, R.; Lacik, I.; Formo, K.; Marchese, E.; Oberholzer, J.; Guillemin, G.J.; Tuch, B.E. Beneficial effects of coating alginate microcapsules with macromolecular heparin conjugates-in vitro and in vivo study. Tissue Eng. Part A 2014, 20, 324–334. [Google Scholar] [CrossRef]
- Paredes-Juarez, G.A.; Sahasrabudhe, N.M.; Tjoelker, R.S.; de Haan, B.J.; Engelse, M.A.; de Koning, E.J.P.; Faas, M.M.; de Vos, P. DAMP production by human islets under low oxygen and nutrients in the presence or absence of an immunoisolating-capsule and necrostatin-1. Sci. Rep. 2015, 5, 14623. [Google Scholar] [CrossRef]
- Ricard-Blum, S. The collagen family. Cold Spring Harb. Perspect. Biol. 2011, 3, a004978. [Google Scholar] [CrossRef] [PubMed]
- Wise, J.K.; Alford, A.I.; Goldstein, S.A.; Stegemann, J.P. Comparison of uncultured marrow mononuclear cells and culture-expanded mesenchymal stem cells in 3D collagen-chitosan microbeads for orthopedic tissue engineering. Tissue Eng. Part A 2014, 20, 210–224. [Google Scholar] [CrossRef]
- Chan, B.P.; Hui, T.Y.; Wong, M.Y.; Yip, K.H.K.; Chan, G.C.F. Mesenchymal stem cell-encapsulated collagen microspheres for bone tissue engineering. Tissue Eng. Part C Methods 2010, 16, 225–235. [Google Scholar] [CrossRef]
- Lee, H.; Woo, H.M.; Kang, B.J. Impact of collagen-alginate composition from microbead morphological properties to microencapsulated canine adipose tissue-derived mesenchymal stem cell activities. J. Biomater. Sci. Polym. Ed. 2018, 29, 1042–1052. [Google Scholar] [CrossRef]
- Li, Y.Y.; Lam, K.L.; Chen, A.D.; Zhang, W.; Chan, B.P. Collagen microencapsulation recapitulates mesenchymal condensation and potentiates chondrogenesis of human mesenchymal stem cells—A matrix-driven in vitro model of early skeletogenesis. Biomaterials 2019, 213, 119210. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Li, Y.Y.; Chan, B.P. Extracellular Protease Inhibition Alters the Phenotype of Chondrogenically Differentiating Human Mesenchymal Stem Cells (MSCs) in 3D Collagen Microspheres. PLoS ONE 2016, 11, e0146928. [Google Scholar] [CrossRef]
- Teong, B.; Manousakas, I.; Chang, S.J.; Huang, H.H.; Ju, K.-C.; Kuo, S.M. Alternative approach of cell encapsulation by Volvox spheres. Mater. Sci. Eng. C 2015, 55, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Bussche, L.; Harman, R.M.; A Syracuse, B.; Plante, E.L.; Lu, Y.-C.; Curtis, T.M.; Ma, M.; Van de Walle, G.R. Microencapsulated equine mesenchymal stromal cells promote cutaneous wound healing in vitro. Stem Cell Res. Ther. 2015, 6, 66. [Google Scholar] [CrossRef] [PubMed]
- Batorsky, A.; Liao, J.; Lund, A.W.; Plopper, G.E.; Stegemann, J.P. Encapsulation of adult human mesenchymal stem cells within collagen-agarose microenvironments. Biotechnol. Bioeng. 2005, 92, 492–500. [Google Scholar] [CrossRef]
- Du, X.; Huang, F.; Zhang, S.; Yao, Y.; Chen, Y.; Chen, Y.; Huang, H.; Bai, B. Carboxymethylcellulose with phenolic hydroxyl microcapsules enclosinggene-modified BMSCs for controlled BMP-2 release In Vitro. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1710–1720. [Google Scholar] [PubMed]
- Hashemi, M.; Kalalinia, F. Application of encapsulation technology in stem cell therapy. Life Sci. 2015, 143, 139–146. [Google Scholar]
- Nativel, F.; Renard, D.; Hached, F.; Pinta, P.-G.; D’arros, C.; Weiss, P.; Le Visage, C.; Guicheux, J.; Billon-Chabaud, A.; Grimandi, G. Application of Millifluidics to Encapsulate and Support Viable Human Mesenchymal Stem Cells in a Polysaccharide Hydrogel. Int. J. Mol. Sci. 2018, 19, 1952. [Google Scholar] [CrossRef]
- Alvarado-Velez, M.; Enam, S.F.; Mehta, N.; Lyon, J.G.; LaPlaca, M.C.; Bellamkonda, R.V. Immuno-suppressive hydrogels enhance allogeneic MSC survival after transplantation in the injured brain. Biomaterials 2021, 266, 120419. [Google Scholar]
- Xiang, P.M.K.; Zhi, H.W.; Aziz, N.S.; Hadri, N.A.; Ghazalli, N.F.; Yusop, N. Optimization of agarose-alginate hydrogel bead components for encapsulation and transportation of stem cells. J. Taibah Univ. Med. Sci. 2023, 18, 104–116. [Google Scholar]
- Boido, M.; Ghibaudi, M.; Gentile, P.; Favaro, E.; Fusaro, R.; Tonda-Turo, C. Chitosan-based hydrogel to support the paracrine activity of mesenchymal stem cells in spinal cord injury treatment. Sci. Rep. 2019, 9, 6402. [Google Scholar]
- Sharifi, F.; Hasani, M.; Atyabi, S.M.; Yu, B.; Ghalandari, B.; Li, D.; Ghorbani, F.; Irani, S.; Gholami, M. Mesenchymal stem cells encapsulation in chitosan and carboxymethyl chitosan hydrogels to enhance osteo-differentiation. Mol. Biol. Rep. 2022, 49, 12063–12075. [Google Scholar]
- Liu, T.; Li, J.; Shao, Z.; Ma, K.; Zhang, Z.; Wang, B.; Zhang, Y. Encapsulation of mesenchymal stem cells in chitosan/beta-glycerophosphate hydrogel for seeding on a novel calcium phosphate cement scaffold. Med. Eng. Phys. 2018, 56, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Yu, C.; Liu, N.; Zhao, M.; Chen, Z.; Liu, J.; Li, G.; Huang, H.; Guo, H.; Sun, T.; et al. Injectable conductive gelatin methacrylate/oxidized dextran hydrogel encapsulating umbilical cord mesenchymal stem cells for myocardial infarction treatment. Bioact. Mater. 2022, 13, 119–134. [Google Scholar] [CrossRef]
- Gan, Y.; Li, S.; Li, P.; Xu, Y.; Wang, L.; Zhao, C.; Ouyang, B.; Tu, B.; Zhang, C.; Luo, L.; et al. A Controlled Release Codelivery System of MSCs Encapsulated in Dextran/Gelatin Hydrogel with TGF-beta3-Loaded Nanoparticles for Nucleus Pulposus Regeneration. Stem Cells Int. 2016, 2016, 9042019. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Wei, Z.; Zhu, X.L.; Huang, G.Y.; Xu, F.; Yang, J.H.; Osada, Y.; Zrínyi, M.; Li, J.H.; Chen, Y.M. Dextran-based hydrogel formed by thiol-Michael addition reaction for 3D cell encapsulation. Colloids Surf. B Biointerfaces 2015, 128, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.J.; Park, E.-H.; Ryu, S.; Lee, Y.; Kim, E.; Kang, K.; Lee, K.Y.; Choo, E.-H.; Hwang, B.-H.; Youn, H.-J.; et al. MSC-Encapsulating in Situ Cross-Linkable Gelatin Hydrogels to Promote Myocardial Repair. ACS Appl. Bio Mater. 2020, 3, 1646–1655. [Google Scholar] [CrossRef]
- Tzouanas, S.N.; Ekenseair, A.K.; Kasper, F.K.; Mikos, A.G. Mesenchymal stem cell and gelatin microparticle encapsulation in thermally and chemically gelling injectable hydrogels for tissue engineering. J. Biomed. Mater. Res. Part A 2014, 102, 1222–1230. [Google Scholar] [CrossRef] [PubMed]
- Pangjantuk, A.; Kaokaen, P.; Kunhorm, P.; Chaicharoenaudomrung, N.; Noisa, P. 3D culture of alginate-hyaluronic acid hydrogel supports the stemness of human mesenchymal stem cells. Sci. Rep. 2024, 14, 4436. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.; Tian, C.; Bai, Y.; Wu, L.; Hao, L.; Kuang, Y.; Yang, S.; Mao, H.; Gu, Z. Photo-crosslinkable hyaluronic acid microgels with reactive oxygen species scavenging capacity for mesenchymal stem cell encapsulation. Int. J. Biol. Macromol. 2023, 243, 124971. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.; Burdick, J.A. Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis. Tissue Eng. Part A 2009, 15, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Na, K.-S.; Fernandes-Cunha, G.M.; Varela, I.B.; Lee, H.J.; Seo, Y.A.; Myung, D. Effect of mesenchymal stromal cells encapsulated within polyethylene glycol-collagen hydrogels formed in situ on alkali-burned corneas in an ex vivo organ culture model. Cytotherapy 2021, 23, 500–509. [Google Scholar] [CrossRef]
- Jiang, Z.; Jiang, K.; Si, H.; McBride, R.; Kisiday, J.; Oakey, J. One Step Encapsulation of Mesenchymal Stromal Cells in PEG Norbornene Microgels for Therapeutic Actions. ACS Biomater. Sci. Eng. 2023, 9, 6322–6332. [Google Scholar] [CrossRef]
- Tee, B.C.; Desai, K.G.H.; Kennedy, K.S.; Sonnichsen, B.; Kim, D.-G.; Fields, H.W.; Mallery, S.R.; Schwendeman, S.P.; Sun, Z. Reconstructing jaw defects with MSCs and PLGA-encapsulated growth factors. Am. J. Transl. Res. 2016, 8, 2693–2704. [Google Scholar]
- Shen, N.; Polyanskaya, A.; Qi, X.; Al Othman, A.; Permyakova, A.; Volkova, M.; Mezentsev, A.; Durymanov, M. Modification of mesenchymal stromal cells with silibinin-loaded PLGA nanoparticles improves their therapeutic efficacy for cutaneous wound repair. Nanomedicine 2024, 61, 102767. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Huang, S.; Wang, J.; Lan, Y.; Feng, L.; Zhu, M.; Xiao, Y.; Cheng, B.; Xue, W.; Guo, R. Enhanced cutaneous wound healing by functional injectable thermo-sensitive chitosan-based hydrogel encapsulated human umbilical cord-mesenchymal stem cells. Int. J. Biol. Macromol. 2019, 137, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Choe, G.; Park, J.; Park, H.; Lee, J.Y. Hydrogel Biomaterials for Stem Cell Microencapsulation. Polymers 2018, 10, 997. [Google Scholar] [CrossRef] [PubMed]
- Halldorsson, S.; Lucumi, E.; Gomez-Sjoberg, R.; Fleming, R.M.T. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens. Bioelectron. 2015, 63, 218–231. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; An, C.; Zhang, Y.; Shao, F.; Gao, Y.; Zhang, Y.; Li, H.; Zhang, Y.; Ren, C.; et al. Large-scale single-cell encapsulation in microgels through metastable droplet-templating combined with microfluidic-integration. Biofabrication 2022, 14, 035015. [Google Scholar] [CrossRef] [PubMed]
- Alkayyali, T.; Cameron, T.; Haltli, B.; Kerr, R.; Ahmadi, A. Microfluidic and cross-linking methods for encapsulation of living cells and bacteria—A review. Anal. Chim. Acta 2019, 1053, 1–21. [Google Scholar] [CrossRef]
- Nativel, F.; Smith, A.; Boulestreau, J.; Lépine, C.; Baron, J.; Marquis, M.; Vignes, C.; Le Guennec, Y.; Veziers, J.; Lesoeur, J.; et al. Micromolding-based encapsulation of mesenchymal stromal cells in alginate for intraarticular injection in osteoarthritis. Mater. Today Bio. 2023, 19, 100581. [Google Scholar] [CrossRef]
- Hui, T.; Cheung, K.; Cheung, W.; Chan, D.; Chan, B. In vitro chondrogenic differentiation of human mesenchymal stem cells in collagen microspheres: Influence of cell seeding density and collagen concentration. Biomaterials 2008, 29, 3201–3212. [Google Scholar] [CrossRef]
- Moshaverinia, A.; Chen, C.; Akiyama, K.; Ansari, S.; Xu, X.; Chee, W.W.; Schricker, S.R.; Shi, S. Alginate hydrogel as a promising scaffold for dental-derived stem cells: An in vitro study. J. Mater. Sci. Mater. Med. 2012, 23, 3041–3051. [Google Scholar] [CrossRef] [PubMed]
- An, C.; Liu, W.; Zhang, Y.; Pang, B.; Liu, H.; Zhang, Y.; Zhang, H.; Zhang, L.; Liao, H.; Ren, C.; et al. Continuous microfluidic encapsulation of single mesenchymal stem cells using alginate microgels as injectable fillers for bone regeneration. Acta Biomater. 2020, 111, 181–196. [Google Scholar] [CrossRef] [PubMed]
- Lalegul-Ulker, O.; Seker, S.; Elcin, A.E.; Elcin, Y.M. Encapsulation of bone marrow-MSCs in PRP-derived fibrin microbeads and preliminary evaluation in a volumetric muscle loss injury rat model: Modular muscle tissue engineering. Artif. Cells Nanomed. Biotechnol. 2019, 47, 10–21. [Google Scholar] [CrossRef]
- Wise, J.K.; Alford, A.I.; Goldstein, S.A.; Stegemann, J.P. Synergistic enhancement of ectopic bone formation by supplementation of freshly isolated marrow cells with purified MSC in collagen–chitosan hydrogel microbeads. Connect. Tissue Res. 2016, 57, 516–525. [Google Scholar] [CrossRef]
- Ansari, S.; Chen, C.; Hasani-Sadrabadi, M.M.; Yu, B.; Zadeh, H.H.; Wu, B.M.; Moshaverinia, A. Hydrogel elasticity and microarchitecture regulate dental-derived mesenchymal stem cell-host immune system cross-talk. Acta Biomater. 2017, 60, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Skok, V.I. Channel-blocking mechanism ensures specific blockade of synaptic transmission. Neuroscience 1986, 17, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Zhou, H.; Yan, C.; Wang, Y.; Xiao, C.; Gu, P.; Fan, X. In Vitro osteogenic induction of bone marrow stromal cells with encapsulated gene-modified bone marrow stromal cells and in vivo implantation for orbital bone repair. Tissue Eng. Part A 2014, 20, 2019–2029. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Zhao, Y.; Li, D.; Shen, H.; Yan, M. Dual delivery of encapsulated BM-MSCs and BMP-2 improves osteogenic differentiation and new bone formation. J. Biomed. Mater. Res. Part A 2019, 107, 2282–2295. [Google Scholar] [CrossRef]
- Moshaverinia, A.; Xu, X.; Chen, C.; Ansari, S.; Zadeh, H.H.; Snead, M.L.; Shi, S. Application of stem cells derived from the periodontal ligament or gingival tissue sources for tendon tissue regeneration. Biomaterials 2014, 35, 2642–2650. [Google Scholar] [CrossRef]
- Choi, S.; Kim, J.H.; Ha, J.; Jeong, B.I.; Jung, Y.C.; Lee, G.S.; Woo, H.M.; Kang, B.J. Intra-Articular Injection of Alginate-Microencapsulated Adipose Tissue-Derived Mesenchymal Stem Cells for the Treatment of Osteoarthritis in Rabbits. Stem Cells Int. 2018, 2018, 2791632. [Google Scholar] [CrossRef]
- Levit, R.D.; Landázuri, N.; Phelps, E.A.; Brown, M.E.; García, A.J.; Davis, M.E.; Joseph, G.; Long, R.; Safley, S.A.; Suever, J.D.; et al. Cellular encapsulation enhances cardiac repair. J. Am. Heart Assoc. 2013, 2, e000367. [Google Scholar] [CrossRef] [PubMed]
- de Jong, R.; van Hout, G.P.; Houtgraaf, J.H.; Kazemi, K.; Wallrapp, C.; Lewis, A.; Pasterkamp, G.; Hoefer, I.E.; Duckers, H.J. Intracoronary infusion of encapsulated glucagon-like peptide-1-eluting mesenchymal stem cells preserves left ventricular function in a porcine model of acute myocardial infarction. Circ. Cardiovasc. Interv. 2014, 7, 673–683. [Google Scholar] [CrossRef]
- Yu, J.; Du, K.T.; Fang, Q.; Gu, Y.; Mihardja, S.S.; Sievers, R.E.; Wu, J.C.; Lee, R.J. The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat. Biomaterials 2010, 31, 7012–7020. [Google Scholar] [CrossRef] [PubMed]
- Mu, L.; Dong, R.; Li, C.; Chen, J.; Huang, Y.; Li, T.; Guo, B. ROS responsive conductive microspheres loaded with salvianolic acid B as adipose derived stem cell carriers for acute myocardial infarction treatment. Biomaterials 2025, 314, 122849. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, G.; Hou, Y.; Chen, J.; Wang, J.; Zou, C.; Li, D.; Li, H.; Zhang, Q.; Wang, A.; et al. Transplantation of microencapsulated Schwann cells and mesenchymal stem cells augment angiogenesis and improve heart function. Mol. Cell. Biochem. 2012, 366, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Landázuri, N.; Levit, R.D.; Joseph, G.; Ortega-Legaspi, J.M.; Flores, C.A.; Weiss, D.; Sambanis, A.; Weber, C.J.; Safley, S.A.; Taylor, W.R. Alginate microencapsulation of human mesenchymal stem cells as a strategy to enhance paracrine-mediated vascular recovery after hindlimb ischaemia. J. Tissue Eng. Regen. Med. 2016, 10, 222–232. [Google Scholar] [CrossRef]
- Basile, G.; Qadir, M.M.F.; Mauvais-Jarvis, F.; Vetere, A.; Shoba, V.; Modell, A.E.; Pastori, R.L.; Russ, H.A.; Wagner, B.K.; Dominguez-Bendala, J. Emerging diabetes therapies: Bringing back the beta-cells. Mol. Metab. 2022, 60, 101477. [Google Scholar] [CrossRef]
- Razavi, M.; Ren, T.; Zheng, F.; Telichko, A.; Wang, J.; Dahl, J.J.; Demirci, U.; Thakor, A.S. Facilitating islet transplantation using a three-step approach with mesenchymal stem cells, encapsulation, and pulsed focused ultrasound. Stem Cell Res. Ther. 2020, 11, 405. [Google Scholar] [CrossRef]
- Badyra, B.; Sułkowski, M.; Milczarek, O.; Majka, M. Mesenchymal stem cells as a multimodal treatment for nervous system diseases. Stem Cells Transl. Med. 2020, 9, 1174–1189. [Google Scholar] [CrossRef] [PubMed]
- Mukai, T.; Sei, K.; Nagamura-Inoue, T. Mesenchymal stromal cells: Cell-based therapies for traumatic central nervous system injuries. J. Integr. Neurosci. 2022, 21, 44. [Google Scholar] [CrossRef]
- Stucky, E.C.; Schloss, R.S.; Yarmush, M.L.; Shreiber, D.I. Alginate micro-encapsulation of mesenchymal stromal cells enhances modulation of the neuro-inflammatory response. Cytotherapy 2015, 17, 1353–1364. [Google Scholar] [CrossRef] [PubMed]
- Barminko, J.; Kim, J.H.; Otsuka, S.; Gray, A.; Schloss, R.; Grumet, M.; Yarmush, M.L. Encapsulated mesenchymal stromal cells for in vivo transplantation. Biotechnol. Bioeng. 2011, 108, 2747–2758. [Google Scholar] [CrossRef] [PubMed]
- Momin, E.N.; Vela, G.; Zaidi, H.A.; Quinones-Hinojosa, A. The Oncogenic Potential of Mesenchymal Stem Cells in the Treatment of Cancer: Directions for Future Research. Curr. Immunol. Rev. 2010, 6, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Kucerova, L.; Matuskova, M.; Hlubinova, K.; Altanerova, V.; Altaner, C. Tumor cell behaviour modulation by mesenchymal stromal cells. Mol. Cancer 2010, 9, 129. [Google Scholar] [CrossRef]
- Kleinschmidt, K.; Klinge, P.M.; Stopa, E.; Wallrapp, C.; Glage, S.; Geigle, P.; Brinker, T. Alginate encapsulated human mesenchymal stem cells suppress syngeneic glioma growth in the immunocompetent rat. J. Microencapsul. 2011, 28, 621–627. [Google Scholar] [CrossRef]
- Han, B.; Lu, Y.; Meng, B.; Qu, B. Cellular loss after allogenic hepatocyte transplantation. Transplantation 2009, 87, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Shi, R.; Qi, T.; Li, Q.; Chen, C.; Gao, S.; Gao, F.; Yang, D.; Sun, G.; Xu, J.; et al. Adipose-derived stem cells show hepatic differentiation potential and therapeutic effect in rats with acute liver failure. Acta Biochim. Biophys. Sin. 2023, 55, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Qiao, P.; Dong, L.; Li, F.; Xu, T.; Xie, Q. Microencapsulated rBMMSCs/calcium phosphate cement for bone formation in vivo. Bio-Medical Mater. Eng. 2014, 24, 835–843. [Google Scholar] [CrossRef]
- Elahy, M.; Doschak, M.R.; Hughes, J.D.; Baindur-Hudson, S.; Dass, C.R. Alginate Bead-Encapsulated PEDF Induces Ectopic Bone Formation In Vivo in the Absence of Co-Administered Mesenchymal Stem Cells. Curr. Drug Targets 2018, 19, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Moshaverinia, A.; Chen, C.; Xu, X.; Akiyama, K.; Ansari, S.; Zadeh, H.H.; Shi, S. Bone regeneration potential of stem cells derived from periodontal ligament or gingival tissue sources encapsulated in RGD-modified alginate scaffold. Tissue Eng. Part A 2013, 20, 611–621. [Google Scholar] [CrossRef]
- Moshaverinia, A.; Ansari, S.; Chen, C.; Xu, X.; Akiyama, K.; Snead, M.L.; Zadeh, H.H.; Shi, S. Co-encapsulation of anti-BMP2 monoclonal antibody and mesenchymal stem cells in alginate microspheres for bone tissue engineering. Biomaterials 2013, 34, 6572–6579. [Google Scholar] [CrossRef]
- McKinney, J.M.; Doan, T.N.; Wang, L.; Deppen, J.; Reece, D.S.; Pucha, K.A.; Ginn, S.; Levit, R.D.; Willett, N.J. Therapeutic efficacy of intra-articular delivery of encapsulated human mesenchymal stem cells on early stage osteoarthritis. Eur. Cell Mater. 2019, 37, 422–459. [Google Scholar] [CrossRef] [PubMed]
- Moshaverinia, A.; Xu, X.; Chen, C.; Akiyama, K.; Snead, M.L.; Shi, S. Dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration. Acta Biomater. 2013, 9, 9343–9350. [Google Scholar] [CrossRef] [PubMed]
- Moshaverinia, A.; Chen, C.; Akiyama, K.; Xu, X.; Chee, W.W.L.; Schricker, S.R.; Shi, S. Encapsulated dental-derived mesenchymal stem cells in an injectable and biodegradable scaffold for applications in bone tissue engineering. J. Biomed. Mater. Res. Part A 2013, 101, 3285–3294. [Google Scholar]
- Karoubi, G.; Ormiston, M.L.; Stewart, D.J.; Courtman, D.W. Single-cell hydrogel encapsulation for enhanced survival of human marrow stromal cells. Biomaterials 2009, 30, 5445–5455. [Google Scholar]
- Sayyar, B.; Dodd, M.; Wen, J.; Ma, S.; Marquez-Curtis, L.; Janowska-Wieczorek, A.; Hortelano, G. Encapsulation of factor IX-engineered mesenchymal stem cells in fibrinogen-alginate microcapsules enhances their viability and transgene secretion. J. Tissue Eng. 2012, 3, 2041731412462018. [Google Scholar]
- Gurruchaga, H.; Ciriza, J.; Saenz Del Burgo, L.; Rodriguez-Madoz, J.R.; Santos, E.; Prosper, F.; Hernández, R.M.; Orive, G.; Pedraz, J.L. Cryopreservation of microencapsulated murine mesenchymal stem cells genetically engineered to secrete erythropoietin. Int. J. Pharm. 2015, 485, 15–24. [Google Scholar] [PubMed]
- Schwieger, J.; Hamm, A.; Gepp, M.M.; Schulz, A.; Hoffmann, A.; Lenarz, T.; Scheper, V. Alginate-encapsulated brain-derived neurotrophic factor–overexpressing mesenchymal stem cells are a promising drug delivery system for protection of auditory neurons. J. Tissue Eng. 2020, 11, 2041731420911313. [Google Scholar] [PubMed]
- Goren, A.; Dahan, N.; Goren, E.; Baruch, L.; Machluf, M. Encapsulated human mesenchymal stem cells: A unique hypoimmunogenic platform for long-term cellular therapy. FASEB J. 2010, 24, 22–31. [Google Scholar] [PubMed]
- Trouche, E.; Girod Fullana, S.; Mias, C.; Ceccaldi, C.; Tortosa, F.; Seguelas, M.H.; Calise, D.; Parini, A.; Cussac, D.; Sallerin, B. Evaluation of alginate microspheres for mesenchymal stem cell engraftment on solid organ. Cell Transplant. 2010, 19, 1623–1633. [Google Scholar]
- Leijs, M.J.; Villafuertes, E.; Haeck, J.C.; Koevoet, W.J.; Fernandez-Gutierrez, B.; Hoogduijn, M.J.; Verhaar, J.A.; Bernsen, M.R.; van Buul, G.M.; van Osch, G.J. Encapsulation of allogeneic mesenchymal stem cells in alginate extends local presence and therapeutic function. Eur. Cell Mater. 2017, 33, 43–58. [Google Scholar] [CrossRef]
- Kin, K.; Yasuhara, T.; Date, I. Encapsulation of Mesenchymal Stem Cells: Dissecting the Underlying Mechanism of Mesenchymal Stem Cell Transplantation Therapy. Neurosci. Insights 2020, 15, 2633105520959064. [Google Scholar]
- Azadi, S.A.; Vasheghani-Farahani, E.; Hashemi-Najafbabadi, S.; Godini, A. Co-encapsulation of pancreatic islets and pentoxifylline in alginate-based microcapsules with enhanced immunosuppressive effects. Prog. Biomater. 2016, 5, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Acarregui, A.; Herrán, E.; Igartua, M.; Blanco, F.J.; Pedraz, J.L.; Orive, G.; Hernandez, R.M. Multifunctional hydrogel-based scaffold for improving the functionality of encapsulated therapeutic cells and reducing inflammatory response. Acta Biomater. 2014, 10, 4206–4216. [Google Scholar] [CrossRef]
- Dang, T.T.; Thai, A.V.; Cohen, J.; Slosberg, J.E.; Siniakowicz, K.; Doloff, J.C.; Ma, M.; Hollister-Lock, J.; Tang, K.M.; Gu, Z.; et al. Enhanced function of immuno-isolated islets in diabetes therapy by co-encapsulation with an anti-inflammatory drug. Biomaterials 2013, 34, 5792–5801. [Google Scholar] [CrossRef] [PubMed]
- Konradi, R.; Acikgoz, C.; Textor, M. Polyoxazolines for Nonfouling Surface Coatings—A Direct Comparison to the Gold Standard PEG. Macromol. Rapid Commun. 2012, 33, 1663–1676. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Cheng, G.; Xue, H.; Chen, S.; Zhang, F.; Jiang, S. Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials 2008, 29, 4592–4597. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Cano, C.; Carril, M. Recent Developments in the Design of Non-Biofouling Coatings for Nanoparticles and Surfaces. Int. J. Mol. Sci. 2020, 21, 1007. [Google Scholar] [CrossRef] [PubMed]
- Lorson, T.; Lübtow, M.M.; Wegener, E.; Haider, M.S.; Borova, S.; Nahm, D.; Jordan, R.; Sokolski-Papkov, M.; Kabanov, A.V.; Luxenhofer, R. Poly(2-oxazoline)s based biomaterials: A comprehensive and critical update. Biomaterials 2018, 178, 204–280. [Google Scholar] [CrossRef]
- Santos, E.; Pedraz, J.L.; Hernández, R.M.; Orive, G. Therapeutic cell encapsulation: Ten steps towards clinical translation. J. Control. Release 2013, 170, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Garate, A.; Santos, E.; Pedraz, J.L.; Hernández, R.M.; Orive, G. Evaluation of different RGD ligand densities in the development of cell-based drug delivery systems. J. Drug Target. 2015, 23, 806–812. [Google Scholar] [CrossRef] [PubMed]
Material | Biocompatibility | Mechanical Strength | Permeability | Degradation | Immunomodulation | Clinical Challenges | Advantages | Disadvantages |
---|---|---|---|---|---|---|---|---|
Alginate | High | Moderate | Good | Degrades variably based on cross-linking | Low/moderate | Poor reproducibility and purity standards | Biocompatible, easy to modify | Immunogenic impurities; limited mechanical strength |
Gelatin | Moderate | Low | Moderate | Enzymatically degradable | Moderate | Rapid degradation in vivo | Biodegradable, good cell adhesion | Weak mechanical properties |
Chitosan | Moderate | Moderate | Low | Slow enzymatic degradation | Moderate | Low solubility at neutral pH | Antimicrobial, supports cell attachment | Solubility issues; moderate biocompatibility |
Polyethylene Glycol (PEG) | High | High | Adjustable | Non-degradable or slow (depending on formulation) | Low | Synthetic nature raises regulatory hurdles | Tunable properties, high mechanical strength | Expensive, non-biodegradable |
Hyaluronic Acid | High | Low | High | Enzymatically degradable | Low/moderate | Rapid degradation unless chemically modified | Excellent biocompatibility | Poor mechanical strength |
Collagen | High | Low | Moderate | Enzymatically degradable | Low | Batch variability and weak mechanical properties | Excellent biocompatibility, natural ECM mimic | Limited stability |
PLGA (Poly (lactic-co-glycolic acid)) | High | High | Adjustable | Degrades via hydrolysis into lactic and glycolic acid | Low | Potential acid accumulation causing inflammation | Tunable degradation rate | Expensive, inflammatory degradation products |
Agarose | Moderate | Moderate | Low | Non-degradable | Low | Limited mechanical tunability | Easy to handle, good thermal stability | Non-biodegradable, limited cell adhesion |
Cellulose | High | Moderate | Moderate | Non-degradable or slowly enzymatic | Low | Limited modification options for specific applications | Abundant, biocompatible, supports cell adhesion | Poor biodegradability, difficult to process |
Dextran | High | Low | High | Rapid enzymatic degradation | Low | Rapid degradation unless chemically modified | Excellent biocompatibility, easy to functionalize | Weak mechanical properties, short in vivo stability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, S.E.M.; Maged, G.; Wang, H.; Lotfy, A. Mesenchymal Stem/Stromal Cells Microencapsulation for Cell Therapy. Cells 2025, 14, 149. https://doi.org/10.3390/cells14030149
Abbas SEM, Maged G, Wang H, Lotfy A. Mesenchymal Stem/Stromal Cells Microencapsulation for Cell Therapy. Cells. 2025; 14(3):149. https://doi.org/10.3390/cells14030149
Chicago/Turabian StyleAbbas, Sharaf Eldeen M., Ghada Maged, Hongjun Wang, and Ahmed Lotfy. 2025. "Mesenchymal Stem/Stromal Cells Microencapsulation for Cell Therapy" Cells 14, no. 3: 149. https://doi.org/10.3390/cells14030149
APA StyleAbbas, S. E. M., Maged, G., Wang, H., & Lotfy, A. (2025). Mesenchymal Stem/Stromal Cells Microencapsulation for Cell Therapy. Cells, 14(3), 149. https://doi.org/10.3390/cells14030149