Cortical Diffusivity, a Biomarker for Early Neuronal Damage, Is Associated with Amyloid-β Deposition: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Image Acquisition
2.2.1. MRI
2.2.2. PET
2.3. Image Processing
2.3.1. MRI
2.3.2. PET
2.4. Determining the Aβ Status
2.5. Statistical Analysis
3. Results
3.1. Demographic Characteristics
3.2. cMD Changes Are Observed Simultaneously as Aβ Deposition
3.3. cMD Is Significantly Associated with Cortical Atrophy When Other Pathologies Are Not Present
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeTure, M.A.; Dickson, D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 2019, 14, 32. [Google Scholar] [CrossRef]
- Castellani, R.J.; Jamshidi, P.; Plascencia-Villa, G.; Perry, G. The Amyloid Cascade Hypothesis: A Conclusion in Search of Support. Am. J. Pathol. 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Hanseeuw, B.J.; Betensky, R.A.; Jacobs, H.I.L.; Schultz, A.P.; Sepulcre, J.; Becker, J.A.; Cosio, D.M.O.; Farrell, M.; Quiroz, Y.T.; Mormino, E.C.; et al. Association of Amyloid and Tau With Cognition in Preclinical Alzheimer Disease: A Longitudinal Study. JAMA Neurol. 2019, 76, 915–924. [Google Scholar] [CrossRef] [PubMed]
- Bloom, G.S. Amyloid-beta and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014, 71, 505–508. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhang, Z.; Liu, Y.; Hong, W.; Karahan, H.; Wang, J.; Li, W.; Diao, L.; Yu, M.; Saykin, A.J.; et al. Comprehensive characterization of the transcriptional landscape in Alzheimer’s disease (AD) brains. Sci. Adv. 2025, 11, eadn1927. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, B.C.; Bakkour, A.; Salat, D.H.; Feczko, E.; Pacheco, J.; Greve, D.N.; Grodstein, F.; Wright, C.I.; Blacker, D.; Rosas, H.D.; et al. The cortical signature of Alzheimer’s disease: Regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb. Cortex 2009, 19, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Schuster, C.; Elamin, M.; Hardiman, O.; Bede, P. Presymptomatic and longitudinal neuroimaging in neurodegeneration--from snapshots to motion picture: A systematic review. J. Neurol. Neurosurg. Psychiatry 2015, 86, 1089–1096. [Google Scholar] [CrossRef]
- Cope, T.E.; Weil, R.S.; Duzel, E.; Dickerson, B.C.; Rowe, J.B. Advances in neuroimaging to support translational medicine in dementia. J. Neurol. Neurosurg. Psychiatry 2021, 92, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Ridha, B.H.; Barnes, J.; Bartlett, J.W.; Godbolt, A.; Pepple, T.; Rossor, M.N.; Fox, N.C. Tracking atrophy progression in familial Alzheimer’s disease: A serial MRI study. Lancet Neurol. 2006, 5, 828–834. [Google Scholar] [CrossRef]
- Kalin, A.M.; Park, M.T.; Chakravarty, M.M.; Lerch, J.P.; Michels, L.; Schroeder, C.; Broicher, S.D.; Kollias, S.; Nitsch, R.M.; Gietl, A.F.; et al. Subcortical Shape Changes, Hippocampal Atrophy and Cortical Thinning in Future Alzheimer’s Disease Patients. Front. Aging Neurosci. 2017, 9, 38. [Google Scholar] [CrossRef]
- Le Bihan, D. Diffusion MRI: What water tells us about the brain. EMBO Mol. Med. 2014, 6, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Oishi, K.; Mielke, M.M.; Albert, M.; Lyketsos, C.G.; Mori, S. DTI analyses and clinical applications in Alzheimer’s disease. J. Alzheimers Dis. 2011, 26 (Suppl. S3), 287–296. [Google Scholar] [CrossRef] [PubMed]
- Rose, S.E.; Janke, A.L.; Chalk, J.B. Gray and white matter changes in Alzheimer’s disease: A diffusion tensor imaging study. J. Magn. Reson. Imaging 2008, 27, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Torso, M.; Bozzali, M.; Cercignani, M.; Jenkinson, M.; Chance, S.A. Using diffusion tensor imaging to detect cortical changes in fronto-temporal dementia subtypes. Sci. Rep. 2020, 10, 11237. [Google Scholar] [CrossRef] [PubMed]
- Torso, M.; Bozzali, M.; Zamboni, G.; Jenkinson, M.; Chance, S.A.; Alzheimers Disease Neuroimage, I. Detection of Alzheimer’s Disease using cortical diffusion tensor imaging. Hum. Brain Mapp. 2021, 42, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.; Kim, H.R.; Jeong, Y.; Alzheimer’s Disease Neuroimaging, I. Detection of gray matter microstructural changes in Alzheimer’s disease continuum using fiber orientation. BMC Neurol. 2020, 20, 362. [Google Scholar] [CrossRef] [PubMed]
- Douaud, G.; Menke, R.A.; Gass, A.; Monsch, A.U.; Rao, A.; Whitcher, B.; Zamboni, G.; Matthews, P.M.; Sollberger, M.; Smith, S. Brain microstructure reveals early abnormalities more than two years prior to clinical progression from mild cognitive impairment to Alzheimer’s disease. J. Neurosci. 2013, 33, 2147–2155. [Google Scholar] [CrossRef]
- Kantarci, K.; Petersen, R.C.; Boeve, B.F.; Knopman, D.S.; Weigand, S.D.; O’Brien, P.C.; Shiung, M.M.; Smith, G.E.; Ivnik, R.J.; Tangalos, E.G.; et al. DWI predicts future progression to Alzheimer disease in amnestic mild cognitive impairment. Neurology 2005, 64, 902–904. [Google Scholar] [CrossRef]
- Kantarci, K.; Avula, R.; Senjem, M.L.; Samikoglu, A.R.; Zhang, B.; Weigand, S.D.; Przybelski, S.A.; Edmonson, H.A.; Vemuri, P.; Knopman, D.S.; et al. Dementia with Lewy bodies and Alzheimer disease: Neurodegenerative patterns characterized by DTI. Neurology 2010, 74, 1814–1821. [Google Scholar] [CrossRef]
- Muller, M.J.; Greverus, D.; Dellani, P.R.; Weibrich, C.; Wille, P.R.; Scheurich, A.; Stoeter, P.; Fellgiebel, A. Functional implications of hippocampal volume and diffusivity in mild cognitive impairment. Neuroimage 2005, 28, 1033–1042. [Google Scholar] [CrossRef]
- Weston, P.S.; Simpson, I.J.; Ryan, N.S.; Ourselin, S.; Fox, N.C. Diffusion imaging changes in grey matter in Alzheimer’s disease: A potential marker of early neurodegeneration. Alzheimers Res. Ther. 2015, 7, 47. [Google Scholar] [CrossRef]
- Torso, M.; Fumagalli, G.; Ridgway, G.R.; Contarino, V.E.; Hardingham, I.; Scarpini, E.; Galimberti, D.; Chance, S.A.; Arighi, A. Clinical utility of diffusion MRI-derived measures of cortical microstructure in a real-world memory clinic setting. Ann. Clin. Transl. Neurol. 2024, 11, 1964–1976. [Google Scholar] [CrossRef] [PubMed]
- Spotorno, N.; Strandberg, O.; Stomrud, E.; Janelidze, S.; Blennow, K.; Nilsson, M.; van Westen, D.; Hansson, O. Diffusion MRI tracks cortical microstructural changes during the early stages of Alzheimer’s disease. Brain 2024, 147, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Henf, J.; Grothe, M.J.; Brueggen, K.; Teipel, S.; Dyrba, M. Mean diffusivity in cortical gray matter in Alzheimer’s disease: The importance of partial volume correction. Neuroimage Clin. 2018, 17, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; He, Z.; Li, A.; Yang, J.; Zhu, Y.; Cai, Y.; Ma, T.; Ma, S.; Guo, T.; Alzheimer’s Disease Neuroimaging, I. Spatial and temporal patterns of cortical mean diffusivity in Alzheimer’s disease and suspected non-Alzheimer’s disease pathophysiology. Alzheimers Dement 2024, 20, 7048–7061. [Google Scholar] [CrossRef]
- Tang, R.; Franz, C.E.; Hauger, R.L.; Dale, A.M.; Dorros, S.M.; Eyler, L.T.; Fennema-Notestine, C.; Hagler, D.J., Jr.; Lyons, M.J.; Panizzon, M.S.; et al. Early Cortical Microstructural Changes in Aging Are Linked to Vulnerability to Alzheimer’s Disease Pathology. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2024, 9, 975–985. [Google Scholar] [CrossRef] [PubMed]
- Scola, E.; Bozzali, M.; Agosta, F.; Magnani, G.; Franceschi, M.; Sormani, M.P.; Cercignani, M.; Pagani, E.; Falautano, M.; Filippi, M.; et al. A diffusion tensor MRI study of patients with MCI and AD with a 2-year clinical follow-up. J. Neurol. Neurosurg. Psychiatry 2010, 81, 798–805. [Google Scholar] [CrossRef] [PubMed]
- van Uden, I.W.; Tuladhar, A.M.; van der Holst, H.M.; van Leijsen, E.M.; van Norden, A.G.; de Laat, K.F.; Rutten-Jacobs, L.C.; Norris, D.G.; Claassen, J.A.; van Dijk, E.J.; et al. Diffusion tensor imaging of the hippocampus predicts the risk of dementia; the RUN DMC study. Hum. Brain Mapp. 2016, 37, 327–337. [Google Scholar] [CrossRef]
- Pereira, J.B.; Ossenkoppele, R.; Palmqvist, S.; Strandberg, T.O.; Smith, R.; Westman, E.; Hansson, O. Amyloid and tau accumulate across distinct spatial networks and are differentially associated with brain connectivity. Elife 2019, 8, e50830. [Google Scholar] [CrossRef]
- Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement 2018, 14, 535–562. [Google Scholar] [CrossRef]
- Spotorno, N.; Strandberg, O.; Vis, G.; Stomrud, E.; Nilsson, M.; Hansson, O. Measures of cortical microstructure are linked to amyloid pathology in Alzheimer’s disease. Brain 2023, 146, 1602–1614. [Google Scholar] [CrossRef]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011, 7, 263–269. [Google Scholar] [CrossRef]
- Fischl, B.; Dale, A.M. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. USA 2000, 97, 11050–11055. [Google Scholar] [CrossRef]
- Jenkinson, M.; Beckmann, C.F.; Behrens, T.E.; Woolrich, M.W.; Smith, S.M. FSL. Neuroimage 2012, 62, 782–790. [Google Scholar] [CrossRef] [PubMed]
- Thurfjell, L.; Lilja, J.; Lundqvist, R.; Buckley, C.; Smith, A.; Vandenberghe, R.; Sherwin, P. Automated quantification of 18F-flutemetamol PET activity for categorizing scans as negative or positive for brain amyloid: Concordance with visual image reads. J. Nucl. Med. 2014, 55, 1623–1628. [Google Scholar] [CrossRef]
- Hammers, A.; Allom, R.; Koepp, M.J.; Free, S.L.; Myers, R.; Lemieux, L.; Mitchell, T.N.; Brooks, D.J.; Duncan, J.S. Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum. Brain Mapp. 2003, 19, 224–247. [Google Scholar] [CrossRef] [PubMed]
- Dani, M.; Wood, M.; Mizoguchi, R.; Fan, Z.; Walker, Z.; Morgan, R.; Hinz, R.; Biju, M.; Kuruvilla, T.; Brooks, D.J.; et al. Microglial activation correlates in vivo with both tau and amyloid in Alzheimer’s disease. Brain 2018, 141, 2740–2754. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992, 256, 184–185. [Google Scholar] [CrossRef]
- Montal, V.; Vilaplana, E.; Alcolea, D.; Pegueroles, J.; Pasternak, O.; Gonzalez-Ortiz, S.; Clarimon, J.; Carmona-Iragui, M.; Illan-Gala, I.; Morenas-Rodriguez, E.; et al. Cortical microstructural changes along the Alzheimer’s disease continuum. Alzheimers Dement 2018, 14, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Weston, P.S.J.; Poole, T.; Nicholas, J.M.; Toussaint, N.; Simpson, I.J.A.; Modat, M.; Ryan, N.S.; Liang, Y.; Rossor, M.N.; Schott, J.M.; et al. Measuring cortical mean diffusivity to assess early microstructural cortical change in presymptomatic familial Alzheimer’s disease. Alzheimers Res. Ther. 2020, 12, 112. [Google Scholar] [CrossRef]
- Nakaya, M.; Sato, N.; Matsuda, H.; Maikusa, N.; Ota, M.; Shigemoto, Y.; Sone, D.; Yamao, T.; Kimura, Y.; Tsukamoto, T.; et al. Assessment of Gray Matter Microstructural Alterations in Alzheimer’s Disease by Free Water Imaging. J. Alzheimers Dis. 2024, 99, 1441–1453. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Barsoum, S.; Schilling, K.G.; An, Y.; Ferrucci, L.; Benjamini, D. Neuronal microstructural changes in the human brain are associated with neurocognitive aging. Aging Cell 2024, 23, e14166. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.E.; Elman, J.A.; Bell, T.R.; Dale, A.M.; Eyler, L.T.; Fennema-Notestine, C.; Franz, C.E.; Gillespie, N.A.; Hagler, D.J., Jr.; Lyons, M.J.; et al. Higher cortical thickness/volume in Alzheimer’s-related regions: Protective factor or risk factor? Neurobiol. Aging 2023, 129, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Vieitez, E.; Montal, V.; Sepulcre, J.; Lois, C.; Hanseeuw, B.; Vilaplana, E.; Schultz, A.P.; Properzi, M.J.; Scott, M.R.; Amariglio, R.; et al. Association of cortical microstructure with amyloid-beta and tau: Impact on cognitive decline, neurodegeneration, and clinical progression in older adults. Mol. Psychiatry 2021, 26, 7813–7822. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Brooks, D.J.; Okello, A.; Edison, P. An early and late peak in microglial activation in Alzheimer’s disease trajectory. Brain 2017, 140, 792–803. [Google Scholar] [CrossRef]
- Mueggler, T.; Meyer-Luehmann, M.; Rausch, M.; Staufenbiel, M.; Jucker, M.; Rudin, M. Restricted diffusion in the brain of transgenic mice with cerebral amyloidosis. Eur. J. Neurosci. 2004, 20, 811–817. [Google Scholar] [CrossRef]
- Roitbak, T.; Sykov, E. Diffusion barriers evoked in the rat cortex by reactive astrogliosis. Glia 1999, 28, 40–48. [Google Scholar] [CrossRef]
- Palmqvist, S.; Mattsson, N.; Hansson, O.; Alzheimer’s Disease Neuroimaging, I. Cerebrospinal fluid analysis detects cerebral amyloid-beta accumulation earlier than positron emission tomography. Brain 2016, 139, 1226–1236. [Google Scholar] [CrossRef]
- Mattsson, N.; Insel, P.S.; Donohue, M.; Landau, S.; Jagust, W.J.; Shaw, L.M.; Trojanowski, J.Q.; Zetterberg, H.; Blennow, K.; Weiner, M.W.; et al. Independent information from cerebrospinal fluid amyloid-beta and florbetapir imaging in Alzheimer’s disease. Brain 2015, 138, 772–783. [Google Scholar] [CrossRef]
- Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016, 8, 595–608. [Google Scholar] [CrossRef]
- Gordon, B.A.; Blazey, T.; Su, Y.; Fagan, A.M.; Holtzman, D.M.; Morris, J.C.; Benzinger, T.L. Longitudinal beta-Amyloid Deposition and Hippocampal Volume in Preclinical Alzheimer Disease and Suspected Non-Alzheimer Disease Pathophysiology. JAMA Neurol. 2016, 73, 1192–1200. [Google Scholar] [CrossRef] [PubMed]
- Braak, H.; Alafuzoff, I.; Arzberger, T.; Kretzschmar, H.; Del Tredici, K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol. 2006, 112, 389–404. [Google Scholar] [CrossRef] [PubMed]
- Koo, B.B.; Hua, N.; Choi, C.H.; Ronen, I.; Lee, J.M.; Kim, D.S. A framework to analyze partial volume effect on gray matter mean diffusivity measurements. Neuroimage 2009, 44, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Fox, N.C.; Schott, J.M. Imaging cerebral atrophy: Normal ageing to Alzheimer’s disease. Lancet 2004, 363, 392–394. [Google Scholar] [CrossRef]
- Chan, D.; Fox, N.C.; Jenkins, R.; Scahill, R.I.; Crum, W.R.; Rossor, M.N. Rates of global and regional cerebral atrophy in AD and frontotemporal dementia. Neurology 2001, 57, 1756–1763. [Google Scholar] [CrossRef] [PubMed]
- Whitwell, J.L.; Jack, C.R., Jr.; Parisi, J.E.; Knopman, D.S.; Boeve, B.F.; Petersen, R.C.; Ferman, T.J.; Dickson, D.W.; Josephs, K.A. Rates of cerebral atrophy differ in different degenerative pathologies. Brain 2007, 130, 1148–1158. [Google Scholar] [CrossRef] [PubMed]
CN | Aβ-Negative MCI | Aβ-Positive MCI | AD | One-Way ANOVA | |||||
---|---|---|---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Tukey Post Hoc Test vs. CN | Mean (SD) | Tukey Post Hoc Test vs. CN | Mean (SD) | Tukey Post Hoc Test vs. CN | F | p-Value | |
Age, y (SD) | 62.9 (8.4) | 67.6 (9.5) | p = 0.400 | 73.9 (7.3) | p = 0.003 | 75.0 (5.7) | p = 0.005 | F (3, 63) = 6.45 | p < 0.001 |
Sex, Female (%) | 47 | 48 | p = 0.971 | 40 | p = 1.000 | 46 | p = 1.000 | F (3, 74) = 0.12 | p = 0.951 |
MMSE (SD) | 29 (2) | 28 (2) | p = 0.540 | 27 (2) | p = 0.421 | 24 (4) | p < 0.001 | F (3, 64) = 9.84 | p < 0.001 |
CN | Aβ-Negative MCI | Aβ-Positive MCI | AD | One-Way ANOVA | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameter | Brain Region | Mean (SD) | Mean (SD) | Tukey Post Hoc Test vs. CN | Mean (SD) | Tukey Post Hoc Test vs. CN | Mean (SD) | Tukey Post Hoc Test vs. CN | F | p-Value |
Mean Diffusivity | Frontal cortex | 0.00105 (0.00009) | 0.00106 (0.00009) | p = 0.989 | 0.00116 (0.00012) | p = 0.015 | 0.00116 (0.00010) | p = 0.041 | F (3, 71) = 5.84 | p = 0.001 |
Temporal cortex | 0.00098 (0.00008) | 0.00103 (0.00015) | p = 0.628 | 0.00108 (0.00010) | p = 0.057 | 0.00114 (0.00014) | p = 0.004 | F (3, 71) = 5.05 | p = 0.003 | |
Parietal cortex | 0.00111 (0.00011) | 0.00113 (0.00011) | p = 0.987 | 0.00122 (0.00013) | p = 0.027 | 0.00124 (0.00014) | p = 0.026 | F (3, 71) = 5.60 | p = 0.002 | |
Hippocampus | 0.00090 (0.00008) | 0.00105 (0.00032) | p = 0.311 | 0.00112 (0.00018) | p = 0.074 | 0.00125 (0.00039) | p = 0.005 | F (3, 71) = 4.25 | p = 0.008 | |
Medial temporal lobe | 0.00091 (0.00007) | 0.00102 (0.00025) | p = 0.306 | 0.00106 (0.00012) | p = 0.106 | 0.00113 (0.00024) | p = 0.015 | F (3, 71) = 3.40 | p = 0.022 | |
[18F]flutemetamol SUVR | Frontal cortex | 1.29 (0.07) | 1.25 (0.07) | p = 0.893 | 1.74 (0.26) | p < 0.001 | 1.88 (0.27) | p < 0.001 | F (3, 76) = 54.13 | p < 0.001 |
Temporal cortex | 1.20 (0.07) | 1.14 (0.07) | p = 0.709 | 1.53 (0.23) | p < 0.001 | 1.63 (0.25) | p < 0.001 | F (3, 76) = 38.88 | p < 0.001 | |
Parietal cortex | 1.25 (0.07) | 1.21 (0.06) | p = 0.884 | 1.71 (0.24) | p < 0.001 | 1.87 (0.27) | p < 0.001 | F (3, 76) = 65.56 | p < 0.001 | |
Hippocampus | 1.42 (0.08) | 1.30 (0.15) | p = 0.078 | 1.41 (0.17) | p = 1.0 | 1.39 (0.19) | p = 0.982 | F (3, 76) = 3.113 | p = 0.031 | |
Medial temporal lobe | 1.27 (0.07) | 1.18 (0.11) | p = 0.159 | 1.32 (0.15) | p = 0.544 | 1.33 (0.19) | p = 0.583 | F (3, 76) = 6.135 | p = 0.001 | |
[18F]AV1451 SUVR | Frontal cortex | 1.04 (0.10) | 1.02 (0.06) | p = 0.999 | 1.20 (0.26) | p = 0.430 | 1.26 (0.23) | p = 0.158 | F (3, 26) = 2.679 | p = 0.068 |
Temporal cortex | 1.06 (0.08) | 1.05 (0.05) | p = 0.999 | 1.30 (0.23) | p = 0.266 | 1.53 (0.33) | p = 0.003 | F (3, 26) = 7.605 | p = 0.001 | |
Parietal cortex | 1.03 (0.08) | 1.02 (0.07) | p = 1.000 | 1.22 (0.21) | p = 0.604 | 1.40 (0.42) | p = 0.069 | F (3, 26) = 3.367 | p = 0.034 | |
Hippocampus | 1.13 (0.16) | 1.07 (0.06) | p = 0.952 | 1.42 (0.21) | p = 0.054 | 1.49 (0.25) | p = 0.008 | F (3, 26) = 8.187 | p = 0.001 | |
Medial temporal lobe | 1.06 (0.11) | 1.00 (0.06) | p = 0.961 | 1.35 (0.24) | p = 0.041 | 1.46 (0.22) | p = 0.002 | F (3, 26) = 10.15 | p < 0.001 | |
Cortical thickness | Frontal cortex | 2.45 (0.10) | 2.49 (0.11) | p = 0.730 | 2.48 (0.12) | p = 0.872 | 2.41 (0.10) | p = 0.670 | F (3, 76) = 1.804 | p = 0.154 |
Temporal cortex | 2.90 (0.11) | 2.82 (0.18) | p = 0.261 | 2.80 (0.11) | p = 0.178 | 2.61 (0.14) | p < 0.001 | F (3, 76) = 10.08 | p < 0.001 | |
Parietal cortex | 2.33 (0.11) | 2.33 (0.13) | p = 1.000 | 2.29 (0.12) | p = 0.747 | 2.08 (0.11) | p < 0.001 | F (3, 76) = 14.80 | p < 0.001 | |
Mean cortical thickness | 2.45 (0.09) | 2.43 (0.11) | p = 0.986 | 2.41 (0.09) | p = 0.747 | 2.27 (0.09) | p < 0.001 | F (3, 76) = 10.01 | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Debatisse, J.; Leng, F.; Ashraf, A.; Edison, P. Cortical Diffusivity, a Biomarker for Early Neuronal Damage, Is Associated with Amyloid-β Deposition: A Pilot Study. Cells 2025, 14, 155. https://doi.org/10.3390/cells14030155
Debatisse J, Leng F, Ashraf A, Edison P. Cortical Diffusivity, a Biomarker for Early Neuronal Damage, Is Associated with Amyloid-β Deposition: A Pilot Study. Cells. 2025; 14(3):155. https://doi.org/10.3390/cells14030155
Chicago/Turabian StyleDebatisse, Justine, Fangda Leng, Azhaar Ashraf, and Paul Edison. 2025. "Cortical Diffusivity, a Biomarker for Early Neuronal Damage, Is Associated with Amyloid-β Deposition: A Pilot Study" Cells 14, no. 3: 155. https://doi.org/10.3390/cells14030155
APA StyleDebatisse, J., Leng, F., Ashraf, A., & Edison, P. (2025). Cortical Diffusivity, a Biomarker for Early Neuronal Damage, Is Associated with Amyloid-β Deposition: A Pilot Study. Cells, 14(3), 155. https://doi.org/10.3390/cells14030155