Mapping Human Uterine Disorders Through Single-Cell Transcriptomics
Abstract
:1. Introduction
2. Exploring Normal Uterine Function with Single-Cell Approaches
3. Insights into Uterine Disorders from Single-Cell Studies
3.1. Endometriosis
3.2. Endometrial Cancer
3.3. Adenomyosis
3.4. Uterine Fibroids/Leiomyoma
Reference | Samples | Cell Number * | Key Findings |
---|---|---|---|
Endometriosis | |||
[43] | EcE (n = 4) and EuE (n = 9) from ovarian EM; peritoneal EM (n = 8) and adjacent regions (n = 6); healthy endometrium (n = 3) | 108,497 |
|
[27] | EcE (n = 8) and EuE (n = 10) from ovarian EM and unaffected ovary (n = 4); peritoneal EM (n = 23); healthy peritoneum (n = 4) | 373,851 |
|
[45] | EcE and EuE from ovarian EM (n = 3); healthy endometrium (n = 3) | 46,445 |
|
[42] | EcE and EuE from ovarian EM (n = 3); healthy endometrium (n = 3) | 55,188 |
|
[50] | Menstrual effluent from EM (n = 11); subjects with undiagnosed chronic EM-like symptoms (n = 13); healthy controls (n = 9) | 43,054 |
|
[56] | Peritoneal fluid from EM (n = 1); healthy control (n = 1) | 17,530 |
|
[44] | EcE and EuE from ovarian EM (n = 23); healthy endometrium (n = 11) | 7030 |
|
Endometrial Cancer | |||
[68] | EC (n = 4); normal endometrium (n = 2) | 41,358 |
|
[70] | EEC (n = 5); normal endometrium (n = 3) | 46,638 |
|
[72] | EC (n = 3) | 28,820 |
|
[65] | EEC (n = 5); matched paratumor samples (n = 3) | 30,780 |
|
[133] | EEC (n = 5); USC (n = 1) | 150,144 |
|
[66] | EEC (n = 5); atypical endometrial hyperplasia tissues (n = 5); normal endometrium (n = 5) | 99,215 |
|
[26] | EEC-I (n = 7), EEC-II (n = 3), USC (n = 4), and UCCC (n = 3); normal endometrium (n = 1) | 146,332 |
|
Adenomyosis | |||
[90] | Adenomyotic EcE and EuE (n = 1); control endometrium (n = 1) | 36,781 |
|
[84] | Adenomyotic EcE and EuE (n = 2); control endometrium (n = 2) | 42,260 |
|
[98] | Adenomyotic EcE (dysmenorrhea n = 2; no dysmenorrhea n = 2) | 27,924 |
|
[87] | Adenomyotic EcE and EuE (n = 1) | 21,147 |
|
[85] | Adenomyotic EcE, EuE, and MM (n = 3) | 66,000 |
|
[86] | Adenomyotic EcE, EuE, MM, and EMJ (n = 3); control EuE, MM, and EMJ (n = 1) | 54,658 |
|
Uterine Fibroids | |||
[30] | MED12+ UF (n = 5); adjacent MM (n = 5) | 39,209 |
|
[107] | UF (n = 2), pseudocapsule (n = 2), and MM (n = 1) | 26,371 |
|
[132] | MED12+ UF (n = 5); MM (n = 5) | 48,258 |
|
4. Challenges and Constraints in Current Single-Cell Technologies
5. Future Perspectives: Addressing Research Gaps for Clinical Implementation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Habiba, M.; Heyn, R.; Bianchi, P.; Brosens, I.; Benagiano, G. The Development of the Human Uterus: Morphogenesis to Menarche. Hum. Reprod. Update 2021, 27, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Robboy, S.J.; Kurita, T.; Baskin, L.; Cunha, G.R. New Insights into Human Female Reproductive Tract Development. Differentiation 2017, 97, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Yoshihara, K.; Suda, K.; Nakaoka, H.; Yachida, N.; Ueda, H.; Sugino, K.; Mori, Y.; Yamawaki, K.; Tamura, R.; et al. Three-Dimensional Understanding of the Morphological Complexity of the Human Uterine Endometrium. iScience 2021, 24, 102258. [Google Scholar] [CrossRef]
- Ruiz-Alonso, M.; Blesa, D.; Simón, C. The Genomics of the Human Endometrium. Biochim. Biophys. Acta 2012, 1822, 1931–1942. [Google Scholar] [CrossRef]
- Renthal, N.E.; Chen, C.C.; Williams, K.C.; Gerard, R.D.; Prange-Kiel, J.; Mendelson, C.R. MiR-200 Family and Targets, ZEB1 and ZEB2, Modulate Uterine Quiescence and Contractility during Pregnancy and Labor. Proc. Natl. Acad. Sci. USA 2010, 107, 20828–20833. [Google Scholar] [CrossRef]
- Maiti, K.; Paul, J.W.; Read, M.; Chan, E.C.; Riley, S.C.; Nahar, P.; Smith, R. G-1-Activated Membrane Estrogen Receptors Mediate Increased Contractility of the Human Myometrium. Endocrinology 2011, 152, 2448–2455. [Google Scholar] [CrossRef] [PubMed]
- Talati, C.; Carvalho, J.C.A.; Luca, A.; Balki, M. The Effect of Intermittent Oxytocin Pretreatment on Oxytocin-Induced Contractility of Human Myometrium In Vitro. Anesth. Analg. 2019, 128, 671–678. [Google Scholar] [CrossRef]
- Hrdlickova, R.; Toloue, M.; Tian, B. RNA-Seq Methods for Transcriptome Analysis. Wiley Interdiscip. Rev. RNA 2017, 8, e1364. [Google Scholar] [CrossRef] [PubMed]
- Evans, G.E.; Phillipson, G.T.M.; Sykes, P.H.; McNoe, L.A.; Print, C.G.; Evans, J.J. Does the Endometrial Gene Expression of Fertile Women Vary within and between Cycles? Hum. Reprod. 2018, 33, 452–463. [Google Scholar] [CrossRef]
- Li, F.; Gao, W.; Li, Y.; Wang, Y.; Liu, L.; Zhang, X. Potential Biomarkers and Endometrial Immune Microenvironment in Recurrent Implantation Failure. Biomolecules 2023, 13, 406. [Google Scholar] [CrossRef]
- Herndon, C.N.; Aghajanova, L.; Balayan, S.; Erikson, D.; Barragan, F.; Goldfien, G.; Vo, K.C.; Hawkins, S.; Giudice, L.C. Global Transcriptome Abnormalities of the Eutopic Endometrium from Women with Adenomyosis. Reprod. Sci. 2016, 23, 1289–1303. [Google Scholar] [CrossRef] [PubMed]
- Nookaew, I.; Papini, M.; Pornputtapong, N.; Scalcinati, G.; Fagerberg, L.; Uhlén, M.; Nielsen, J. A Comprehensive Comparison of RNA-Seq-Based Transcriptome Analysis from Reads to Differential Gene Expression and Cross-Comparison with Microarrays: A Case Study in Saccharomyces Cerevisiae. Nucleic Acids Res. 2012, 40, 10084–10097. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Ribas, I.; Diaz-Gimeno, P.; Sebastián-León, P.; Mercader, A.; Quiñonero, A.; Ballesteros, A.; Pellicer, A.; Domínguez, F. Transcriptomic Behavior of Genes Associated with Chromosome 21 Aneuploidies in Early Embryo Development. Fertil. Steril. 2019, 111, 991–1001.e2. [Google Scholar] [CrossRef] [PubMed]
- Suhorutshenko, M.; Kukushkina, V.; Velthut-Meikas, A.; Altmäe, S.; Peters, M.; Mägi, R.; Krjutškov, K.; Koel, M.; Codoñer, F.M.; Martinez-Blanch, J.F.; et al. Endometrial Receptivity Revisited: Endometrial Transcriptome Adjusted for Tissue Cellular Heterogeneity. Hum. Reprod. 2018, 33, 2074–2086. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.R.; Chang, H.J.; Heo, J.H.; Yum, S.H.; Jo, E.; Kim, M.; Lee, S.R. Expression Profiling of Coding and Noncoding RNAs in the Endometrium of Patients with Endometriosis. Int. J. Mol. Sci. 2024, 25, 10581. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Sun, Y.; Yang, B.; Yang, Y.; Zhang, Y.; Yu, T.; Huang, H.; Zhang, J.; Xu, H. Transcriptome Sequencing of Adenomyosis Eutopic Endometrium: A New Insight into Its Pathophysiology. J. Cell. Mol. Med. 2019, 23, 8381–8391. [Google Scholar] [CrossRef]
- Machado-Lopez, A.; Alonso, R.; Lago, V.; Jimenez-Almazan, J.; Garcia, M.; Monleon, J.; Lopez, S.; Barcelo, F.; Torroba, A.; Ortiz, S.; et al. Integrative Genomic and Transcriptomic Profiling Reveals a Differential Molecular Signature in Uterine Leiomyoma versus Leiomyosarcoma. Int. J. Mol. Sci. 2022, 23, 2190. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, E.; Biezuner, T.; Linnarsson, S. Single-Cell Sequencing-Based Technologies Will Revolutionize Whole-Organism Science. Nat. Rev. Genet. 2013, 14, 618–630. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.; Anderson, A.G.; Merullo, D.P.; Konopka, G. Beyond Bulk: A Review of Single Cell Transcriptomics Methodologies and Applications. Curr. Opin. Biotechnol. 2019, 58, 129–136. [Google Scholar] [CrossRef]
- Truong, D.D.; Lamhamedi-Cherradi, S.E.; Porter, R.W.; Krishnan, S.; Swaminathan, J.; Gibson, A.; Lazar, A.J.; Livingston, J.A.; Gopalakrishnan, V.; Gordon, N.; et al. Dissociation Protocols Used for Sarcoma Tissues Bias the Transcriptome Observed in Single-Cell and Single-Nucleus RNA Sequencing. BMC Cancer 2023, 23, 488. [Google Scholar] [CrossRef] [PubMed]
- Grindberg, R.V.; Yee-Greenbaum, J.L.; McConnell, M.J.; Novotny, M.; O’Shaughnessy, A.L.; Lambert, G.M.; Araúzo-Bravo, M.J.; Lee, J.; Fishman, M.; Robbins, G.E.; et al. RNA-Sequencing from Single Nuclei. Proc. Natl. Acad. Sci. USA 2013, 110, 19802–19807. [Google Scholar] [CrossRef]
- Lake, B.B.; Codeluppi, S.; Yung, Y.C.; Gao, D.; Chun, J.; Kharchenko, P.V.; Linnarsson, S.; Zhang, K. A Comparative Strategy for Single-Nucleus and Single-Cell Transcriptomes Confirms Accuracy in Predicted Cell-Type Expression from Nuclear RNA. Sci. Rep. 2017, 7, 6031. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Pan, T.; Chen, Q.Z.; Zhou, W.W.; Gong, Y.; Xu, G.; Yan, H.Y.; Li, S.; Shi, Q.Z.; Zhang, Y.; et al. Data Analysis Guidelines for Single-Cell RNA-Seq in Biomedical Studies and Clinical Applications. Mil. Med. Res. 2022, 9, 68. [Google Scholar] [CrossRef]
- Tang, F.; Barbacioru, C.; Wang, Y.; Nordman, E.; Lee, C.; Xu, N.; Wang, X.; Bodeau, J.; Tuch, B.B.; Siddiqui, A.; et al. MRNA-Seq Whole-Transcriptome Analysis of a Single Cell. Nat. Methods 2009, 6, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Punzon-Jimenez, P.; Machado-Lopez, A.; Perez-Moraga, R.; Llera-Oyola, J.; Grases, D.; Galvez-Viedma, M.; Sibai, M.; Satorres-Perez, E.; Lopez-Agullo, S.; Badenes, R.; et al. Effect of Aging on the Human Myometrium at Single-Cell Resolution. Nat. Commun. 2024, 15, 945. [Google Scholar] [CrossRef]
- Ren, F.; Wang, L.; Wang, Y.; Wang, J.; Wang, Y.; Song, X.; Zhang, G.; Nie, F.; Lin, S. Single-Cell Transcriptome Profiles the Heterogeneity of Tumor Cells and Microenvironments for Different Pathological Endometrial Cancer and Identifies Specific Sensitive Drugs. Cell Death Dis. 2024, 15, 571. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, M.A.S.; Haro, M.; Wright, K.N.; Lin, X.; Abbasi, F.; Sun, J.; Hernandez, L.; Orr, N.L.; Hong, J.; Choi-Kuaea, Y.; et al. Single-Cell Transcriptomic Analysis of Endometriosis. Nat. Genet. 2023, 55, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.C.; Karkanias, J.; Krasnow, M.A.; Pisco, A.O.; Quake, S.R.; Salzman, J.; Yosef, N.; Bulthaup, B.; Brown, P.; Harper, W.; et al. The Tabula Sapiens: A Multiple-Organ, Single-Cell Transcriptomic Atlas of Humans. Science 2022, 376, eabl4896. [Google Scholar] [CrossRef] [PubMed]
- Pique-Regi, R.; Romero, R.; Garcia-Flores, V.; Peyvandipour, A.; Tarca, A.L.; Pusod, E.; Galaz, J.; Miller, D.; Bhatti, G.; Para, R.; et al. A Single-Cell Atlas of the Myometrium in Human Parturition. JCI Insight 2022, 7, e153921. [Google Scholar] [CrossRef] [PubMed]
- Goad, J.; Rudolph, J.; Zandigohar, M.; Tae, M.; Dai, Y.; Wei, J.J.; Bulun, S.E.; Chakravarti, D.; Rajkovic, A. Single-Cell Sequencing Reveals Novel Cellular Heterogeneity in Uterine Leiomyomas. Hum. Reprod. 2022, 37, 2334–2349. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, M.; Zhang, C.; Méar, L.; Zhong, W.; Digre, A.; Katona, B.; Sjöstedt, E.; Butler, L.; Odeberg, J.; Dusart, P.; et al. A Single-Cell Type Transcriptomics Map of Human Tissues. Sci. Adv. 2021, 7, e153921. [Google Scholar] [CrossRef] [PubMed]
- Krjutškov, K.; Katayama, S.; Saare, M.; Vera-Rodriguez, M.; Lubenets, D.; Samuel, K.; Laisk-Podar, T.; Teder, H.; Einarsdottir, E.; Salumets, A.; et al. Single-Cell Transcriptome Analysis of Endometrial Tissue. Hum. Reprod. 2016, 31, 844–853. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Vilella, F.; Alama, P.; Moreno, I.; Mignardi, M.; Isakova, A.; Pan, W.; Simon, C.; Quake, S.R. Single-Cell Transcriptomic Atlas of the Human Endometrium during the Menstrual Cycle. Nat. Med. 2020, 26, 1644–1653. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Alonso, L.; Handfield, L.-F.; Roberts, K.; Nikolakopoulou, K.; Fernando, R.C.; Gardner, L.; Woodhams, B.; Arutyunyan, A.; Polanski, K.; Hoo, R.; et al. Mapping the Temporal and Spatial Dynamics of the Human Endometrium in Vivo and in Vitro. Nat. Genet. 2021, 53, 1698–1711. [Google Scholar] [CrossRef] [PubMed]
- Marečková, M.; Garcia-Alonso, L.; Moullet, M.; Lorenzi, V.; Petryszak, R.; Sancho-Serra, C.; Oszlanczi, A.; Icoresi Mazzeo, C.; Wong, F.C.K.; Kelava, I.; et al. An Integrated Single-Cell Reference Atlas of the Human Endometrium. Nat. Genet. 2024, 56, 1925–1937. [Google Scholar] [CrossRef] [PubMed]
- Ji, K.; Zhong, J.; Cui, L.; Wang, X.; Chen, L.N.; Wen, B.; Yang, F.; Deng, W.; Pan, X.; Wang, L.; et al. Exploring Myometrial Microenvironment Changes at the Single-Cell Level from Nonpregnant to Term Pregnant States. Physiol. Genom. 2024, 56, 32–47. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, N.D.; Vargo, A.; Ma, Q.; Shen, Y.; Hannum, D.F.; Gurczynski, S.J.; Moore, B.B.; Schon, S.; Lieberman, R.; Shikanov, A.; et al. Cellular Heterogeneity and Dynamics of the Human Uterus in Healthy Premenopausal Women. bioRxiv 2024. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Endometriosis. Available online: https://www.who.int/news-room/fact-sheets/detail/endometriosis (accessed on 1 August 2024).
- Barnard, M.E.; Farland, L.V.; Yan, B.; Wang, J.; Trabert, B.; Doherty, J.A.; Meeks, H.D.; Madsen, M.; Guinto, E.; Collin, L.J.; et al. Endometriosis Typology and Ovarian Cancer Risk. JAMA 2024, 332, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Linder, A.; Westbom-Fremer, S.; Mateoiu, C.; Olsson Widjaja, A.; Österlund, T.; Veerla, S.; Ståhlberg, A.; Ulfenborg, B.; Hedenfalk, I.; Sundfeldt, K. Genomic Alterations in Ovarian Endometriosis and Subsequently Diagnosed Ovarian Carcinoma. Hum. Reprod. 2024, 39, 1141–1154. [Google Scholar] [CrossRef]
- Zondervan, K.T.; Becker, C.M.; Missmer, S.A. Endometriosis. N. Engl. J. Med. 2020, 382, 1244–1256. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhang, L.; Zhan, H.; Mo, Y.; Ren, Z.; Shao, A.; Lin, J. Single-Cell Transcriptomic Analysis of Endometriosis Provides Insights into Fibroblast Fates and Immune Cell Heterogeneity. Cell Biosci. 2021, 11, 125. [Google Scholar] [CrossRef]
- Tan, Y.; Flynn, W.F.; Sivajothi, S.; Luo, D.; Bozal, S.B.; Davé, M.; Luciano, A.A.; Robson, P.; Luciano, D.E.; Courtois, E.T. Single-Cell Analysis of Endometriosis Reveals a Coordinated Transcriptional Programme Driving Immunotolerance and Angiogenesis across Eutopic and Ectopic Tissues. Nat. Cell Biol. 2022, 24, 1306–1318. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Zhou, L.; Liu, M.; Zhu, H.; Zhang, X.; Cai, E.; Xu, X.; Chen, T.; Cheng, H.; Liu, J.; et al. Single-Cell Analysis Reveals Insights into Epithelial Abnormalities in Ovarian Endometriosis. Cell Rep. 2024, 43, 113716. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Wang, A.; Xu, W.; Hu, L.; Sun, J.; Wang, X. The Heterogeneity of Fibrosis and Angiogenesis in Endometriosis Revealed by Single-Cell RNA-Sequencing. Biochim. Biophys. 2023, 1869, 166602. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Suo, L.; Chen, Y.; Zhu, L.; Wan, G.; Han, X. Endometriotic Peritoneal Fluid Promotes Myofibroblast Differentiation of Endometrial Mesenchymal Stem Cells. Stem Cells Int. 2019, 2019, 6183796. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, J.; Chen, Y.; Suo, L.; Chen, H.; Zhu, L.; Wan, G.; Han, X. Activin a Promotes Myofibroblast Differentiation of Endometrial Mesenchymal Stem Cells via STAT3-Dependent Smad/CTGF Pathway. Cell Commun. Signal. 2019, 17, 45. [Google Scholar] [CrossRef] [PubMed]
- Klemmt, P.A.B.; Carver, J.G.; Kennedy, S.H.; Koninckx, P.R.; Mardon, H.J. Stromal Cells from Endometriotic Lesions and Endometrium from Women with Endometriosis Have Reduced Decidualization Capacity. Fertil. Steril. 2006, 85, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Warren, L.A.; Shih, A.; Renteira, S.M.; Seckin, T.; Blau, B.; Simpfendorfer, K.; Lee, A.; Metz, C.N.; Gregersen, P.K. Analysis of Menstrual Effluent: Diagnostic Potential for Endometriosis. J. Mol. Med. 2018, 24, 1. [Google Scholar] [CrossRef]
- Shih, A.J.; Adelson, R.P.; Vashistha, H.; Khalili, H.; Nayyar, A.; Puran, R.; Herrera, R.; Chatterjee, P.K.; Lee, A.T.; Truskinovsky, A.M.; et al. Single-Cell Analysis of Menstrual Endometrial Tissues Defines Phenotypes Associated with Endometriosis. BMC Med. 2022, 20, 315. [Google Scholar] [CrossRef]
- Evans, J.; Salamonsen, L.A.; Winship, A.; Menkhorst, E.; Nie, G.; Gargett, C.E.; Dimitriadis, E. Fertile Ground: Human Endometrial Programming and Lessons in Health and Disease. Nat. Rev. Endocrinol. 2016, 12, 654–667. [Google Scholar] [CrossRef]
- Steinbuch, S.C.; Lüß, A.M.; Eltrop, S.; Götte, M.; Kiesel, L. Endometriosis-Associated Ovarian Cancer: From Molecular Pathologies to Clinical Relevance. Int. J. Mol. Sci. 2024, 25, 4306. [Google Scholar] [CrossRef]
- Suryawanshi, S.; Huang, X.; Elishaev, E.; Budiu, R.A.; Zhang, L.; Kim, S.H.; Donnellan, N.; Mantia-Smaldone, G.; Ma, T.; Tseng, G.; et al. Complement Pathway Is Frequently Altered in Endometriosis and Endometriosis-Associated Ovarian Cancer. Clin. Cancer Res. 2014, 20, 6163–6174. [Google Scholar] [CrossRef] [PubMed]
- Saavalainen, L.; Lassus, H.; But, A.; Tiitinen, A.; Härkki, P.; Gissler, M.; Pukkala, E.; Heikinheimo, O. Risk of Gynecologic Cancer According to the Type of Endometriosis. Obstet. Gynecol. 2018, 131, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Abramiuk, M.; Grywalska, E.; Małkowska, P.; Sierawska, O.; Hrynkiewicz, R.; Niedźwiedzka-Rystwej, P. The Role of the Immune System in the Development of Endometriosis. Cells 2022, 11, 2028. [Google Scholar] [CrossRef] [PubMed]
- Zou, G.; Wang, J.; Xu, X.; Xu, P.; Zhu, L.; Yu, Q.; Peng, Y.; Guo, X.; Li, T.; Zhang, X. Cell Subtypes and Immune Dysfunction in Peritoneal Fluid of Endometriosis Revealed by Single-Cell RNA-Sequencing. Cell Biosci. 2021, 11, 98. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- World Cancer Research Fund International. Endometrial Cancer Statistics. Available online: https://www.wcrf.org/preventing-cancer/cancer-statistics/endometrial-cancer-statistics/ (accessed on 21 December 2024).
- Mazidimoradi, A.; Momenimovahed, Z.; Khalajinia, Z.; Allahqoli, L.; Salehiniya, H.; Alkatout, I. The Global Incidence, Mortality, and Burden of Uterine Cancer in 2019 and Correlation with SDI, Tobacco, Dietary Risks, and Metabolic Risk Factors: An Ecological Study. Health Sci. Rep. 2024, 7, e1835. [Google Scholar] [CrossRef]
- Ye, J.; Peng, H.; Huang, X.; Qi, X. The Association between Endometriosis and Risk of Endometrial Cancer and Breast Cancer: A Meta-Analysis. BMC Womens Health 2022, 22, 455. [Google Scholar] [CrossRef] [PubMed]
- Bianco, B.; Barbosa, C.P.; Trevisan, C.M.; Laganà, A.S.; Montagna, E. Endometrial Cancer: A Genetic Point of View. Transl. Cancer Res. 2020, 9, 7706. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Fan, Y.; Zhang, Y.; Ruan, J.; Mu, Y.; Li, J. Recurrence and Survival of Patients with Stage III Endometrial Cancer after Radical Surgery Followed by Adjuvant Chemo- or Chemoradiotherapy: A Systematic Review and Meta-Analysis. BMC Cancer 2023, 23, 31. [Google Scholar] [CrossRef] [PubMed]
- Bogani, G.; Ray-Coquard, I.; Concin, N.; Ngoi, N.Y.L.; Morice, P.; Enomoto, T.; Takehara, K.; Denys, H.; Lorusso, D.; Coleman, R.; et al. Clear Cell Carcinoma of the Endometrium. Gynecol. Oncol. 2022, 164, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Jamaluddin, M.F.B.; Ko, Y.A.; Ghosh, A.; Syed, S.M.; Ius, Y.; O’Sullivan, R.; Netherton, J.K.; Baker, M.A.; Nahar, P.; Jaaback, K.; et al. Proteomic and Functional Characterization of Intra-Tumor Heterogeneity in Human Endometrial Cancer. Cell Rep. Med. 2022, 3, 100738. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.E.; Li, Y.; Cai, B.; He, Q.; Chen, G.; Wang, M.; Wang, K.; Wan, X.; Yan, Q. Phenotyping of Immune and Endometrial Epithelial Cells in Endometrial Carcinomas Revealed by Single-Cell RNA Sequencing. Aging 2021, 13, 6565–6591. [Google Scholar] [CrossRef]
- Ren, X.; Liang, J.; Zhang, Y.; Jiang, N.; Xu, Y.; Qiu, M.; Wang, Y.; Zhao, B.; Chen, X. Single-Cell Transcriptomic Analysis Highlights Origin and Pathological Process of Human Endometrioid Endometrial Carcinoma. Nat. Commun. 2022, 13, 6300. [Google Scholar] [CrossRef]
- Mittal, V. Epithelial Mesenchymal Transition in Tumor Metastasis. Annu. Rev. Pathol. 2018, 13, 395–412. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Zhang, J.; Zhang, Q.; Wei, S.; Shi, R.; Zhao, R.; An, L.; Grose, R.; Feng, D.; Wang, H. Single-Cell Sequencing Reveals the Heterogeneity and Intratumoral Crosstalk in Human Endometrial Cancer. Cell Prolif. 2022, 55, e13249. [Google Scholar] [CrossRef]
- Dey, D.K.; Krause, D.; Rai, R.; Choudhary, S.; Dockery, L.E.; Chandra, V. The Role and Participation of Immune Cells in the Endometrial Tumor Microenvironment. Pharmacol. Ther. 2023, 251, 108526. [Google Scholar] [CrossRef]
- Wu, Q.; Jiang, G.; Sun, Y.; Li, B. Reanalysis of Single-Cell Data Reveals Macrophage Subsets Associated with the Immunotherapy Response and Prognosis of Patients with Endometrial Cancer. Exp. Cell Res. 2023, 430, 113736. [Google Scholar] [CrossRef]
- Sun, T.; Sun, B.C.; Zhao, X.L.; Zhao, N.; Dong, X.Y.; Che, N.; Yao, Z.; Ma, Y.M.; Gu, Q.; Zong, W.K.; et al. Promotion of Tumor Cell Metastasis and Vasculogenic Mimicry by Way of Transcription Coactivation by Bcl-2 and Twist1: A Study of Hepatocellular Carcinoma. Hepatology 2011, 54, 1690–1706. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Jiao, Y.; Yang, K.; Mao, M.; Yu, M.; Cao, D.; Xiang, Y. Single-Cell Profiling of the Immune Atlas of Tumor-Infiltrating Lymphocytes in Endometrial Carcinoma. Cancers 2022, 14, 4311. [Google Scholar] [CrossRef]
- Horeweg, N.; Workel, H.H.; Loiero, D.; Church, D.N.; Vermij, L.; Léon-Castillo, A.; Krog, R.T.; de Boer, S.M.; Nout, R.A.; Powell, M.E.; et al. Tertiary Lymphoid Structures Critical for Prognosis in Endometrial Cancer Patients. Nat. Commun. 2022, 13, 1373. [Google Scholar] [CrossRef] [PubMed]
- Vercellini, P.; Viganò, P.; Somigliana, E.; Daguati, R.; Abbiati, A.; Fedele, L. Adenomyosis: Epidemiological Factors. Best. Pract. Res. Clin. Obstet. Gynaecol. 2006, 20, 465–477. [Google Scholar] [CrossRef] [PubMed]
- Mehasseb, M.K.; Bell, S.C.; Pringle, J.H.; Habiba, M.A. Uterine Adenomyosis Is Associated with Ultrastructural Features of Altered Contractility in the Inner Myometrium. Fertil. Steril. 2010, 93, 2130–2136. [Google Scholar] [CrossRef]
- Struble, J.; Reid, S.; Bedaiwy, M.A. Adenomyosis: A Clinical Review of a Challenging Gynecologic Condition. J. Minim. Invasive Gynecol. 2016, 23, 164–185. [Google Scholar] [CrossRef]
- Kok, V.C.; Tsai, H.J.; Su, C.F.; Lee, C.K. The Risks for Ovarian, Endometrial, Breast, Colorectal, and Other Cancers in Women with Newly Diagnosed Endometriosis or Adenomyosis: A Population-Based Study. Int. J. Gynecol. Cancer 2015, 25, 968–976. [Google Scholar] [CrossRef] [PubMed]
- Hermens, M.; van Altena, A.M.; Bulten, J.; van Vliet, H.A.A.M.; Siebers, A.G.; Bekkers, R.L.M. Increased Incidence of Ovarian Cancer in Both Endometriosis and Adenomyosis. Gynecol. Oncol. 2021, 162, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Yu, O.; Schulze-Rath, R.; Grafton, J.; Hansen, K.; Scholes, D.; Reed, S.D. Adenomyosis Incidence, Prevalence and Treatment: United States Population-Based Study 2006–2015. Am. J. Obstet. Gynecol. 2020, 223, 94.e1–94.e10. [Google Scholar] [CrossRef]
- Ferenczy, A. Pathophysiology of Adenomyosis. Hum. Reprod. Update 1998, 4, 312–322. [Google Scholar] [CrossRef] [PubMed]
- García-Solares, J.; Donnez, J.; Donnez, O.; Dolmans, M.M. Pathogenesis of Uterine Adenomyosis: Invagination or Metaplasia? Fertil. Steril. 2018, 109, 371–379. [Google Scholar] [CrossRef]
- Maclean, A.; Barzilova, V.; Patel, S.; Bates, F.; Hapangama, D.K. Characterising the Immune Cell Phenotype of Ectopic Adenomyosis Lesions Compared with Eutopic Endometrium: A Systematic Review. J. Reprod. Immunol. 2023, 157, 103925. [Google Scholar] [CrossRef]
- Bulun, S.E.; Yildiz, S.; Adli, M.; Wei, J.J. Adenomyosis Pathogenesis: Insights from next-Generation Sequencing. Hum. Reprod. Update 2021, 27, 1086–1097. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Liu, L.; Zheng, F.; Chen, S.; Yang, W.; Li, J.; Mo, S.; Zeng, D.Y. Exploration the Global Single-Cell Ecological Landscape of Adenomyosis-Related Cell Clusters by Single-Cell RNA Sequencing. Front. Genet. 2022, 13, 1020757. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, S.; Kinali, M.; Wei, J.J.; Milad, M.; Yin, P.; Adli, M.; Bulun, S.E. Adenomyosis: Single-Cell Transcriptomic Analysis Reveals a Paracrine Mesenchymal-Epithelial Interaction Involving the WNT/SFRP Pathway. Fertil. Steril. 2023, 119, 869–882. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Xu, Y.; Xu, X.; Wang, J.; Qiu, Z.; Yu, Y.; Jiang, X.; Shao, W.; Bai, D.; Wang, M.; et al. Comprehensive Transcriptional Atlas of Human Adenomyosis Deciphered by the Integration of Single-Cell RNA-Sequencing and Spatial Transcriptomics. Protein Cell 2024, 15, 530–546. [Google Scholar] [CrossRef]
- Niu, W.; Zhang, Y.; Liu, H.; Liang, N.; Xu, L.; Li, Y.; Yao, W.; Shi, W.; Liu, Z. Single-Cell Profiling Uncovers the Roles of Endometrial Fibrosis and Microenvironmental Changes in Adenomyosis. J. Inflamm. Res. 2023, 16, 1949–1965. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.J.; Shin, J.H.; Kim, T.H.; Lee, H.S.; Yoo, J.Y.; Ahn, J.Y.; Broaddus, R.R.; Taketo, M.M.; Lydon, J.P.; Leach, R.E.; et al. β -Catenin Activation Contributes to the Pathogenesis of Adenomyosis through Epithelial-Mesenchymal Transition. J. Pathol. 2013, 231, 210–222. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.J.; Chen, S.J.; Zhou, S.C.; Wu, S.Z.; Wang, H. Inflammasomes and Fibrosis. Front. Immunol. 2021, 12, 643149. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, Z.; Liu, H.; Niu, W.; Wang, X.; Liang, N.; Wang, X.; Wang, Y.; Shi, Y.; Xu, L.; et al. Single-Cell Transcriptomic Analysis of Eutopic Endometrium and Ectopic Lesions of Adenomyosis. Cell Biosci. 2021, 11, 51. [Google Scholar] [CrossRef]
- Lee, H.W.; Xu, Y.; He, L.; Choi, W.; Gonzalez, D.; Jin, S.W.; Simons, M. Role of Venous Endothelial Cells in Developmental and Pathologic Angiogenesis. Circulation 2021, 144, 1308–1322. [Google Scholar] [CrossRef] [PubMed]
- Denzer, L.; Muranyi, W.; Schroten, H.; Schwerk, C. The Role of PLVAP in Endothelial Cells. Cell Tissue Res. 2023, 392, 393–412. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.S.; Chen, Y.J.; Chou, T.Y.; Chen, C.Y.; Li, H.Y.; Huang, B.S.; Tsai, H.W.; Lan, H.Y.; Chang, C.H.; Twu, N.F.; et al. Oestrogen-Induced Angiogenesis Promotes Adenomyosis by Activating the Slug-VEGF Axis in Endometrial Epithelial Cells. J. Cell. Mol. Med. 2014, 18, 1358–1371. [Google Scholar] [CrossRef] [PubMed]
- Noguera-Troise, I.; Daly, C.; Papadopoulos, N.J.; Coetzee, S.; Boland, P.; Gale, N.W.; Chieh Lin, H.; Yancopoulos, G.D.; Thurston, G. Blockade of Dll4 Inhibits Tumour Growth by Promoting Non-Productive Angiogenesis. Nature 2006, 444, 1032–1037. [Google Scholar] [CrossRef] [PubMed]
- Li, J.L.; Sainson, R.C.A.; Shi, W.; Leek, R.; Harrington, L.S.; Preusser, M.; Biswas, S.; Turley, H.; Heikamp, E.; Hainfellner, J.A.; et al. Delta-like 4 Notch Ligand Regulates Tumor Angiogenesis, Improves Tumor Vascular Function, and Promotes Tumor Growth in Vivo. Cancer Res. 2007, 67, 11244–11253. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, S.M.; Varier, L.; Fathima, K.Z.; Dharmarajan, A.; Warrier, S. Short Peptide Domains of the Wnt Inhibitor SFRP4 Target Ovarian Cancer Stem Cells by Neutralizing the Wnt β-Catenin Pathway, Disrupting the Interaction between β-Catenin and CD24 and Suppressing Autophagy. Life Sci. 2023, 316, 121384. [Google Scholar] [CrossRef]
- Li, J.; Diao, S.; Yang, H.; Cao, Y.; Du, J.; Yang, D. IGFBP5 Promotes Angiogenic and Neurogenic Differentiation Potential of Dental Pulp Stem Cells. Dev. Growth Differ. 2019, 61, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhu, J.; Chen, L.; Shen, Y.; Zhang, J.; Wang, Q. SFRP4+IGFBP5hi NKT Cells Induced Neural-like Cell Differentiation to Contribute to Adenomyosis Pain. Front. Immunol. 2022, 13, 945504. [Google Scholar] [CrossRef]
- Cui, C.Y.; Liu, X.; Peng, M.H.; Liu, Q.; Zhang, Y. Identification of Key Candidate Genes and Biological Pathways in Neuropathic Pain. Comput. Biol. Med. 2022, 150, 106135. [Google Scholar] [CrossRef] [PubMed]
- Che, X.; Wang, J.; Sun, W.; He, J.; Wang, Q.; Zhu, D.; Zhu, W.; Zhang, J.; Dong, J.; Xu, J.; et al. Effect of Mifepristone vs Placebo for Treatment of Adenomyosis with Pain Symptoms: A Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e2317860. [Google Scholar] [CrossRef] [PubMed]
- Moldassarina, R.S. Modern View on the Diagnostics and Treatment of Adenomyosis. Arch. Gynecol. Obstet. 2023, 308, 171–181. [Google Scholar] [CrossRef]
- Baird, D.D.; Dunson, D.B.; Hill, M.C.; Cousins, D.; Schectman, J.M. High Cumulative Incidence of Uterine Leiomyoma in Black and White Women: Ultrasound Evidence. Am. J. Obstet. Gynecol. 2003, 188, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Benson, C.B.; Chow, J.S.; Chang-Lee, W.; Iii, J.A.H.; Doubilet, P.M. Outcome of Pregnancies in Women with Uterine Leiomyomas Identified by Sonography in the First Trimester. J. Clin. Ultrasound 2001, 29, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Marsh, E.E.; Bulun, S.E. Steroid Hormones and Leiomyomas. Obstet. Gynecol. Clin. N. Am. 2006, 33, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Parikh, T.P.; Malik, M.; Britten, J.; Aly, J.M.; Pilgrim, J.; Catherino, W.H. Steroid Hormones and Hormone Antagonists Regulate the Neural Marker Neurotrimin in Uterine Leiomyoma. Fertil. Steril. 2020, 113, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Machado-Lopez, A.; Simón, C.; Mas, A. Molecular and Cellular Insights into the Development of Uterine Fibroids. Int. J. Mol. Sci. 2021, 22, 8483. [Google Scholar] [CrossRef]
- Wang, J.; Xu, P.; Zou, G.; Che, X.; Jiang, X.; Liu, Y.; Mao, X.; Zhang, X. Integrating Spatial Transcriptomics and Single-Nucleus RNA Sequencing Reveals the Potential Therapeutic Strategies for Uterine Leiomyoma. Int. J. Biol. Sci. 2023, 19, 2515–2530. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Ding, L.; Xu, J.; Chegini, N. Gene Expression Profiling of Leiomyoma and Myometrial Smooth Muscle Cells in Response to Transforming Growth Factor-β. Endocrinology 2005, 146, 1097–1118. [Google Scholar] [CrossRef] [PubMed]
- Serna, V.A.; Wu, X.; Qiang, W.; Thomas, J.; Blumenfeld, M.L.; Kurita, T. Cellular Kinetics of MED12-Mutant Uterine Leiomyoma Growth and Regression in Vivo. Endocr. Relat. Cancer 2018, 25, 747–759. [Google Scholar] [CrossRef]
- Hung, R.J.; Terman, J.R. Extracellular Inhibitors, Repellents, and Semaphorin/Plexin/MICAL-Mediated Actin Filament Disassembly. Cytoskeleton 2011, 68, 415–433. [Google Scholar] [CrossRef]
- Yang, Q.; Al-Hendy, A. Update on the Role and Regulatory Mechanism of Extracellular Matrix in the Pathogenesis of Uterine Fibroids. Int. J. Mol. Sci. 2023, 24, 5778. [Google Scholar] [CrossRef] [PubMed]
- Crabtree, J.S.; Jelinsky, S.A.; Harris, H.A.; Choe, S.E.; Cotreau, M.M.; Kimberland, M.L.; Wilson, E.; Saraf, K.A.; Liu, W.; McCampbell, A.S.; et al. Comparison of Human and Rat Uterine Leiomyomata: Identification of a Dysregulated Mammalian Target of Rapamycin Pathway. Cancer Res. 2009, 69, 6171–6178. [Google Scholar] [CrossRef]
- Bielesz, B.; Sirin, Y.; Si, H.; Niranjan, T.; Gruenwald, A.; Ahn, S.; Kato, H.; Pullman, J.; Gessler, M.; Haase, V.H.; et al. Epithelial Notch Signaling Regulates Interstitial Fibrosis Development in the Kidneys of Mice and Humans. J. Clin. Investig. 2010, 120, 4040–4054. [Google Scholar] [CrossRef]
- Al-Hendy, A.; Diamond, M.P.; Boyer, T.G.; Halder, S.K. Vitamin D3 Inhibits Wnt/β-Catenin and MTOR Signaling Pathways in Human Uterine Fibroid Cells. J. Clin. Endocrinol. Metab. 2016, 101, 1542–1551. [Google Scholar] [CrossRef]
- Cohen, M.L.; Brumwell, A.N.; Ho, T.C.; Garakani, K.; Montas, G.; Leong, D.; Ding, V.W.; Golden, J.A.; Trinh, B.N.; Jablons, D.M.; et al. A Fibroblast-Dependent TGFβ1/SFRP2 Noncanonical Wnt Signaling Axis Promotes Epithelial Metaplasia in Idiopathic Pulmonary Fibrosis. J. Clin. Investig. 2024, 134, e174598. [Google Scholar] [CrossRef]
- Varghese, B.V.; Koohestani, F.; McWilliams, M.; Colvin, A.; Gunewardena, S.; Kinsey, W.H.; Nowak, R.A.; Nothnick, W.B.; Chennathukuzhi, V.M. Loss of the Repressor REST in Uterine Fibroids Promotes Aberrant G Protein-Coupled Receptor 10 Expression and Activates Mammalian Target of Rapamycin Pathway. Proc. Natl. Acad. Sci. USA 2013, 110, 2187–2192. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, H.; Ishi, K.; Ann Serna, V.; Kakazu, R.; Bulun, S.E.; Kurita, T. Progesterone Is Essential for Maintenance and Growth of Uterine Leiomyoma. Endocrinology 2010, 151, 2433–2442. [Google Scholar] [CrossRef]
- Li, Z.; Yin, H.; Shen, Y.; Ren, M.; Xu, X. The Influence of Phenolic Environmental Estrogen on the Transcriptome of Uterine Leiomyoma Cells: A Whole Transcriptome Profiling-Based Analysis. Ecotoxicol. Environ. Saf. 2021, 211, 111945. [Google Scholar] [CrossRef]
- Voronin, D.; Sotnikova, N.; Rukavishnikov, K.; Malyshkina, A.; Nagornii, S.; Antsiferova, Y. Differential Regulatory Effect of Progesterone on the Proliferation and Apoptosis of Uterine Leiomyoma Tissue Explants and Primary Leiomyoma Cell Cultures. J. Bras. Reprod. Assist. 2021, 25, 540–548. [Google Scholar] [CrossRef]
- Reschke, L.; Afrin, S.; El Sabah, M.; Charewycz, N.; Miyashita-Ishiwata, M.; Borahay, M.A. Leptin Induces Leiomyoma Cell Proliferation and Extracellular Matrix Deposition via JAK2/STAT3 and MAPK/ERK Pathways. F&S Sci. 2022, 3, 383–391. [Google Scholar] [CrossRef]
- He, Y.Y.; Cai, B.; Yang, Y.X.; Liu, X.L.; Wan, X.P. Estrogenic G Protein-Coupled Receptor 30 Signaling Is Involved in Regulation of Endometrial Carcinoma by Promoting Proliferation, Invasion Potential, and Interleukin-6 Secretion via the MEK/ERK Mitogen-Activated Protein Kinase Pathway. Cancer Sci. 2009, 100, 1051–1061. [Google Scholar] [CrossRef]
- Tal, R.; Segars, J.H. The Role of Angiogenic Factors in Fibroid Pathogenesis: Potential Implications for Future Therapy. Hum. Reprod. Update 2014, 20, 194–216. [Google Scholar] [CrossRef] [PubMed]
- Afrin, S.; El Sabeh, M.; Islam, M.S.; Miyashita-Ishiwata, M.; Malik, M.; Catherino, W.H.; Akimzhanov, A.M.; Boehning, D.; Yang, Q.; Al-Hendy, A.; et al. Simvastatin Modulates Estrogen Signaling in Uterine Leiomyoma via Regulating Receptor Palmitoylation, Trafficking and Degradation. Pharmacol. Res. 2021, 172, 105856. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cao, C.; Du, S.; Fan, L.; Zhang, D.; Wang, X.; He, M. Estrogen Regulates Endoplasmic Reticulum Stress-Mediated Apoptosis by ERK-P65 Pathway to Promote Endometrial Angiogenesis. Reprod. Sci. 2021, 28, 1216–1226. [Google Scholar] [CrossRef] [PubMed]
- Valladares, F.; Frías, I.; Báez, D.; García, C.; López, F.J.; Fraser, J.D.; Rodríguez, Y.; Reyes, R.; Díaz-Flores, L.; Bello, A.R. Characterization of Estrogen Receptors Alpha and Beta in Uterine Leiomyoma Cells. Fertil. Steril. 2006, 86, 1736–1743. [Google Scholar] [CrossRef]
- Li, F.; Wang, J.; Liu, W. Search for Key Genes, Key Signaling Pathways, and Immune Cell Infiltration in Uterine Fibroids by Bioinformatics Analysis. Medicine 2023, 102, E33815. [Google Scholar] [CrossRef]
- Yang, R.; Wang, M.; Zhang, G.; Li, Y.; Wang, L.; Cui, H. POU2F2 Regulates Glycolytic Reprogramming and Glioblastoma Progression via PDPK1-Dependent Activation of PI3K/AKT/MTOR Pathway. Cell Death Dis. 2021, 12, 433. [Google Scholar] [CrossRef]
- Zhou, S.; Yi, T.; Shen, K.; Zhang, B.; Huang, F.; Zhao, X. Hypoxia: The Driving Force of Uterine Myometrial Stem Cells Differentiation into Leiomyoma Cells. Med. Hypotheses 2011, 77, 985–986. [Google Scholar] [CrossRef] [PubMed]
- Ono, M.; Maruyama, T.; Masuda, H.; Kajitani, T.; Nagashima, T.; Arase, T.; Ito, M.; Ohta, K.; Uchida, H.; Asada, H.; et al. Side Population in Human Uterine Myometrium Displays Phenotypic and Functional Characteristics of Myometrial Stem Cells. Proc. Natl. Acad. Sci. USA 2007, 104, 18700–18705. [Google Scholar] [CrossRef] [PubMed]
- Mas, A.; Nair, S.; Laknaur, A.; Simón, C.; Diamond, M.P.; Al-Hendy, A. Stro-1/CD44 as Putative Human Myometrial and Fibroid Stem Cell Markers. Fertil. Steril. 2015, 104, 225–234.e3. [Google Scholar] [CrossRef]
- Wu, X.; Serna, V.A.; Thomas, J.; Qiang, W.; Blumenfeld, M.L.; Kurita, T. Subtype-Specific Tumor-Associated Fibroblasts Contribute to the Pathogenesis of Uterine Leiomyoma. Cancer Res. 2017, 77, 6891–6901. [Google Scholar] [CrossRef] [PubMed]
- Buyukcelebi, K.; Duval, A.J.; Abdula, F.; Elkafas, H.; Seker-Polat, F.; Adli, M. Integrating Leiomyoma Genetics, Epigenomics, and Single-Cell Transcriptomics Reveals Causal Genetic Variants, Genes, and Cell Types. Nat. Commun. 2024, 15, 1169. [Google Scholar] [CrossRef]
- Regner, M.J.; Wisniewska, K.; Garcia-Recio, S.; Thennavan, A.; Mendez-Giraldez, R.; Malladi, V.S.; Hawkins, G.; Parker, J.S.; Perou, C.M.; Bae-Jump, V.L.; et al. A Multi-Omic Single-Cell Landscape of Human Gynecologic Malignancies. Mol. Cell 2021, 81, 4924–4941.e10. [Google Scholar] [CrossRef] [PubMed]
- Hedlund, E.; Deng, Q. Single-Cell RNA Sequencing: Technical Advancements and Biological Applications. Mol. Asp. Med. 2018, 59, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Boakye Serebour, T.; Cribbs, A.P.; Baldwin, M.J.; Masimirembwa, C.; Chikwambi, Z.; Kerasidou, A.; Snelling, S.J.B. Overcoming Barriers to Single-Cell RNA Sequencing Adoption in Low- and Middle-Income Countries. Eur. J. Hum. Genet. 2024, 32, 1206–1213. [Google Scholar] [CrossRef] [PubMed]
- Lähnemann, D.; Köster, J.; Szczurek, E.; McCarthy, D.J.; Hicks, S.C.; Robinson, M.D.; Vallejos, C.A.; Campbell, K.R.; Beerenwinkel, N.; Mahfouz, A.; et al. Eleven Grand Challenges in Single-Cell Data Science. Genome Biol. 2020, 21, 31. [Google Scholar] [CrossRef]
- Heumos, L.; Schaar, A.C.; Lance, C.; Litinetskaya, A.; Drost, F.; Zappia, L.; Lücken, M.D.; Strobl, D.C.; Henao, J.; Curion, F.; et al. Best Practices for Single-Cell Analysis across Modalities. Nat. Rev. Genet. 2023, 24, 550–572. [Google Scholar] [CrossRef] [PubMed]
- Van de Sande, B.; Lee, J.S.; Mutasa-Gottgens, E.; Naughton, B.; Bacon, W.; Manning, J.; Wang, Y.; Pollard, J.; Mendez, M.; Hill, J.; et al. Applications of Single-Cell RNA Sequencing in Drug Discovery and Development. Nat. Rev. Drug Discov. 2023, 22, 496–520. [Google Scholar] [CrossRef]
- Elorbany, S.; Berlato, C.; Carnevalli, L.S.; Maniati, E.; Barry, S.T.; Wang, J.; Manchanda, R.; Kzhyshkowska, J.; Balkwill, F. Immunotherapy That Improves Response to Chemotherapy in High-Grade Serous Ovarian Cancer. Nat. Commun. 2024, 15, 10144. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Zhang, Y.; Song, W. Single-Cell Transcriptome Analysis Identifies Subclusters and Signature with N-Glycosylation in Endometrial Cancer. Clin. Transl. Oncol. 2024. [Google Scholar] [CrossRef] [PubMed]
- González-Martínez, S.; Pérez-Mies, B.; Cortés, J.; Palacios, J. Single-Cell RNA Sequencing in Endometrial Cancer: Exploring the Epithelial Cells and the Microenvironment Landscape. Front. Immunol. 2024, 15, 1425212. [Google Scholar] [CrossRef]
- Wang, F.; Yue, S.; Huang, Q.; Lei, T.; Li, X.; Wang, C.; Yue, J.; Liu, C. Cellular Heterogeneity and Key Subsets of Tissue-Resident Memory T Cells in Cervical Cancer. npj Precis. Oncol. 2024, 8, 145. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Wang, F.; Zou, W.; Li, X.; Lei, T.; Li, P.; Song, Y.; Liu, C.; Yue, J. Tumor Endothelium-Derived PODXL Correlates with Immunosuppressive Microenvironment and Poor Prognosis in Cervical Cancer Patients Receiving Radiotherapy or Chemoradiotherapy. Biomark. Res. 2024, 12, 106. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, P.; Dutta, S.; Liew, F.; Samrot, A.; Dasgupta, S.; Rajput, M.A.; Slama, P.; Kolesarova, A.; Roychoudhury, S. Reproductomics: Exploring the Applications and Advancements of Computational Tools. Physiol. Res. 2024, 73, 687–702. [Google Scholar] [CrossRef] [PubMed]
- Altmäe, S.; Esteban, F.J.; Stavreus-Evers, A.; Simón, C.; Giudice, L.; Lessey, B.A.; Horcajadas, J.A.; Macklon, N.S.; D’Hooghe, T.; Campoy, C.; et al. Guidelines for the Design, Analysis and Interpretation of “omics” Data: Focus on Human Endometrium. Hum. Reprod. Update 2014, 20, 12–28. [Google Scholar] [CrossRef] [PubMed]
- Gavrilescu, M.; Demnerová, K.; Aamand, J.; Agathos, S.; Fava, F. Emerging Pollutants in the Environment: Present and Future Challenges in Biomonitoring, Ecological Risks and Bioremediation. New Biotechnol. 2015, 32, 147–156. [Google Scholar] [CrossRef]
- Montgomery, G.W.; Zondervan, K.T.; Nyholt, D.R. The Future for Genetic Studies in Reproduction. Mol. Hum. Reprod. 2014, 20, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Zhang, G.; Luo, W.; Xu, M.; Peng, R.; Du, Z.; Liu, Y.; Bai, Z.; Xiao, X.; Qin, S. PROTAC Technology: From Drug Development to Probe Technology for Target Deconvolution. Eur. J. Med. Chem. 2024, 276, 116725. [Google Scholar] [CrossRef] [PubMed]
- Györfi, A.H.; Matei, A.E.; Distler, J.H.W. Targeting TGF-β Signaling for the Treatment of Fibrosis. Matrix Biol. 2018, 68–69, 8–27. [Google Scholar] [CrossRef] [PubMed]
- Bhat, A.S.; Singh, N.A.; Rymbai, E.; Birendra, S.; Jayaram, S.; Selvaraj, D. Importance of Fibrosis in the Pathogenesis of Uterine Leiomyoma and the Promising Anti-Fibrotic Effects of Dipeptidyl Peptidase-4 and Fibroblast Activation Protein Inhibitors in the Treatment of Uterine Leiomyoma. Reprod. Sci. 2023, 30, 1383–1398. [Google Scholar] [CrossRef] [PubMed]
- Donnez, J.; Stratopoulou, C.A.; Marie-Madeleine, D. Endometriosis and Adenomyosis: Similarities and Differences. Best. Pract. Res. Clin. Obstet. Gynaecol. 2024, 92, 102432. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, C.; Zhang, W.; Wang, Y.; Qian, P.; Huang, H. Inflammation and Aging: Signaling Pathways and Intervention Therapies. Signal Transduct. Target. Ther. 2023, 8, 239. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, S.; Xiao, Y.; Zhang, W.; Wu, S.; Qin, T.; Yue, Y.; Qian, W.; Li, L. NLRP3 Inflammasome and Inflammatory Diseases. Oxid. Med. Cell. Longev. 2020, 2020, 4063562. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-ΚB Signaling in Inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Jin, Y.; Chen, X.; Ye, X.; Shen, X.; Lin, M.; Zeng, C.; Zhou, T.; Zhang, J. NF-ΚB in Biology and Targeted Therapy: New Insights and Translational Implications. Signal Transduct. Target. Ther. 2024, 9, 53. [Google Scholar] [CrossRef] [PubMed]
- Bonavina, G.; Taylor, H.S. Endometriosis-Associated Infertility: From Pathophysiology to Tailored Treatment. Front. Endocrinol. 2022, 13, 1020827. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boldu-Fernández, S.; Lliberos, C.; Simon, C.; Mas, A. Mapping Human Uterine Disorders Through Single-Cell Transcriptomics. Cells 2025, 14, 156. https://doi.org/10.3390/cells14030156
Boldu-Fernández S, Lliberos C, Simon C, Mas A. Mapping Human Uterine Disorders Through Single-Cell Transcriptomics. Cells. 2025; 14(3):156. https://doi.org/10.3390/cells14030156
Chicago/Turabian StyleBoldu-Fernández, Sandra, Carolina Lliberos, Carlos Simon, and Aymara Mas. 2025. "Mapping Human Uterine Disorders Through Single-Cell Transcriptomics" Cells 14, no. 3: 156. https://doi.org/10.3390/cells14030156
APA StyleBoldu-Fernández, S., Lliberos, C., Simon, C., & Mas, A. (2025). Mapping Human Uterine Disorders Through Single-Cell Transcriptomics. Cells, 14(3), 156. https://doi.org/10.3390/cells14030156