Similarities in Mechanisms of Ovarian Cancer Metastasis and Brain Glioblastoma Multiforme Invasion Suggest Common Therapeutic Targets
Abstract
:1. Introduction to Ovarian Cancer and Glioblastoma Multiforme
2. Background for Ovarian Cancer EMT and GBM Invasion Mechanisms
3. Ovarian Cancer
3.1. Overview of Ovarian Cancer
3.2. Genomic Alterations in Ovarian Cancer
3.3. EMT in Ovarian Cancer
3.4. Role of Tumor Microenvironment in Ovarian Cancer
4. Glioblastoma Multiforme (GBM)
4.1. Overview of GBM
4.2. Genomic Alterations in GBM
4.3. Invasion in GBM
4.4. Tumor Microenvironment in GBM
5. Comparative Analysis
Similarities in Genomic Changes Driving EMT in Ovarian Cancer and Invasion in GBM
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kandalaft, L.E.; Dangaj Laniti, D.; Coukos, G. Immunobiology of high-grade serous ovarian cancer: Lessons for clinical translation. Nat. Rev. Cancer 2022, 22, 640–656. [Google Scholar] [CrossRef]
- Tavares, V.; Marques, I.S.; Melo, I.G.; Assis, J.; Pereira, D.; Medeiros, R. Paradigm Shift: A Comprehensive Review of Ovarian Cancer Management in an Era of Advancements. Int. J. Mol. Sci. 2024, 25, 1845. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.W.; Vollmuth, P.; Foltyn-Dumitru, M.; Sahm, F.; Ahn, S.S.; Chang, J.H.; Kim, S.H. The 2021 WHO Classification for Gliomas and Implications on Imaging Diagnosis: Part 1-Key Points of the Fifth Edition and Summary of Imaging Findings on Adult-Type Diffuse Gliomas. J. Magn. Reson. Imaging 2023, 58, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Kanderi, T.; Munakomi, S.; Gupta, V. Glioblastoma Multiforme. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Fisher, J.P.; Adamson, D.C. Current FDA-Approved Therapies for High-Grade Malignant Gliomas. Biomedicines 2021, 9, 324. [Google Scholar] [CrossRef] [PubMed]
- Jackson, G. Figure Created Using BioRender. 2025. Available online: https://BioRender.com/q44d591 (accessed on 26 November 2024).
- Bakir, B.; Chiarella, A.M.; Pitarresi, J.R.; Rustgi, A.K. EMT, MET, Plasticity, and Tumor Metastasis. Trends Cell Biol. 2020, 30, 764–776. [Google Scholar] [CrossRef] [PubMed]
- Debnath, P.; Huirem, R.S.; Dutta, P.; Palchaudhuri, S. Epithelial-mesenchymal transition and its transcription factors. Biosci. Rep. 2022, 42, BSR20211754. [Google Scholar] [CrossRef]
- Ribatti, D.; Tamma, R.; Annese, T. Epithelial-Mesenchymal Transition in Cancer: A Historical Overview. Transl. Oncol. 2020, 13, 100773. [Google Scholar] [CrossRef]
- Huang, Y.; Hong, W.; Wei, X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J. Hematol. Oncol. 2022, 15, 129. [Google Scholar] [CrossRef] [PubMed]
- Jackson, G. Figure created using BioRender. 2025. Available online: https://BioRender.com/u82q109 (accessed on 26 November 2024).
- Son, H.; Moon, A. Epithelial-mesenchymal Transition and Cell Invasion. Toxicol. Res. 2010, 26, 245–252. [Google Scholar] [CrossRef]
- Wang, Q.; Shao, X.; Zhang, Y.; Zhu, M.; Wang, F.X.; Mu, J.; Li, J.; Yao, H.; Chen, K. Role of tumor microenvironment in cancer progression and therapeutic strategy. Cancer Med. 2023, 12, 11149–11165. [Google Scholar] [CrossRef]
- Arora, T.; Mullangi, S.; Vadakekut, E.S.; Lekkala, M.R. Epithelial Ovarian Cancer. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Azzalini, E.; Stanta, G.; Canzonieri, V.; Bonin, S. Overview of Tumor Heterogeneity in High-Grade Serous Ovarian Cancers. Int. J. Mol. Sci. 2023, 24, 15077. [Google Scholar] [CrossRef] [PubMed]
- Ramus, S.J.; Gayther, S.A. The contribution of BRCA1 and BRCA2 to ovarian cancer. Mol. Oncol. 2009, 3, 138–150. [Google Scholar] [CrossRef]
- Dong, A.; Lu, Y.; Lu, B. Genomic/Epigenomic Alterations in Ovarian Carcinoma: Translational Insight into Clinical Practice. J. Cancer 2016, 7, 1441–1451. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, L.; Nguyen, D.; Lu, H. TP53 mutations in epithelial ovarian cancer. Transl. Cancer Res. 2016, 5, 650–663. [Google Scholar] [CrossRef]
- Garg, V.; Oza, A.M. Treatment of Ovarian Cancer Beyond PARP Inhibition: Current and Future Options. Drugs 2023, 83, 1365–1385. [Google Scholar] [CrossRef] [PubMed]
- Cheaib, B.; Auguste, A.; Leary, A. The PI3K/Akt/mTOR pathway in ovarian cancer: Therapeutic opportunities and challenges. Chin. J. Cancer 2015, 34, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Gomez, S.J.; Maziveyi, M.; Alahari, S.K. Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol. Cancer 2016, 15, 18. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Klockow, J.L.; Zhang, M.; Lafortune, F.; Chang, E.; Jin, L.; Wu, Y.; Daldrup-Link, H.E. Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance. Pharmacol. Res. 2021, 171, 105780. [Google Scholar] [CrossRef] [PubMed]
- Thongchot, S.; Jamjuntra, P.; Therasakvichya, S.; Warnnissorn, M.; Ferraresi, A.; Thuwajit, P.; Isidoro, C.; Thuwajit, C. Interleukin-8 released by cancer-associated fibroblasts attenuates the autophagy and promotes the migration of ovarian cancer cells. Int. J. Oncol. 2021, 58, 14. [Google Scholar] [CrossRef]
- Jackson, G. Figure Created Using BioRender. 2025. Available online: https://BioRender.com/u02w473 (accessed on 26 November 2024).
- Yang, Q.; Guo, N.; Zhou, Y.; Chen, J.; Wei, Q.; Han, M. The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy. Acta Pharm. Sin. B 2020, 10, 2156–2170. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Y.; Yang, J.; Zhao, X.; Wei, X. Tumor Microenvironment in Ovarian Cancer: Function and Therapeutic Strategy. Front. Cell Dev. Biol. 2020, 8, 758. [Google Scholar] [CrossRef] [PubMed]
- Mäder, L.; Blank, A.E.; Capper, D.; Jansong, J.; Baumgarten, P.; Wirsik, N.M.; Zachskorn, C.; Ehlers, J.; Seifert, M.; Klink, B.; et al. Pericytes/vessel-associated mural cells (VAMCs) are the major source of key epithelial-mesenchymal transition (EMT) factors SLUG and TWIST in human glioma. Oncotarget 2018, 9, 24041–24053. [Google Scholar] [CrossRef] [PubMed]
- Ohgaki, H.; Kleihues, P. The definition of primary and secondary glioblastoma. Clin. Cancer Res. 2013, 19, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Tamimi, A.F.; Juweid, M. Epidemiology and Outcome of Glioblastoma. In Glioblastoma; De Vleeschouwer, S., Ed.; Codon Publications: Brisbane, Australia, 2017. [Google Scholar]
- Jackson, G. Figure Created Using BioRender. 2025. Available online: https://BioRender.com/e29e095 (accessed on 26 November 2024).
- Zhang, Y.; Dube, C.; Gibert, M., Jr.; Cruickshanks, N.; Wang, B.; Coughlan, M.; Yang, Y.; Setiady, I.; Deveau, C.; Saoud, K.; et al. The p53 Pathway in Glioblastoma. Cancers 2018, 10, 297. [Google Scholar] [CrossRef]
- An, Z.; Aksoy, O.; Zheng, T.; Fan, Q.W.; Weiss, W.A. Epidermal growth factor receptor and EGFRvIII in glioblastoma: Signaling pathways and targeted therapies. Oncogene 2018, 37, 1561–1575. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.L.; Holmen, S.L.; Colman, H. IDH1 and IDH2 mutations in gliomas. Curr. Neurol. Neurosci. Rep. 2013, 13, 345. [Google Scholar] [CrossRef]
- Aquilanti, E.; Kageler, L.; Wen, P.Y.; Meyerson, M. Telomerase as a therapeutic target in glioblastoma. Neuro Oncol. 2021, 23, 2004–2013. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Zhang, K.L.; Zhang, J.X.; Zeng, L.; Di, C.H.; Fee, B.E.; Rivas, M.; Bao, Z.S.; Jiang, T.; Bigner, D.; et al. AJAP1 is dysregulated at an early stage of gliomagenesis and suppresses invasion through cytoskeleton reorganization. CNS Neurosci. Ther. 2014, 20, 429–437. [Google Scholar] [CrossRef]
- Yang, C.; Li, Y.S.; Wang, Q.X.; Huang, K.; Wei, J.W.; Wang, Y.F.; Zhou, J.H.; Yi, K.K.; Zhang, K.L.; Zhou, B.C.; et al. EGFR/EGFRvIII remodels the cytoskeleton via epigenetic silencing of AJAP1 in glioma cells. Cancer Lett. 2017, 403, 119–127. [Google Scholar] [CrossRef]
- Hatoum, A.; Mohammed, R.; Zakieh, O. The unique invasiveness of glioblastoma and possible drug targets on extracellular matrix. Cancer Manag. Res. 2019, 11, 1843–1855. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Aaroe, A.; Liang, J.; Puduvalli, V.K. Tumor microenvironment in glioblastoma: Current and emerging concepts. Neuro Oncol. Adv. 2023, 5, vdad009. [Google Scholar] [CrossRef] [PubMed]
- Galbo, P.M., Jr.; Madsen, A.T.; Liu, Y.; Peng, M.; Wei, Y.; Ciesielski, M.J.; Fenstermaker, R.A.; Graff, S.; Montagna, C.; Segall, G.E.; et al. Functional Contribution and Clinical Implication of Cancer-Associated Fibroblasts in Glioblastoma. Clin. Cancer Res. 2024, 30, 865–876. [Google Scholar] [CrossRef]
- Pang, B.; Xu, J.; Hu, J.; Guo, F.; Wan, L.; Cheng, M.; Pang, L. Single-cell RNA-seq reveals the invasive trajectory and molecular cascades underlying glioblastoma progression. Mol. Oncol. 2019, 13, 2588–2603. [Google Scholar] [CrossRef] [PubMed]
- Mei, S.; Chen, X.; Wang, K.; Chen, Y. Tumor microenvironment in ovarian cancer peritoneal metastasis. Cancer Cell Int. 2023, 23, 11. [Google Scholar] [CrossRef]
- Yadav, N.; Purow, B.W. Understanding current experimental models of glioblastoma-brain microenvironment interactions. J. Neurooncol. 2024, 166, 213–229. [Google Scholar] [CrossRef] [PubMed]
- Rickard, B.P.; Conrad, C.; Sorrin, A.J.; Ruhi, M.K.; Reader, J.C.; Huang, S.A.; Franco, W.; Scarcelli, G.; Polacheck, W.J.; Roque, D.M.; et al. Malignant Ascites in Ovarian Cancer: Cellular, Acellular, and Biophysical Determinants of Molecular Characteristics and Therapy Response. Cancers 2021, 13, 4318. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Ziebro, J.; Smithberger, E.; Skinner, K.R.; Zhao, E.; Cloughesy, T.F.; Binder, Z.A.; O’Rourke, D.M.; Nathanson, N.A.; Furnari, F.B.; et al. Corrigendum to: EGFR, the Lazarus target for precision oncology in glioblastoma. Neuro Oncol. 2023, 25, 213. [Google Scholar] [CrossRef] [PubMed]
- Barzegar Behrooz, A.; Talaie, Z.; Jusheghani, F.; Łos, M.J.; Klonisch, T.; Ghavami, S. Wnt and PI3K/Akt/mTOR Survival Pathways as Therapeutic Targets in Glioblastoma. Int. J. Mol. Sci. 2022, 23, 1353. [Google Scholar] [CrossRef]
- Jackson, G. Figure Created Using BioRender. 2025. Available online: https://BioRender.com/m39f272 (accessed on 26 November 2024).
- Roane, B.M.; Arend, R.C.; Birrer, M.J. Review: Targeting the Transforming Growth Factor-Beta Pathway in Ovarian Cancer. Cancers 2019, 11, 668. [Google Scholar] [CrossRef] [PubMed]
- Newsted, D.; Banerjee, S.; Watt, K.; Nersesian, S.; Truesdell, P.; Blazer, L.L.; Craig, A.W. Blockade of TGF-β signaling with novel synthetic antibodies limits immune exclusion and improves chemotherapy response in metastatic ovarian cancer models. Oncoimmunology 2018, 8, e1539613. [Google Scholar] [CrossRef]
- Du, B.; Shim, J.S. Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer. Molecules 2016, 21, 965. [Google Scholar] [CrossRef]
Genomic Alteration | Pathway Affected | Frequency | Function |
---|---|---|---|
TP53 Mutations | DNA Repair, Cell Cycle | ~96% of HGSC | Disrupts tumor suppression, causes genomic instability, and fuels cancer progression |
BRCA1/BRCA2 Mutations | DNA Repair | 5–15% of all subtypes of ovarian cancer | Messes up DNA repair, makes tumors more sensitive to platinum-based treatments and PARP inhibitors |
PIK3CA Mutations | PI3K/AKT Pathway | Common in endometroid and clear cell types | Causes unchecked cell growth and survival and makes it harder for cells to die off |
PTEN Deletions | PI3K/AKT Pathway | 12–20% of all subtypes of ovarian cancer | This deletion leads to uncontrolled cell growth and survival and makes it challenging for treatments to work |
KRAS Mutations | RAS/MAPK Pathway | 10–15% of all subtypes of ovarian cancer | Keeps the growth and survival pathways constantly on, promoting tumor growth |
CCNE1 Amplifications | DNA Repair, Cell Cycle | Commonly seen in cases | Causes replication stress and instability, linked to poor prognosis |
CDKN2A/B Deletions | Cell Cycle | Commonly seen in cases | This deletion leads to loss of cell cycle control, causing uncontrolled cell growth |
Genomic Alteration | Frequency | GBM Type | Impact |
---|---|---|---|
TP53 Mutation | 60–70% | Secondary GBM | This mutation leads to cell cycle regulation disruption and cell death resistance, resulting in increased invasiveness by promoting EMT factors by mutant p53. |
EGFR Mutation | 57% in primary GBM, 8% in secondary GBM | Both | Causes continuous activation of the receptor, fostering tumor growth, cell survival, and movement. The EGFRvIII variant contributes to the tumor’s aggressive nature, enhances matrix metalloproteinase activity, and triggers EMT. |
IDH1/IDH2 Mutation | 5–10% | Secondary GBM | Correlated with a more favorable prognosis. In contrast, wild-type IDH promotes new blood vessel formation and supports tumor invasion. |
CDKN2A/B Deletion | Prevalent | Both | Results in the loss of tumor-suppressing capabilities, leading to unchecked cell division and increased tumor cell movement, contributing to the tumor’s aggressive characteristics. |
EGFR Amplification | ~50% | Both | It drives abnormal cell growth and survival, activating pathways like RAS/RAF/MEK/ERK and PI3K/AKT, leading to therapy resistance. |
PTEN Mutation | 30–40% | Both | Loss of function as a tumor suppressor, leading to constant activation of the PI3K/AKT pathway, promoting cell survival and growth while reducing response to treatments that induce cell death. |
TERT Promotor Mutation | Less frequent | Both | Increases telomerase activity, allowing cells to maintain telomere length and continue dividing indefinitely. |
Transcription Factor | Role in EMT/Invasion | Associated Genomic Changes | Cancer Type |
---|---|---|---|
Snail (SNAI1) | Induces EMT by repressing E-cadherin | Upregulation leads to loss of E-cadherin expression | Ovarian, GBM |
Slug (SNAI2) | Promotes EMT by downregulating epithelial markers | Upregulation and promoter hypermethylation | Ovarian, GBM |
Twist1 | Initiates EMT, promotes cell invasion | Gene amplification, upregulation | Ovarian, GBM |
Zeb1 | Represses epithelial markers, induces mesenchymal markers | Gene amplification, increased expression | Ovarian, GBM |
Zeb2 | Like Zeb1, promotes EMT | Increased expression | Ovarian, GBM |
E-cadherin (CDH1) | Maintains epithelial phenotype, inhibits EMT | Downregulation or loss of function mutations | Ovarian, GBM |
FOXC2 | Promotes EMT, involved in metastasis | Upregulation | Ovarian |
Sox4 | Induces EMT, promotes cell migration | Increased expression | GBM |
YB-1 | Enhances EMT by regulating Snail and Twist | Upregulation | GBM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jackson, G.A.; Adamson, D.C. Similarities in Mechanisms of Ovarian Cancer Metastasis and Brain Glioblastoma Multiforme Invasion Suggest Common Therapeutic Targets. Cells 2025, 14, 171. https://doi.org/10.3390/cells14030171
Jackson GA, Adamson DC. Similarities in Mechanisms of Ovarian Cancer Metastasis and Brain Glioblastoma Multiforme Invasion Suggest Common Therapeutic Targets. Cells. 2025; 14(3):171. https://doi.org/10.3390/cells14030171
Chicago/Turabian StyleJackson, Gia A., and David Cory Adamson. 2025. "Similarities in Mechanisms of Ovarian Cancer Metastasis and Brain Glioblastoma Multiforme Invasion Suggest Common Therapeutic Targets" Cells 14, no. 3: 171. https://doi.org/10.3390/cells14030171
APA StyleJackson, G. A., & Adamson, D. C. (2025). Similarities in Mechanisms of Ovarian Cancer Metastasis and Brain Glioblastoma Multiforme Invasion Suggest Common Therapeutic Targets. Cells, 14(3), 171. https://doi.org/10.3390/cells14030171