Taming Variability in T-Cell Mechanosensing
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Mechanosensitive Ex Vivo Expansion Varies Across Individuals
3.2. Variation in T-Cell Mechanosensing Correlates with TEff Frequency
3.3. TEff Cells Mediate Mechanosensing
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fesnak, A.D.; June, C.H.; Levine, B.L. Engineered T Cells: The Promise and Challenges of Cancer Immunotherapy. Nat. Rev. Cancer 2016, 16, 566–581. [Google Scholar] [CrossRef] [PubMed]
- Lowery, F.J.; Krishna, S.; Yossef, R.; Parikh, N.B.; Chatani, P.D.; Zacharakis, N.; Parkhurst, M.R.; Levin, N.; Sindiri, S.; Sachs, A.; et al. Molecular Signatures of Antitumor Neoantigen-Reactive T Cells from Metastatic Human Cancers. Science 2022, 375, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Zacharakis, N.; Huq, L.M.; Seitter, S.J.; Kim, S.P.; Gartner, J.J.; Sindiri, S.; Hill, V.K.; Li, Y.F.; Paria, B.C.; Ray, S.; et al. Breast Cancers Are Immunogenic: Immunologic Analyses and a Phase II Pilot Clinical Trial Using Mutation-Reactive Autologous Lymphocytes. J. Clin. Oncol. 2022, 40, 1741–1754. [Google Scholar] [CrossRef] [PubMed]
- Dwarshuis, N.J.; Parratt, K.; Santiago-Miranda, A.; Roy, K. Cells as Advanced Therapeutics: State-of-the-Art, Challenges, and Opportunities in Large Scale Biomanufacturing of High-Quality Cells for Adoptive Immunotherapies. Adv. Drug Deliv. Rev. 2017, 114, 222–239. [Google Scholar] [CrossRef] [PubMed]
- Fesnak, A.D. The Challenge of Variability in Chimeric Antigen Receptor T Cell Manufacturing. Regen. Eng. Transl. Med. 2020, 6, 322–329. [Google Scholar] [CrossRef]
- Jiang, J.; Ahuja, S. Addressing Patient to Patient Variability for Autologous CAR T Therapies. J. Pharm. Sci. 2021, 110, 1871–1876. [Google Scholar] [CrossRef]
- Du, H.; Bartleson, J.M.; Butenko, S.; Alonso, V.; Liu, W.F.; Winer, D.A.; Butte, M.J. Tuning Immunity through Tissue Mechanotransduction. Nat. Rev. Immunol. 2023, 23, 174–188. [Google Scholar] [CrossRef]
- Simsek, H.; Klotzsch, E. The Solid Tumor Microenvironment-Breaking the Barrier for T Cells: How the Solid Tumor Microenvironment Influences T Cells: How the Solid Tumor Microenvironment Influences T Cells. Bioessays 2022, 44, e2100285. [Google Scholar] [CrossRef]
- Lopez-Crapez, E.; Costa, L.; Tosato, G.; Ramos, J.; Mazard, T.; Guiramand, J.; Thierry, A.; Colinge, J.; Milhiet, P.-E.; Bénistant, C. Mechanical Signatures of Human Colon Cancers. Sci. Rep. 2022, 12, 12475. [Google Scholar] [CrossRef]
- Wang, H.; Mooney, D.J. Biomaterial-Assisted Targeted Modulation of Immune Cells in Cancer Treatment. Nat. Mater. 2018, 17, 761–772. [Google Scholar] [CrossRef]
- Hyun, J.; Kim, S.J.; Cho, S.-D.; Kim, H.-W. Mechano-Modulation of T Cells for Cancer Immunotherapy. Biomaterials 2023, 297, 122101. [Google Scholar] [CrossRef] [PubMed]
- Dang, A.; De Leo, S.; Bogdanowicz, D.R.; Yuan, D.J.; Fernandes, S.M.; Brown, J.R.; Lu, H.H.; Kam, L.C. Enhanced Activation and Expansion of T Cells Using Mechanically Soft Elastomer Fibers. Adv. Biosyst. 2018, 2, 1700167. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, R.S.; Hao, X.; Shen, K.; Bashour, K.; Akimova, T.; Hancock, W.W.; Kam, L.C.; Milone, M.C. Substrate Rigidity Regulates Human T Cell Activation and Proliferation. J. Immunol. 2012, 189, 1330–1339. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.J.; Shi, L.; Kam, L.C. Biphasic Response of T Cell Activation to Substrate Stiffness. Biomaterials 2021, 273, 120797. [Google Scholar] [CrossRef]
- McLane, L.M.; Abdel-Hakeem, M.S.; Wherry, E.J. CD8 T Cell Exhaustion During Chronic Viral Infection and Cancer. Annu. Rev. Immunol. 2019, 37, 457–495. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Health Sciences Policy; Forum on Regenerative Medicine; Beachy, S.H.; Wizemann, T.; Hackmann, M. (Eds.) Addressing Variability in Donor Tissues and Cells. In Exploring Sources of Variability Related to the Clinical Translation of Regenerative Engineering Products: Proceedings of a Workshop; National Academies Press: Washington, DC, USA, 2019. [Google Scholar]
- Zhang, D.K.Y.; Adu-Berchie, K.; Iyer, S.; Liu, Y.; Cieri, N.; Brockman, J.M.; Neuberg, D.; Wu, C.J.; Mooney, D.J. Enhancing CAR-T Cell Functionality in a Patient-Specific Manner. Nat. Commun. 2023, 14, 506. [Google Scholar] [CrossRef]
- Shi, L.; Lim, J.Y.; Kam, L.C. Improving Regulatory T Cell Production through Mechanosensing. J. Biomed. Mater. Res. A 2024, 112, 1138–1148. [Google Scholar] [CrossRef]
- Lee, J.H.; Shao, S.; Kim, M.; Fernandes, S.M.; Brown, J.R.; Kam, L.C. Multi-Factor Clustering Incorporating Cell Motility Predicts T Cell Expansion Potential. Front. Cell Dev. Biol. 2021, 9, 648925. [Google Scholar] [CrossRef]
- Cohen, A.D.; Garfall, A.L.; Stadtmauer, E.A.; Melenhorst, J.J.; Lacey, S.F.; Lancaster, E.; Vogl, D.T.; Weiss, B.M.; Dengel, K.; Nelson, A.; et al. B Cell Maturation Antigen–Specific CAR T Cells Are Clinically Active in Multiple Myeloma. J. Clin. Investig. 2019, 129, 2210–2221. [Google Scholar] [CrossRef]
- Louis, C.U.; Savoldo, B.; Dotti, G.; Pule, M.; Yvon, E.; Myers, G.D.; Rossig, C.; Russell, H.V.; Diouf, O.; Liu, E.; et al. Antitumor Activity and Long-Term Fate of Chimeric Antigen Receptor–Positive T Cells in Patients with Neuroblastoma. Blood 2011, 118, 6050–6056. [Google Scholar] [CrossRef]
- Sommermeyer, D.; Hudecek, M.; Kosasih, P.L.; Gogishvili, T.; Maloney, D.G.; Turtle, C.J.; Riddell, S.R. Chimeric Antigen Receptor-Modified T Cells Derived from Defined CD8+ and CD4+ Subsets Confer Superior Antitumor Reactivity In Vivo. Leukemia 2016, 30, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Turtle, C.J.; Hanafi, L.-A.; Berger, C.; Gooley, T.A.; Cherian, S.; Hudecek, M.; Sommermeyer, D.; Melville, K.; Pender, B.; Budiarto, T.M.; et al. CD19 CAR–T Cells of Defined CD4+:CD8+ Composition in Adult B Cell ALL Patients. J. Clin. Investig. 2016, 126, 2123–2138. [Google Scholar] [CrossRef] [PubMed]
- Ayala Ceja, M.; Khericha, M.; Harris, C.M.; Puig-Saus, C.; Chen, Y.Y. CAR-T Cell Manufacturing: Major Process Parameters and next-Generation Strategies. J. Exp. Med. 2024, 221, e20230903. [Google Scholar] [CrossRef] [PubMed]
- Levine, B.L.; Miskin, J.; Wonnacott, K.; Keir, C. Global Manufacturing of CAR T Cell Therapy. Mol. Ther. Methods Clin. Dev. 2017, 4, 92–101. [Google Scholar] [CrossRef]
- Adu-Berchie, K.; Liu, Y.; Zhang, D.K.Y.; Freedman, B.R.; Brockman, J.M.; Vining, K.H.; Nerger, B.A.; Garmilla, A.; Mooney, D.J. Generation of Functionally Distinct T-Cell Populations by Altering the Viscoelasticity of Their Extracellular Matrix. Nat. Biomed. Eng. 2023, 7, 1374–1391. [Google Scholar] [CrossRef]
- Toumi, R.; Yuzefpolskiy, Y.; Vegaraju, A.; Xiao, H.; Smith, K.A.; Sarkar, S.; Kalia, V. Autocrine and Paracrine IL-2 Signals Collaborate to Regulate Distinct Phases of CD8 T Cell Memory. Cell Rep. 2022, 39, 110632. [Google Scholar] [CrossRef]
- Hoffmann, J.-M.; Schubert, M.-L.; Wang, L.; Hückelhoven, A.; Sellner, L.; Stock, S.; Schmitt, A.; Kleist, C.; Gern, U.; Loskog, A.; et al. Differences in Expansion Potential of Naive Chimeric Antigen Receptor T Cells from Healthy Donors and Untreated Chronic Lymphocytic Leukemia Patients. Front. Immunol. 2018, 8, 1956. [Google Scholar] [CrossRef]
- Krummel, M.F.; Mahale, J.N.; Uhl, L.F.K.; Hardison, E.A.; Mujal, A.M.; Mazet, J.M.; Weber, R.J.; Gartner, Z.J.; Gérard, A. Paracrine Costimulation of IFN-γ Signaling by Integrins Modulates CD8 T Cell Differentiation. Proc. Natl. Acad. Sci. USA 2018, 115, 11585–11590. [Google Scholar] [CrossRef]
- Shi, L.; Lim, J.Y.; Kam, L.C. Substrate Stiffness Enhances Human Regulatory T Cell Induction and Metabolism. Biomaterials 2023, 292, 121928. [Google Scholar] [CrossRef]
- Azizi, E.; Carr, A.J.; Plitas, G.; Cornish, A.E.; Konopacki, C.; Prabhakaran, S.; Nainys, J.; Wu, K.; Kiseliovas, V.; Setty, M.; et al. Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment. Cell 2018, 174, 1293–1308.e36. [Google Scholar] [CrossRef]
- Parikh, A.Y.; Masi, R.; Gasmi, B.; Hanada, K.-I.; Parkhurst, M.; Gartner, J.; Sindiri, S.; Prickett, T.; Robbins, P.; Zacharakis, N.; et al. Using Patient-Derived Tumor Organoids from Common Epithelial Cancers to Analyze Personalized T-Cell Responses to Neoantigens. Cancer Immunol. Immunother. 2023, 72, 3149–3162. [Google Scholar] [CrossRef] [PubMed]
- Logun, M.; Wang, X.; Sun, Y.; Bagley, S.J.; Li, N.; Desai, A.; Zhang, D.Y.; Nasrallah, M.P.; Pai, E.L.-L.; Oner, B.S.; et al. Patient-Derived Glioblastoma Organoids as Real-Time Avatars for Assessing Responses to Clinical CAR-T Cell Therapy. Cell Stem Cell 2024. [Google Scholar] [CrossRef] [PubMed]
- Van Seventer, G.A.; Shimizu, Y.; Horgan, K.J.; Shaw, S. The LFA-1 Ligand ICAM-1 Provides an Important Costimulatory Signal for T Cell Receptor-Mediated Activation of Resting T Cells. J. Immunol. 1990, 144, 4579–4586. [Google Scholar] [CrossRef] [PubMed]
- Porter, J.C.; Bracke, M.; Smith, A.; Davies, D.; Hogg, N. Signaling Through Integrin LFA-1 Leads to Filamentous Actin Polymerization and Remodeling, Resulting in Enhanced T Cell Adhesion1. J. Immunol. 2002, 168, 6330–6335. [Google Scholar] [CrossRef] [PubMed]
- Wahl, A.; Dinet, C.; Dillard, P.; Nassereddine, A.; Puech, P.-H.; Limozin, L.; Sengupta, K. Biphasic Mechanosensitivity of T Cell Receptor-Mediated Spreading of Lymphocytes. Proc. Natl. Acad. Sci. USA 2019, 116, 5908–5913. [Google Scholar] [CrossRef]
- Saitakis, M.; Dogniaux, S.; Goudot, C.; Bufi, N.; Asnacios, S.; Maurin, M.; Randriamampita, C.; Asnacios, A.; Hivroz, C. Different TCR-Induced T Lymphocyte Responses Are Potentiated by Stiffness with Variable Sensitivity. eLife 2017, 6, e23190. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schultheiss, P.J.; Pulkundwar, A.; Li, W.; Kam, L.C. Taming Variability in T-Cell Mechanosensing. Cells 2025, 14, 203. https://doi.org/10.3390/cells14030203
Schultheiss PJ, Pulkundwar A, Li W, Kam LC. Taming Variability in T-Cell Mechanosensing. Cells. 2025; 14(3):203. https://doi.org/10.3390/cells14030203
Chicago/Turabian StyleSchultheiss, Paula J., Aarya Pulkundwar, Wangqi Li, and Lance C. Kam. 2025. "Taming Variability in T-Cell Mechanosensing" Cells 14, no. 3: 203. https://doi.org/10.3390/cells14030203
APA StyleSchultheiss, P. J., Pulkundwar, A., Li, W., & Kam, L. C. (2025). Taming Variability in T-Cell Mechanosensing. Cells, 14(3), 203. https://doi.org/10.3390/cells14030203