More than Just Protein Folding: The Epichaperome, Mastermind of the Cancer Cell
Abstract
:1. Introduction
2. The Biology of Epichaperomes and Interactomes
2.1. Cellular Locations of Epichaperome and Epichaperome Constituents
Cellular Location | Molecular Chaperone(s) | Role | Reference |
---|---|---|---|
Cytosol | Hsp90 | The nucleation and signaling hub of the multichaperone network that acts in the maturation stages of client protein folding. | [21] |
Hso70/Hsp40 (nucleotide exchange factor [NEF]) | 1. Supports, shuffles, and loads client proteins into Hsp90 with the support of Hsp40 family proteins. 2. Partakes in protein folding, disaggregates aggregates, and can translocate to other membrane-bound cellular compartments to support chaperoning activity. 3. Plays a role in chaperone-mediated autophagy. | [21] | |
Hsp110, Hsp90, Hsp70, Hsp60, and Hsp40 complex | Interacts in a complex loop mechanism with support from co-chaperones to chaperone-misfolded, metastable, and non-native proteins, providing suitable conditions for refolding while promoting the proteolysis of ubiquitinated proteins that culminates in cellular proteostasis. | [21] | |
ER/Golgi apparatus | BiP (Hsp70 homolog)/GRP170 (Hsp110 homologue)/Sil (ER-NEF)/ERdj3 (Hsp40 Homolog)/Sec63 (transmembrane protein) | 1. Aid the unilateral ER luminal translocation of co- and post-translational protein. 2. Hold ER-translocated proteins in soluble conformations and fold them into their 3-D structure or activate ERAD with the assistance of GRP94. | [12,22,23,24,25,26] |
Protein disulfide isomerases (thiol oxidoreductases) | Facilitates the 3-D folding of ER polypeptides by creating the protein disulfide bonds crucial for proper protein folding. | [27,28] | |
Calnexin and calreticulin | 1. Acts as a scaffold to recruit function-specific ER chaperones. 2. Potentiates thiol oxidoreductases to facilitate the formation of disulfide bonds, proline isomerization, and the structural maturation of proteins. 3. Coordinates the signaling of UPR in stress conditions. | [29,30] | |
GRP94 (Hsp90 homolog) | 1. Participates in ER protein folding. 2. Interacts with ER protein folding machinery to regulate Ca2+ homeostasis. 3. Targets misfolded proteins for ERAD in response to stress. | [31,32] | |
Mitochondria | mtHsp70/GRP75/mortalin (Hsp70 homolog) | 1. Has “unfoldase” activity that allows for the disaggregation of aggregated proteins/peptides. 2. Multinetwork with other chaperones to form complexes crucial for mitochondrial protein homeostasis. | [35] |
mtHsp70/Hsp60/Hsp10 | 1. mtHsp70 interacts with Hsp10, which is needed for Hsp60 activity to form the mtHsp70/Hsp60/Hsp10 complex that modifies the functional specificity of mtHsp70. 2. The MtHsp70/Hsp60/Hsp10 complex interacts with TNF-associated protein 1 (TRAP1) (Hsp90 homolog) to regulate oxidative phosphorylation in the mitochondria. | [35,36] | |
mtHsp70/Tim44 (peripheral subunit of the Tim23 complex) | Translocate extramitochondrial proteins through the presequence translocase-associated motor (PAM) machinery in an ATPase-dependent reaction cycle. | [37] | |
mtHsp70/DNAJA3 (Hsp40 family protein)/LONP1 | Provide a stable environment for precursor protein folding. | [29] | |
Nucleus | Diverse chaperone complexes in the nucleus | Crucial for roles including gene regulation, chromatin/nucleosome remodeling, transcriptional factor chaperoning, global chromatin changes, genome replication, and gene transcription. | [39] |
epiHsp70/NUMA1 | Crucial for the formation and maintenance of spindle poles and kinetochore alignments for sister chromatid segregation during mitosis. | [31] | |
nHsp90/nHsp70/NudCL2/RCC2 | Regulates cytokinesis by interacting with its nuclear co-chaperone, NudCL2, to stabilize the regulator of chromosome condensation 2 (RCC2) at the midbody of mammalian cells. | [41,42] | |
nHsp90/HDAC | Regulates histone modification processes and gene expression patterns. | [43] | |
HSPA1A (Hsp70 nuclear homolog) | Interacts with non-coding RNAs and can occupy and regulate RNA Polymerase III activity at its active transcribed genomic loci by inhibiting nascent tRNA transcripts. | [36] | |
Extracellular/membrane-bound forms | Membrane-bound Hsp70 (mHsp70) | Shows a predilection for negatively charged phosphatidylserine (PS)-composed membranes and chaperone membrane proteins involved in membrane actin interactions for cell motility, invasion, and cellular protection from various stresses. | [17,45,48] |
mHsp90 | 1. Expressed on the extracellular membrane compartment of melanoma cells and is associated with tumor progression. | [46] | |
2. Interacts with Hsp70, Hsp40, Hop, p23, and Hip in an ATP-independent manner in the extracellular space to activate MMP-2 on fibrosarcoma cells. | [19,20] |
2.2. Epichaperome Formation in Tumor Cells
2.3. Molecular Regulators of Epichaperome Formation
2.3.1. Post-Translational Modification Regulates Epichaperome Activity
2.3.2. Transcriptional Regulations of Epichaperome Formation and Activity
2.3.3. Co-Chaperones and ATPase Activity as Regulators of the Epichaperome
2.4. Signaling Pathways Following Epichaperome Constitution
2.4.1. Canonical Signaling Pathways Regulated by Epichaperome
Signaling Pathway | Molecular Chaperone | Function | Reference |
---|---|---|---|
PI3K/Akt/mTOR | Hsp90 | Stabilizes the PI3K/Akt/mTOR pathway signaling protein Akt, maintaining its cellular levels, thereby influencing cancer cell survival. | [6,104] |
Hsp90 inhibition leads to PI3K/Akt and EFGR pathway shutdown. | [6,117] | ||
Hsp70/90 | PI3K/Akt/GSK3β signaling crosstalks with Hsp70/Hsp90 expression by inducing HSF1 expression in multiple myeloma. | [105] | |
NF-κB | Epichaperome complex | Interacts with the NF-κB signaling pathway in a context-dependent manner, causing immune-limiting or -enhancing responses to drive tumor growth. | [86,109] |
HSPB1 | Modulates EMT and IL-6-driven M2-type macrophage infiltration that promotes cancer progression and resistance to doxorubicin by modulating NF-κB signaling. | [110] | |
MAPK | Hsp70 | Interacts with MAPK to modulate the processes of hypoxia, inflammation, and apoptosis. | [115] |
Hsp60 | Stimulates vascular smooth muscle cell migration by interacting with MAPK. | [115] | |
STAT3/VEGF | HSP90 | Maintains the cell surface membrane expression levels of CD24 by stabilizing it to promote sustained STAT3 phosphorylation, which promotes VEGF production and stimulates angiogenesis in colorectal cancer. Hsp90 inhibition, in addition to STAT3, downregulates TWIST1 gene transcription that slows tumor growth and promotes chemoresistance. | [114,116] |
JAK/STAT, TGFβ, PRAR, integrin | Hsp90 | Chaperone MPM-ALK, STIP1, IKKκ, MAK, MCPH, and other related proteins to maintain the JAK/STAT, TGFβ, PRAR, and integrin signaling pathways. | [102] |
Bcr-Abl/Wnt/β catenin/EGFR & Her-2 | Hsp90 | Client proteins of Hsp90, the inhibition of which results in the downregulation of these pathways. | [117] |
2.4.2. Epichaperome and Modulation of Cancer Stem Cell Signaling
2.4.3. Epichaperome Regulation of Autophagy Signaling
2.4.4. Epichaperome and Nuclear Signaling Dynamics
2.4.5. Epichaperome Regulation of Mitochondrial and Metabolic Signaling Pathways
3. Liquid–Liquid Phase Separation in Epichaperome
4. Techniques for Identification of Epichaperome Constituents and Network
4.1. Method for Isolating Epichaperome
4.2. Identification of Epichaperome Constituents and Network
5. Implications of the Epichaperome for Cancer Therapy and Therapeutic Design
6. Discussion and Perspectives
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
BiP | Binding immunoglobulin protein |
Cdc37 | Cell division cycle 37 |
Clp | Caseinolytic protease family protein |
CSC | Cancer stem cell |
DIA | Data-independent acquisition |
DYRK3 | Dual-specific tyrosine-phosphorylation-regulated kinase 3 |
ERAD | Endoplasmic reticulum-associated degradation |
ERdj3 | Endoplasmic reticulum DnaJ3 |
EMT | Epithelial-to-mesenchymal transition |
FKBP52 | Immunophillin FK506-binding protein |
GRP | Glucose response protein |
GSK3β | Glycogen Synthase Kinase-3 Beta |
HDA6 | Histone deacetylase 6 |
HIF-1α | Hypoxia Inducible Factor-1α |
HSF | Heat shock factor |
Hsp | Heat shock protein |
HSPC | Hematopoietic stem and progenitor Cell |
HSR | Heat shock response |
IP-MS | Immunoprecipitation–mass spectrometry |
LC-MS | Liquid Chromatography–mass spectrometry |
LFQ | Label-free quantification |
LLPS | Liquid–liquid phase separation |
LONP1 | LON Peptidase 1 |
MALDI-TOF MS | Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry |
MCPH | Microcephaly primary hereditary |
MYC gene | Myelocytomatosis oncogene |
MPM-ALK | Microphtalmia-associated transcription factor and anaplastic lymphoma kinase |
NEF | Nucleotide exchange factor |
NudCL2 | NudC-like protein 2 |
NUMA1 | Nuclear Mitotic Apparatus Protein-1 |
PAM | Presequence translocase-associated motor |
PML-SYK-fusion | Promyelocytic leukemia gene–spleen tyrosine kinase fusion |
PRAR | Peroxisome proliferator–activator receptors |
PRM | Parallel reaction monitoring |
PTM | Post-translational modification |
PU-H71 | 8-[(6-iodo-1,3-benzodioxol-5-yl)sulfanyl]-9-[3-(propan-2-ylamino)propylpurin-6-amine) |
RCC2 | Chromosome Condensation 2 |
SDS-PAGE | Sodium deodecyl sulfate–polyacrylamide gel electrophoresis |
SGA | Synthetic genetic array technology |
sHsp | Small heat shock proteins |
SILAC | Stable isotope labeling by amino acids in cell culture |
SYNCRIP | Synaptotagmin-binding cytoplasmic RNA-interacting protein |
TCP1 | Tailless Complex Polypeptide-1 |
TGFβ | Transforming growth factor beta |
TPR | Tetratricopeptide repeat domain |
TNBCs | Triple-negative breast cancer cells |
VEGF | Vascular epithelial growth factor |
Y2H | Yeast-two hybrid screen |
YK5-B | Lysine(K)-specific tryptic-like cleavage site antibody |
YK6 | Phospho-tyrosine (pTyr-100) monoclonal antibody, clone 6 |
References
- Shakiba, N.; Li, C.; Garcia-Ojalvo, J.; Cho, K.H.; Patil, K.; Walczak, A.; Liu, Y.Y.; Kuehn, S.; Nie, Q.; Klein, A.; et al. How can Waddington-like landscapes facilitate insights beyond developmental biology? Cell Syst. 2022, 13, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Alagar Boopathy, L.R.; Jacob-Tomas, S.; Alecki, C.; Vera, M. Mechanisms tailoring the expression of heat shock proteins to proteostasis challenges. J. Biol. Chem. 2022, 298, 101796. [Google Scholar] [CrossRef] [PubMed]
- Hipp, M.S.; Hartl, F.U. Interplay of Proteostasis Capacity and Protein Aggregation: Implications for Cellular Function and Disease. J. Mol. Biol. 2024, 436, 168615. [Google Scholar] [CrossRef] [PubMed]
- Finka, A.; Goloubinoff, P. Proteomic data from human cell cultures refine mechanisms of chaperone-mediated protein homeostasis. Cell Stress Chaperones 2013, 18, 591–605. [Google Scholar] [CrossRef]
- Taipale, M.; Tucker, G.; Peng, J.; Krykbaeva, I.; Lin, Z.-Y.; Larsen, B.; Choi, H.; Berger, B.; Gingras, A.-C.; Lindquist, S. A Quantitative Chaperone Interaction Network Reveals the Architecture of Cellular Protein Homeostasis Pathways. Cell 2014, 158, 434–448. [Google Scholar] [CrossRef]
- Rodina, A.; Wang, T.; Yan, P.; Gomes, E.D.; Dunphy, M.P.S.; Pillarsetty, N.; Koren, J.; Gerecitano, J.F.; Taldone, T.; Zong, H.; et al. The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature 2016, 538, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Mayer, M.P.; Bukau, B. Hsp70 chaperones: Cellular functions and molecular mechanism. Cell. Mol. Life Sci. 2005, 62, 670. [Google Scholar] [CrossRef]
- Ginsberg, S.D.; Sharma, S.; Norton, L.; Chiosis, G. Targeting stressor-induced dysfunctions in protein–protein interaction networks via epichaperomes. Trends Pharmacol. Sci. 2023, 44, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; Patel, H.J.; Sharma, S.; Corben, A.; Wang, T.; Panchal, P.; Yang, C.; Sun, W.; Araujo, T.L.; Rodina, A.; et al. Molecular Stressors Engender Protein Connectivity Dysfunction through Aberrant N-Glycosylation of a Chaperone. Cell Rep. 2020, 31, 107840. [Google Scholar] [CrossRef] [PubMed]
- Koszła, O.; Sołek, P. Misfolding and aggregation in neurodegenerative diseases: Protein quality control machinery as potential therapeutic clearance pathways. Cell Commun. Signal. 2024, 22, 421. [Google Scholar] [CrossRef] [PubMed]
- Kundu, D.; Prerna, K.; Chaurasia, R.; Bharty, M.K.; Dubey, V.K. Advances in protein misfolding, amyloidosis and its correlation with human diseases. 3 Biotech 2020, 10, 193. [Google Scholar] [CrossRef] [PubMed]
- Hamman, B.D.; Hendershot, L.M.; Johnson, A.E. BiP Maintains the Permeability Barrier of the ER Membrane by Sealing the Lumenal End of the Translocon Pore before and Early in Translocation. Cell 1998, 92, 747–758. [Google Scholar] [CrossRef]
- Cancino, J.; Capalbo, A.; Di Campli, A.; Giannotta, M.; Rizzo, R.; Jung, J.E.; Di Martino, R.; Persico, M.; Heinklein, P.; Sallese, M.; et al. Control Systems of Membrane Transport at the Interface between the Endoplasmic Reticulum and the Golgi. Dev. Cell 2014, 30, 280–294. [Google Scholar] [CrossRef] [PubMed]
- Brunati, A.M.; Contri, A.; Muenchbach, M.; James, P.; Marin, O.; Pinna, L.A. GRP94 (endoplasmin) co-purifies with and is phosphorylated by Golgi apparatus casein kinase. FEBS Lett. 2000, 471, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Gvozdenov, Z.; Kolhe, J.; Freeman, B.C. The Nuclear and DNA-Associated Molecular Chaperone Network. Cold Spring Harb. Perspect. Biol. 2019, 11, a034009. [Google Scholar] [CrossRef]
- Bahr, T.; Katuri, J.; Liang, T.; Bai, Y. Mitochondrial chaperones in human health and disease. Free Radic. Biol. Med. 2022, 179, 363–374. [Google Scholar] [CrossRef]
- Shevtsov, M.; Bobkov, D.; Yudintceva, N.; Likhomanova, R.; Kim, A.; Fedorov, E.; Fedorov, V.; Mikhailova, N.; Oganesyan, E.; Shabelnikov, S.; et al. Membrane-bound heat shock protein mHsp70 is required for migration and invasion of brain tumors. Cancer Res. Commun. 2024, 4, 2025–2044. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, H.; Vígh, L. The small heat shock proteins and their clients. Cell. Mol. Life Sci. 2007, 64, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Eustace, B.K.; Sakurai, T.; Stewart, J.K.; Yimlamai, D.; Unger, C.; Zehetmeier, C.; Lain, B.; Torella, C.; Henning, S.W.; Beste, G.; et al. Functional proteomic screens reveal an essential extracellular role for hsp90α in cancer cell invasiveness. Nat. Cell Biol. 2004, 6, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Sims, J.D.; McCready, J.; Jay, D.G. Extracellular Heat Shock Protein (Hsp)70 and Hsp90α Assist in Matrix Metalloproteinase-2 Activation and Breast Cancer Cell Migration and Invasion. PLoS ONE 2011, 6, e18848. [Google Scholar] [CrossRef]
- Saibil, H. Chaperone machines for protein folding, unfolding and disaggregation. Nat. Rev. Mol. Cell Biol. 2013, 14, 630–642. [Google Scholar] [CrossRef]
- Mann, M.J.; Melendez-Suchi, C.; Sukhoplyasova, M.; Flory, A.R.; Carson Irvine, M.; Iyer, A.R.; Vorndran, H.; Guerriero, C.J.; Brodsky, J.L.; Hendershot, L.M.; et al. Loss of Grp170 results in catastrophic disruption of endoplasmic reticulum functions. bioRxiv 2023. [Google Scholar] [CrossRef] [PubMed]
- Tyson, J.R.; Stirling, C.J. LHS1 and SIL1 provide a lumenal function that is essential for protein translocation into the endoplasmic reticulum. EMBO J. 2000, 19, 6440–6452. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Snapp, E.L. ERdj3 regulates BiP occupancy in living cells. J. Cell Sci. 2013, 126, 1429–1439. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Li, X.; Mariappan, M. Signal sequences encode information for protein folding in the endoplasmic reticulum. J. Cell Biol. 2022, 222, e202203070. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Xia, B.; Wang, S.; Xu, J. Folded or Degraded in Endoplasmic Reticulum. In Regulation of Cancer Immune Checkpoints: Molecular and Cellular Mechanisms and Therapy; Xu, J., Ed.; Springer: Singapore, 2020; pp. 265–294. [Google Scholar]
- Wang, L.; Wang, X.; Wang, C.-c. Protein disulfide–isomerase, a folding catalyst and a redox-regulated chaperone. Free Radic. Biol. Med. 2015, 83, 305–313. [Google Scholar] [CrossRef]
- Irvine, A.G.; Wallis, A.K.; Sanghera, N.; Rowe, M.L.; Ruddock, L.W.; Howard, M.J.; Williamson, R.A.; Blindauer, C.A.; Freedman, R.B. Protein Disulfide-Isomerase Interacts with a Substrate Protein at All Stages along Its Folding Pathway. PLoS ONE 2014, 9, e82511. [Google Scholar] [CrossRef]
- Zapun, A.; Darby, N.J.; Tessier, D.C.; Michalak, M.; Bergeron, J.J.M.; Thomas, D.Y. Enhanced Catalysis of Ribonuclease B Folding by the Interaction of Calnexin or Calreticulin with ERp57. J. Biol. Chem. 1998, 273, 6009–6012. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, G.; Gehring, K. Calnexin cycle—Structural features of the ER chaperone system. FEBS J. 2020, 287, 4322–4340. [Google Scholar] [CrossRef] [PubMed]
- Eletto, D.; Dersh, D.; Argon, Y. GRP94 in ER quality control and stress responses. Semin. Cell Dev. Biol. 2010, 21, 479–485. [Google Scholar] [CrossRef]
- Chevalier, M.; Rhee, H.; Elguindi, E.C.; Blond, S.Y. Interaction of Murine BiP/GRP78 with the DnaJ Homologue MTJ1. J. Biol. Chem. 2000, 275, 19620–19627. [Google Scholar] [CrossRef] [PubMed]
- Bihlmaier, K.; Bien, M.; Herrmann, J.M. In Vitro Import of Proteins Into Isolated Mitochondria. In Membrane Trafficking; Vancura, A., Ed.; Humana Press: Totowa, NJ, USA, 2008; pp. 85–94. [Google Scholar]
- Adrian, G.S.; McCammon, M.T.; Montgomery, D.L.; Douglas, M.G. Sequences Required for Delivery and Localization of the ADP/ATP Translocator to the Mitochondrial Inner Membrane. Mol. Cell. Biol. 1986, 6, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Böttinger, L.; Oeljeklaus, S.; Guiard, B.; Rospert, S.; Warscheid, B.; Becker, T. Mitochondrial Heat Shock Protein (Hsp) 70 and Hsp10 Cooperate in the Formation of Hsp60 Complexes. J. Biol. Chem. 2015, 290, 11611–11622. [Google Scholar] [CrossRef]
- Joshi, A.; Dai, L.; Liu, Y.; Lee, J.; Ghahhari, N.M.; Segala, G.; Beebe, K.; Jenkins, L.M.; Lyons, G.C.; Bernasconi, L.; et al. The mitochondrial HSP90 paralog TRAP1 forms an OXPHOS-regulated tetramer and is involved in mitochondrial metabolic homeostasis. BMC Biol. 2020, 18, 10. [Google Scholar] [CrossRef] [PubMed]
- Voos, W.; Röttgers, K. Molecular chaperones as essential mediators of mitochondrial biogenesis. Biochim. Et Biophys. Acta-Mol. Cell Res. 2002, 1592, 51–62. [Google Scholar] [CrossRef]
- Shin, C.-S.; Meng, S.; Garbis, S.D.; Moradian, A.; Taylor, R.W.; Sweredoski, M.J.; Lomenick, B.; Chan, D.C. LONP1 and mtHSP70 cooperate to promote mitochondrial protein folding. Nat. Commun. 2021, 12, 265. [Google Scholar] [CrossRef] [PubMed]
- Sawarkar, R.; Paro, R. [email protected]: An emerging hub of a networker. Trends Cell Biol. 2013, 23, 193–201. [Google Scholar] [CrossRef]
- Rodina, A.; Xu, C.; Digwal, C.S.; Joshi, S.; Patel, Y.; Santhaseela, A.R.; Bay, S.; Merugu, S.; Alam, A.; Yan, P.; et al. Systems-level analyses of protein-protein interaction network dysfunctions via epichaperomics identify cancer-specific mechanisms of stress adaptation. Nat. Commun. 2023, 14, 3742. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Huang, Y.; Yang, F.; Sun, X.; Lin, R.; Feng, J.; Yang, M.; Shao, J.; Liu, X.; Zhou, T.; et al. NudCL2 is required for cytokinesis by stabilizing RCC2 with Hsp90 at the midbody. Protein Cell 2024, 15, 766–782. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, W.; Li, M.; Gao, Y.; Zhang, W.; Huang, Y.; Zhuo, W.; Yan, X.; Liu, W.; Wang, F.; et al. NudCL2 is an Hsp90 cochaperone to regulate sister chromatid cohesion by stabilizing cohesin subunits. Cell. Mol. Life Sci. 2019, 76, 381–395. [Google Scholar] [CrossRef] [PubMed]
- Kotwal, A.; Amere Subbarao, S. Hsp90 regulates HDAC3-dependent gene transcription while HDAC3 regulates the functions of Hsp90. Cell. Signal. 2020, 76, 109801. [Google Scholar] [CrossRef] [PubMed]
- Leone, S.; Srivastava, A.; Herrero-Ruiz, A.; Hummel, B.; Tittel, L.; Campalastri, R.; Aprile-Garcia, F.; Tan, J.H.; Rawat, P.; Andersson, P.; et al. HSP70 binds to specific non-coding RNA and regulates human RNA polymerase III. Mol. Cell 2024, 84, 687–701.e7. [Google Scholar] [CrossRef] [PubMed]
- Tagaeva, R.; Efimova, S.; Ischenko, A.; Zhakhov, A.; Shevtsov, M.; Ostroumova, O. A new look at Hsp70 activity in phosphatidylserine-enriched membranes: Chaperone-induced quasi-interdigitated lipid phase. Sci. Rep. 2023, 13, 19233. [Google Scholar] [CrossRef]
- Becker, B.; Multhoff, G.; Farkas, B.; Wild, P.-J.; Landthaler, M.; Stolz, W.; Vogt, T. Induction of Hsp90 protein expression in malignant melanomas and melanoma metastases. Exp. Dermatol. 2004, 13, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Rizzolo, K.; Huen, J.; Kumar, A.; Phanse, S.; Vlasblom, J.; Kakihara, Y.; Zeineddine, H.A.; Minic, Z.; Snider, J.; Wang, W.; et al. Features of the Chaperone Cellular Network Revealed through Systematic Interaction Mapping. Cell Rep. 2017, 20, 2735–2748. [Google Scholar] [CrossRef] [PubMed]
- Shevtsov, M.; Balogi, Z.; Khachatryan, W.; Gao, H.; Vígh, L.; Multhoff, G. Membrane-Associated Heat Shock Proteins in Oncology: From Basic Research to New Theranostic Targets. Cells 2020, 9, 1263. [Google Scholar] [CrossRef] [PubMed]
- Sučec, I.; Bersch, B.; Schanda, P. How do Chaperones Bind (Partly) Unfolded Client Proteins? Front. Mol. Biosci. 2021, 8, 762005. [Google Scholar] [CrossRef]
- Rauch, J.N.; Gestwicki, J.E. Binding of Human Nucleotide Exchange Factors to Heat Shock Protein 70 (Hsp70) Generates Functionally Distinct Complexes in Vitro. J. Biol. Chem. 2014, 289, 1402–1414. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.W.; Stewart, R.; Pectol, D.C.; Ender, N.A.; Wimalarathne, O.; Lee, J.-H.; Zanini, C.P.; Harvey, A.; Huibregtse, J.M.; Mueller, P.; et al. Proteome-wide identification of HSP70/HSC70 chaperone clients in human cells. PLOS Biol. 2020, 18, e3000606. [Google Scholar] [CrossRef]
- Fan, C.Y.; Lee, S.; Cyr, D.M. Mechanisms for regulation of Hsp70 function by Hsp40. Cell Stress Chaperones 2003, 8, 309–316. [Google Scholar] [CrossRef]
- Jiang, J.; Maes, E.G.; Taylor, A.B.; Wang, L.; Hinck, A.P.; Lafer, E.M.; Sousa, R. Structural Basis of J Cochaperone Binding and Regulation of Hsp70. Mol. Cell 2007, 28, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Cyr, D.M. Swapping Nucleotides, Tuning Hsp70. Cell 2008, 133, 945–947. [Google Scholar] [CrossRef]
- Jackson, S.E. Hsp90: Structure and Function. In Molecular Chaperones; Jackson, S., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 155–240. [Google Scholar]
- Csermely, P.; Schnaider, T.; So″ti, C.; Prohászka, Z.; Nardai, G. The 90-kDa Molecular Chaperone Family: Structure, Function, and Clinical Applications. A Comprehensive Review. Pharmacol. Ther. 1998, 79, 129–168. [Google Scholar] [CrossRef] [PubMed]
- Verba, K.A.; Agard, D.A. How Hsp90 and Cdc37 Lubricate Kinase Molecular Switches. Trends Biochem. Sci. 2017, 42, 799–811. [Google Scholar] [CrossRef] [PubMed]
- Galigniana, M.D.; Harrell, J.M.; Murphy, P.J.M.; Chinkers, M.; Radanyi, C.; Renoir, J.-M.; Zhang, M.; Pratt, W.B. Binding of hsp90-Associated Immunophilins to Cytoplasmic Dynein: Direct Binding and in Vivo Evidence that the Peptidylprolyl Isomerase Domain Is a Dynein Interaction Domain. Biochemistry 2002, 41, 13602–13610. [Google Scholar] [CrossRef]
- Prodromou, C.; Siligardi, G.; O’Brien, R.; Woolfson, D.N.; Regan, L.; Panaretou, B.; Ladbury, J.E.; Piper, P.W.; Pearl, L.H. Regulation of Hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. EMBO J. 1999, 18, 754–762. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Smith, D.F. Hop as an Adaptor in the Heat Shock Protein 70 (Hsp70) and Hsp90 Chaperone Machinery. J. Biol. Chem. 1998, 273, 35194–35200. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.M.U.; Roe, S.M.; Vaughan, C.K.; Meyer, P.; Panaretou, B.; Piper, P.W.; Prodromou, C.; Pearl, L.H. Crystal structure of an Hsp90–nucleotide–p23/Sba1 closed chaperone complex. Nature 2006, 440, 1013–1017. [Google Scholar] [CrossRef]
- Oroz, J.; Blair, L.J.; Zweckstetter, M. Dynamic Aha1 co-chaperone binding to human Hsp90. Protein Sci. 2019, 28, 1545–1551. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Kim, S.C.; Wang, Y.; Gupta, S.; Davis, B.; Simon, S.I.; Torre-Amione, G.; Knowlton, A.A. HSP60 in heart failure: Abnormal distribution and role in cardiac myocyte apoptosis. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H2238–H2247. [Google Scholar] [CrossRef] [PubMed]
- Malik, J.A.; Lone, R. Heat shock proteins with an emphasis on HSP 60. Mol. Biol. Rep. 2021, 48, 6959–6969. [Google Scholar] [CrossRef] [PubMed]
- Bigotti, M.G.; Clarke, A.R.; Burston, S.G. The Hsp60 chaperonins from prokaryotes and eukaryotes. In Chaperones: 16; Braakman, I., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 251–283. [Google Scholar]
- Singh, M.K.; Shin, Y.; Han, S.; Ha, J.; Tiwari, P.K.; Kim, S.S.; Kang, I. Molecular Chaperonin HSP60: Current Understanding and Future Prospects. Int. J. Mol. Sci. 2024, 25, 5483. [Google Scholar] [CrossRef]
- Lee, G.; Kim, R.S.; Lee, S.B.; Lee, S.; Tsai, F.T.F. Deciphering the mechanism and function of Hsp100 unfoldases from protein structure. Biochem. Soc. Trans. 2022, 50, 1725–1736. [Google Scholar] [CrossRef] [PubMed]
- Węgrzyn, A.; Czyż, A.; Gabig, M.; Węgrzyn, G. ClpP/ClpX-mediated degradation of the bacteriophage λ O protein and regulation of λ phage and λ plasmid replication. Arch. Microbiol. 2000, 174, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Schirmer, E.C.; Glover, J.R.; Singer, M.A.; Lindquist, S. HSP100/Clp proteins: A common mechanism explains diverse functions. Trends Biochem. Sci. 1996, 21, 289–296. [Google Scholar] [CrossRef]
- Webster, J.M.; Darling, A.L.; Uversky, V.N.; Blair, L.J. Small Heat Shock Proteins, Big Impact on Protein Aggregation in Neurodegenerative Disease. Front. Pharmacol. 2019, 10, 1047. [Google Scholar] [CrossRef] [PubMed]
- Mattoo, R.U.H.; Goloubinoff, P. Molecular chaperones are nanomachines that catalytically unfold misfolded and alternatively folded proteins. Cell. Mol. Life Sci. 2014, 71, 3311–3325. [Google Scholar] [CrossRef]
- Joshi, S.; Wang, T.; Araujo, T.L.S.; Sharma, S.; Brodsky, J.L.; Chiosis, G. Adapting to stress—Chaperome networks in cancer. Nat. Rev. Cancer 2018, 18, 562–575. [Google Scholar] [CrossRef]
- Pessa, J.C.; Joutsen, J.; Sistonen, L. Transcriptional reprogramming at the intersection of the heat shock response and proteostasis. Mol. Cell 2024, 84, 80–93. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.C.; Lindquist, S. Conservation of Hsp90 macromolecular complexes in Saccharomyces cerevisiae. J. Biol. Chem. 1994, 269, 24983–24988. [Google Scholar] [CrossRef] [PubMed]
- Meacham, G.C.; Browne, B.L.; Zhang, W.; Kellermayer, R.; Bedwell, D.M.; Cyr, D.M. Mutations in the Yeast Hsp40 Chaperone Protein Ydj1 Cause Defects in Axl1 Biogenesis and Pro-a-factor Processing. J. Biol. Chem. 1999, 274, 34396–34402. [Google Scholar] [CrossRef]
- Liu, X.-D.; Morano, K.A.; Thiele, D.J. The Yeast Hsp110 Family Member, Sse1, Is an Hsp90 Cochaperone. J. Biol. Chem. 1999, 274, 26654–26660. [Google Scholar] [CrossRef] [PubMed]
- Shakya, A.; Rana, N.; Kodirov, R.; King, J. Protein unfolding thermodynamics predict multicomponent phase behavior. Biophys. J. 2024, 123, 445a. [Google Scholar] [CrossRef]
- Xu, W.; Beebe, K.; Chavez, J.D.; Boysen, M.; Lu, Y.; Zuehlke, A.D.; Keramisanou, D.; Trepel, J.B.; Prodromou, C.; Mayer, M.P.; et al. Hsp90 middle domain phosphorylation initiates a complex conformational program to recruit the ATPase-stimulating cochaperone Aha1. Nat. Commun. 2019, 10, 2574. [Google Scholar] [CrossRef] [PubMed]
- Soroka, J.; Wandinger, S.K.; Mäusbacher, N.; Schreiber, T.; Richter, K.; Daub, H.; Buchner, J. Conformational Switching of the Molecular Chaperone Hsp90 via Regulated Phosphorylation. Mol. Cell 2012, 45, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Mader, S.L.; Lopez, A.; Lawatscheck, J.; Luo, Q.; Rutz, D.A.; Gamiz-Hernandez, A.P.; Sattler, M.; Buchner, J.; Kaila, V.R.I. Conformational dynamics modulate the catalytic activity of the molecular chaperone Hsp90. Nat. Commun. 2020, 11, 1410. [Google Scholar] [CrossRef] [PubMed]
- Riedl, S.; Bilgen, E.; Agam, G.; Hirvonen, V.; Jussupow, A.; Tippl, F.; Riedl, M.; Maier, A.; Becker, C.F.W.; Kaila, V.R.I.; et al. Evolution of the conformational dynamics of the molecular chaperone Hsp90. Nat. Commun. 2024, 15, 8627. [Google Scholar] [CrossRef]
- Liu, P.; Xiao, J.; Wang, Y.; Song, X.; Huang, L.; Ren, Z.; Kitazato, K.; Wang, Y. Posttranslational modification and beyond: Interplay between histone deacetylase 6 and heat-shock protein 90. Mol. Med. 2021, 27, 110. [Google Scholar] [CrossRef]
- Roychowdhury, T.; McNutt, S.W.; Pasala, C.; Nguyen, H.T.; Thornton, D.T.; Sharma, S.; Botticelli, L.; Digwal, C.S.; Joshi, S.; Yang, N.; et al. Phosphorylation-driven epichaperome assembly is a regulator of cellular adaptability and proliferation. Nat. Commun. 2024, 15, 8912. [Google Scholar] [CrossRef] [PubMed]
- McMillan, D.R.; Xiao, X.; Shao, L.; Graves, K.; Benjamin, I.J. Targeted Disruption of Heat Shock Transcription Factor 1 Abolishes Thermotolerance and Protection against Heat-inducible Apoptosis. J. Biol. Chem. 1998, 273, 7523–7528. [Google Scholar] [CrossRef] [PubMed]
- Metchat, A.; Åkerfelt, M.; Bierkamp, C.; Delsinne, V.; Sistonen, L.; Alexandre, H.; Christians, E.S. Mammalian Heat Shock Factor 1 Is Essential for Oocyte Meiosis and Directly Regulates Hsp90α Expression. J. Biol. Chem. 2009, 284, 9521–9528. [Google Scholar] [CrossRef]
- Kourtis, N.; Lazaris, C.; Hockemeyer, K.; Balandrán, J.C.; Jimenez, A.R.; Mullenders, J.; Gong, Y.; Trimarchi, T.; Bhatt, K.; Hu, H.; et al. Oncogenic hijacking of the stress response machinery in T cell acute lymphoblastic leukemia. Nat. Med. 2018, 24, 1157–1166. [Google Scholar] [CrossRef]
- Herranz, D.; Ambesi-Impiombato, A.; Palomero, T.; Schnell, S.A.; Belver, L.; Wendorff, A.A.; Xu, L.; Castillo-Martin, M.; Llobet-Navás, D.; Cordon-Cardo, C.; et al. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat. Med. 2014, 20, 1130–1137. [Google Scholar] [CrossRef] [PubMed]
- Palomero, T.; Lim, W.K.; Odom, D.T.; Sulis, M.L.; Real, P.J.; Margolin, A.; Barnes, K.C.; O’Neil, J.; Neuberg, D.; Weng, A.P.; et al. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc. Natl. Acad. Sci. USA 2006, 103, 18261–18266. [Google Scholar] [CrossRef]
- Sugita, M.; Wilkes, D.C.; Bareja, R.; Eng, K.W.; Nataraj, S.; Jimenez-Flores, R.A.; Yan, L.; De Leon, J.P.; Croyle, J.A.; Kaner, J.; et al. Targeting the epichaperome as an effective precision medicine approach in a novel PML-SYK fusion acute myeloid leukemia. npj Precis. Oncol. 2021, 5, 44. [Google Scholar] [CrossRef] [PubMed]
- Krakowiak, J.; Zheng, X.; Patel, N.; Feder, Z.A.; Anandhakumar, J.; Valerius, K.; Gross, D.S.; Khalil, A.S.; Pincus, D. Hsf1 and Hsp70 constitute a two-component feedback loop that regulates the yeast heat shock response. eLife 2018, 7, e31668. [Google Scholar] [CrossRef]
- Zou, J.; Guo, Y.; Guettouche, T.; Smith, D.F.; Voellmy, R. Repression of Heat Shock Transcription Factor HSF1 Activation by HSP90 (HSP90 Complex) that Forms a Stress-Sensitive Complex with HSF1. Cell 1998, 94, 471–480. [Google Scholar] [CrossRef]
- Scheufler, C.; Brinker, A.; Bourenkov, G.; Pegoraro, S.; Moroder, L.; Bartunik, H.; Hartl, F.U.; Moarefi, I. Structure of TPR Domain–Peptide Complexes: Critical Elements in the Assembly of the Hsp70–Hsp90 Multichaperone Machine. Cell 2000, 101, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.Y.-R.; Noddings, C.M.; Kirschke, E.; Myasnikov, A.G.; Johnson, J.L.; Agard, D.A. Structure of Hsp90–Hsp70–Hop–GR reveals the Hsp90 client-loading mechanism. Nature 2022, 601, 460–464. [Google Scholar] [CrossRef]
- Mondol, T.; Silbermann, L.-M.; Schimpf, J.; Vollmar, L.; Hermann, B.; Tych, K.; Hugel, T. Aha1 regulates Hsp90’s conformation and function in a stoichiometry-dependent way. Biophys. J. 2023, 122, 3458–3468. [Google Scholar] [CrossRef]
- Mashaghi, A.; Moayed, F.; Koers, E.J.; Zheng, Y.; Till, K.; Kramer, G.; Mayer, M.P.; Tans, S.J. Direct observation of Hsp90-induced compaction in a protein chain. Cell Rep. 2022, 41, 111734. [Google Scholar] [CrossRef] [PubMed]
- Connell, P.; Ballinger, C.A.; Jiang, J.; Wu, Y.; Thompson, L.J.; Höhfeld, J.; Patterson, C. The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat. Cell Biol. 2001, 3, 93–96. [Google Scholar] [CrossRef]
- Ruckova, E.; Muller, P.; Nenutil, R.; Vojtesek, B. Alterations of the Hsp70/Hsp90 chaperone and the HOP/CHIP co-chaperone system in cancer. Cell. Mol. Biol. Lett. 2012, 17, 446–458. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Stetz, G.; Verkhivker, G.M. Functional Role and Hierarchy of the Intermolecular Interactions in Binding of Protein Kinase Clients to the Hsp90–Cdc37 Chaperone: Structure-Based Network Modeling of Allosteric Regulation. J. Chem. Inf. Model. 2018, 58, 405–421. [Google Scholar] [CrossRef]
- Dernovšek, J.; Gradišek, N.; Zajec, Ž.; Urbančič, D.; Cingl, J.; Goričan, T.; Grdadolnik, S.G.; Tomašič, T. Discovery of new Hsp90–Cdc37 protein–protein interaction inhibitors: In silico screening and optimization of anticancer activity. RSC Adv. 2024, 14, 28347–28375. [Google Scholar] [CrossRef]
- Digwal, C.S.; Sharma, S.; Santhaseela, A.R.; Ginsberg, S.D.; Chiosis, G. Epichaperomes as a Gateway to Understanding, Diagnosing, and Treating Disease Through Rebalancing Protein–Protein Interaction Networks. In Protein Homeostasis in Drug Discovery; Wiley: Hoboken, NJ, USA, 2022; pp. 1–26. [Google Scholar]
- Schumacher, J.A.; Crockett, D.K.; Elenitoba-Johnson, K.S.J.; Lim, M.S. Proteome-wide changes induced by the Hsp90 inhibitor, geldanamycin in anaplastic large cell lymphoma cells. Proteomics 2007, 7, 2603–2616. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.Y.; Sabatini, D.M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 2020, 21, 183–203. [Google Scholar] [CrossRef]
- Ke, X.; Chen, J.; Peng, L.; Zhang, W.; Yang, Y.; Liao, X.; Mo, L.; Guo, R.; Feng, J.; Hu, C.; et al. Heat shock protein 90/Akt pathway participates in the cardioprotective effect of exogenous hydrogen sulfide against high glucose-induced injury to H9c2 cells Corrigendum in /10.3892/ijmm.2018.3708. Int. J. Mol. Med. 2017, 39, 1001–1010. [Google Scholar] [CrossRef]
- Manik, C.; Mindaugas, A.; Thorsten, S.; Elisabeth, M.; Claudia, H.; Torsten, S.; Tanja, H.; Heike, S.; Stefanie, K.; Hermann, E.; et al. The PI3K/Akt signaling pathway regulates the expression of Hsp70, which critically contributes to Hsp90-chaperone function and tumor cell survival in multiple myeloma. Haematologica 2013, 98, 1132–1141. [Google Scholar] [CrossRef]
- Zong, H.; Gozman, A.; Caldas-Lopes, E.; Taldone, T.; Sturgill, E.; Brennan, S.; Ochiana, S.O.; Gomes-DaGama, E.M.; Sen, S.; Rodina, A.; et al. A Hyperactive Signalosome in Acute Myeloid Leukemia Drives Addiction to a Tumor-Specific Hsp90 Species. Cell Rep. 2015, 13, 2159–2173. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-H.; Lee, C.-T.; Kim, Y.W.; Han, S.K.; Shim, Y.-S.; Yoo, C.-G. Heat shock protein 70 negatively regulates the heat-shock-induced suppression of the IκB/NF-κB cascade by facilitating IκB kinase renaturation and blocking its further denaturation. Exp. Cell Res. 2005, 307, 276–284. [Google Scholar] [CrossRef]
- Paszek, A.; Kardyńska, M.; Bagnall, J.; Śmieja, J.; Spiller, D.G.; Widłak, P.; Kimmel, M.; Widlak, W.; Paszek, P. Heat shock response regulates stimulus-specificity and sensitivity of the pro-inflammatory NF-κB signalling. Cell Commun. Signal. 2020, 18, 77. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, Y.; Zhang, Y.; Ye, F.; Luo, D.; Li, Y.; Jin, Y.; Han, D.; Wang, Z.; Chen, B.; et al. HSPB1 facilitates chemoresistance through inhibiting ferroptotic cancer cell death and regulating NF-κB signaling pathway in breast cancer. Cell Death Dis. 2023, 14, 434. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, M.D.; Harrison, S.C. Structure of an IκBα/NF-κB Complex. Cell 1998, 95, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Shen, G.; Zhou, X.; Sun, L.; Yu, L.; Cao, Y.; Shu, X.; Ran, Y. Hsp90 Promotes Gastric Cancer Cell Metastasis and Stemness by Regulating the Regional Distribution of Glycolysis-Related Metabolic Enzymes in the Cytoplasm. Adv. Sci. 2024, 11, 2310109. [Google Scholar] [CrossRef]
- Hance, M.W.; Dole, K.; Gopal, U.; Bohonowych, J.E.; Jezierska-Drutel, A.; Neumann, C.A.; Liu, H.; Garraway, I.P.; Isaacs, J.S. Secreted Hsp90 Is a Novel Regulator of the Epithelial to Mesenchymal Transition (EMT) in Prostate Cancer. J. Biol. Chem. 2012, 287, 37732–37744. [Google Scholar] [CrossRef]
- Chong, K.Y.; Kang, M.; Garofalo, F.; Ueno, D.; Liang, H.; Cady, S.; Madarikan, O.; Pitruzzello, N.; Tsai, C.H.; Hartwich, T.M.P.; et al. Inhibition of Heat Shock Protein 90 suppresses TWIST1 Transcription. Mol. Pharmacol. 2019, 96, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.K.; Shin, Y.; Ju, S.; Han, S.; Choe, W.; Yoon, K.-S.; Kim, S.S.; Kang, I. Heat Shock Response and Heat Shock Proteins: Current Understanding and Future Opportunities in Human Diseases. Int. J. Mol. Sci. 2024, 25, 4209. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Zhao, Y.; Liang, Y.; Xiang, C.; Zhou, H.; Zhang, H.; Zhang, Q.; Qing, H.; Jiang, B.; et al. CD24 promoted cancer cell angiogenesis via Hsp90-mediated STAT3/VEGF signaling pathway in colorectal cancer. Oncotarget 2016, 7, 55663–55676. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Burrows, F. Targeting multiple signal transduction pathways through inhibition of Hsp90. J. Mol. Med. 2004, 82, 488–499. [Google Scholar] [CrossRef]
- Chu, X.; Tian, W.; Ning, J.; Xiao, G.; Zhou, Y.; Wang, Z.; Zhai, Z.; Tanzhu, G.; Yang, J.; Zhou, R. Cancer stem cells: Advances in knowledge and implications for cancer therapy. Signal Transduct. Target. Ther. 2024, 9, 170. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, X. Radiochemotherapy-induced DNA repair promotes the biogenesis of gastric cancer stem cells. Stem Cell Res. Ther. 2022, 13, 481. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, G. The hypoxia-inducible factor-1α in stemness and resistance to chemotherapy in gastric cancer: Future directions for therapeutic targeting. Front. Cell Dev. Biol. 2023, 11, 1082057. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Tang, Y.; Qiu, L.; Li, Z.; Wang, R. Extracellular matrix shapes cancer stem cell behavior in breast cancer: A mini review. Front. Immunol. 2025, 15, 1503021. [Google Scholar] [CrossRef] [PubMed]
- Mitsui, K.; Tokuzawa, Y.; Itoh, H.; Segawa, K.; Murakami, M.; Takahashi, K.; Maruyama, M.; Maeda, M.; Yamanaka, S. The Homeoprotein Nanog Is Required for Maintenance of Pluripotency in Mouse Epiblast and ES Cells. Cell 2003, 113, 631–642. [Google Scholar] [CrossRef]
- Stuart, H.T.; van Oosten, A.L.; Radzisheuskaya, A.; Martello, G.; Miller, A.; Dietmann, S.; Nichols, J.; Silva, J.C.R. NANOG Amplifies STAT3 Activation and They Synergistically Induce the Naive Pluripotent Program. Curr. Biol. 2014, 24, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Adachi, K.; Suemori, H.; Yasuda, S.-y.; Nakatsuji, N.; Kawase, E. Role of SOX2 in maintaining pluripotency of human embryonic stem cells. Genes Cells 2010, 15, 455–470. [Google Scholar] [CrossRef]
- Han, D.; Wu, G.; Chen, R.; Drexler, H.C.A.; MacCarthy, C.M.; Kim, K.-P.; Adachi, K.; Gerovska, D.; Mavrommatis, L.; Bedzhov, I.; et al. A balanced Oct4 interactome is crucial for maintaining pluripotency. Sci. Adv. 2022, 8, eabe4375. [Google Scholar] [CrossRef] [PubMed]
- Das, B.; Pal, B.; Bhuyan, R.; Li, H.; Sarma, A.; Gayan, S.; Talukdar, J.; Sandhya, S.; Bhuyan, S.; Gogoi, G.; et al. MYC Regulates the HIF2α Stemness Pathway via Nanog and Sox2 to Maintain Self-Renewal in Cancer Stem Cells versus Non-Stem Cancer Cells. Cancer Res. 2019, 79, 4015–4025. [Google Scholar] [CrossRef] [PubMed]
- Raz, R.; Lee, C.-K.; Cannizzaro, L.A.; d’Eustachio, P.; Levy, D.E. Essential role of STAT3 for embryonic stem cell pluripotency. Proc. Natl. Acad. Sci. USA 1999, 96, 2846–2851. [Google Scholar] [CrossRef] [PubMed]
- Castellan, M.; Guarnieri, A.; Fujimura, A.; Zanconato, F.; Battilana, G.; Panciera, T.; Sladitschek, H.L.; Contessotto, P.; Citron, A.; Grilli, A.; et al. Single-cell analyses reveal YAP/TAZ as regulators of stemness and cell plasticity in glioblastoma. Nat. Cancer 2021, 2, 174–188. [Google Scholar] [CrossRef]
- Borlongan, M.C.; Wang, H. Profiling and targeting cancer stem cell signaling pathways for cancer therapeutics. Front. Cell Dev. Biol. 2023, 11, 1125174. [Google Scholar] [CrossRef] [PubMed]
- Sato, N.; Yamamoto, T.; Sekine, Y.; Yumioka, T.; Junicho, A.; Fuse, H.; Matsuda, T. Involvement of heat-shock protein 90 in the interleukin-6-mediated signaling pathway through STAT3. Biochem. Biophys. Res. Commun. 2003, 300, 847–852. [Google Scholar] [CrossRef]
- Bradley, E.; Bieberich, E.; Mivechi, N.F.; Tangpisuthipongsa, D.; Wang, G. Regulation of Embryonic Stem Cell Pluripotency by Heat Shock Protein 90. Stem Cells 2012, 30, 1624–1633. [Google Scholar] [CrossRef]
- Carter, B.Z.; Mak, P.Y.; Muftuoglu, M.; Tao, W.; Ke, B.; Pei, J.; Bedoy, A.D.; Ostermann, L.B.; Nishida, Y.; Isgandarova, S.; et al. Epichaperome inhibition targets TP53-mutant AML and AML stem/progenitor cells. Blood 2023, 142, 1056–1070. [Google Scholar] [CrossRef] [PubMed]
- Ramamoorthy, P.; Rangarajan, P.; Jensen, R.; Anant, S. Abstract 3314: Targeting Hsp90 affects stem cell signaling in triple negative breast cancer. Cancer Res. 2016, 76 (Suppl. S14), 3314. [Google Scholar] [CrossRef]
- Herrejon Chavez, F.; Luo, H.; Cifani, P.; Pine, A.; Chu, E.L.; Joshi, S.; Barin, E.; Schurer, A.; Chan, M.; Chang, K.; et al. RNA binding protein SYNCRIP maintains proteostasis and self-renewal of hematopoietic stem and progenitor cells. Nat. Commun. 2023, 14, 2290. [Google Scholar] [CrossRef]
- Nolan, K.D.; Kaur, J.; Isaacs, J.S. Secreted heat shock protein 90 promotes prostate cancer stem cell heterogeneity. Oncotarget 2016, 8, 19323–19341. [Google Scholar] [CrossRef] [PubMed]
- Lettini, G.; Sisinni, L.; Condelli, V.; Matassa, D.S.; Simeon, V.; Maddalena, F.; Gemei, M.; Lopes, E.; Vita, G.; Del Vecchio, L.; et al. TRAP1 regulates stemness through Wnt/β-catenin pathway in human colorectal carcinoma. Cell Death Differ. 2016, 23, 1792–1803. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Wang, Z.; Peng, C.; You, J.; Shen, J.; Han, S.; Chen, J. Dietary compound isoliquiritigenin targets GRP78 to chemosensitize breast cancer stem cells via β-catenin/ABCG2 signaling. Carcinogenesis 2014, 35, 2544–2554. [Google Scholar] [CrossRef]
- Lin, M.; Mo, Y.; Li, C.-m.; Liu, Y.-z.; Feng, X.-p. GRP78 as a potential therapeutic target in cancer treatment: An updated review of its role in chemoradiotherapy resistance of cancer cells. Med. Oncol. 2025, 42, 49. [Google Scholar] [CrossRef]
- Mo, L.; Bachelder, R.E.; Kennedy, M.; Chen, P.-H.; Chi, J.-T.; Berchuck, A.; Cianciolo, G.; Pizzo, S.V. Syngeneic Murine Ovarian Cancer Model Reveals That Ascites Enriches for Ovarian Cancer Stem-Like Cells Expressing Membrane GRP78. Mol. Cancer Ther. 2015, 14, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-X.; Li, H.-D.; Zhao, S.; Zhao, L.; Song, H.-J.; Wang, G.; Guo, Q.-J.; Luan, Z.-D.; Su, R.-J. The Cell Surface GRP78 Facilitates the Invasion of Hepatocellular Carcinoma Cells. BioMed Res. Int. 2013, 2013, 917296. [Google Scholar] [CrossRef] [PubMed]
- Krause, G.J.; Kirchner, P.; Stiller, B.; Morozova, K.; Diaz, A.; Chen, K.-H.; Krogan, N.J.; Agullo-Pascual, E.; Clement, C.C.; Lindenau, K.; et al. Molecular determinants of the crosstalk between endosomal microautophagy and chaperone-mediated autophagy. Cell Rep. 2023, 42, 113529. [Google Scholar] [CrossRef]
- Cully, M.; You, H.; Levine, A.J.; Mak, T.W. Beyond PTEN mutations: The PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat. Rev. Cancer 2006, 6, 184–192. [Google Scholar] [CrossRef]
- Li, X.; He, S.; Ma, B. Autophagy and autophagy-related proteins in cancer. Mol. Cancer 2020, 19, 12. [Google Scholar] [CrossRef]
- Liang, X.H.; Jackson, S.; Seaman, M.; Brown, K.; Kempkes, B.; Hibshoosh, H.; Levine, B. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999, 402, 672–676. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Coppola, D.; Matsushita, N.; Cualing, H.D.; Sun, M.; Sato, Y.; Liang, C.; Jung, J.U.; Cheng, J.Q.; Mul, J.J.; et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat. Cell Biol. 2007, 9, 1142–1151. [Google Scholar] [CrossRef]
- Degenhardt, K.; Mathew, R.; Beaudoin, B.; Bray, K.; Anderson, D.; Chen, G.; Mukherjee, C.; Shi, Y.; Gélinas, C.; Fan, Y.; et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006, 10, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Lei, L.; Dai, W.; Jiang, A.; Jin, Q.; Tang, Z. Simultaneous inhibition of heat shock proteins and autophagy enhances radiofrequency ablation of hepatocellular carcinoma. Biomater. Sci. 2024, 12, 6082–6098. [Google Scholar] [CrossRef] [PubMed]
- Boulon, S.; Marmier-Gourrier, N.; Pradet-Balade, B.; Wurth, L.; Verheggen, C.; Jády, B.E.; Rothé, B.; Pescia, C.; Robert, M.C.; Kiss, T.; et al. The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery. J. Cell Biol. 2008, 180, 579–595. [Google Scholar] [CrossRef] [PubMed]
- Jeronimo, C.; Forget, D.; Bouchard, A.; Li, Q.; Chua, G.; Poitras, C.; Thérien, C.; Bergeron, D.; Bourassa, S.; Greenblatt, J.; et al. Systematic Analysis of the Protein Interaction Network for the Human Transcription Machinery Reveals the Identity of the 7SK Capping Enzyme. Mol. Cell 2007, 27, 262–274. [Google Scholar] [CrossRef]
- Maurizy, C.; Abeza, C.; Lemmers, B.; Gabola, M.; Longobardi, C.; Pinet, V.; Ferrand, M.; Paul, C.; Bremond, J.; Langa, F.; et al. The HSP90/R2TP assembly chaperone promotes cell proliferation in the intestinal epithelium. Nat. Commun. 2021, 12, 4810. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Q.; Wu, D.; Chen, Q.; Gong, G.; He, L.; Wu, X. Lamin-A interacting protein Hsp90 is required for DNA damage repair and chemoresistance of ovarian cancer cells. Cell Death Dis. 2021, 12, 786. [Google Scholar] [CrossRef]
- Vaupel, P.; Multhoff, G. Revisiting the Warburg effect: Historical dogma versus current understanding. J. Physiol. 2021, 599, 1745–1757. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Liu, W.; Fang, W.; Dong, Y.; Zhang, H.; Luo, Q. Tumor energy metabolism: Implications for therapeutic targets. Mol. Biomed. 2024, 5, 63. [Google Scholar] [CrossRef] [PubMed]
- Barba, I.; Carrillo-Bosch, L.; Seoane, J. Targeting the Warburg Effect in Cancer: Where Do We Stand? Int. J. Mol. Sci. 2024, 25, 3142. [Google Scholar] [CrossRef] [PubMed]
- Mycielska, M.E.; Moser, C.; Wagner, C.; Scheiffert, E.; Geissler, E.K.; Schlitt, H.J.; Lang, S.A. Abstract 3211: Inhibition of Hsp90 impairs expression of VDAC in plasma and mitochondrial membrane influencing cancer cell metabolism. Cancer Res. 2012, 72 (Suppl. S8), 3211. [Google Scholar] [CrossRef]
- Paul, I.; Ahmed, S.F.; Bhowmik, A.; Deb, S.; Ghosh, M.K. The ubiquitin ligase CHIP regulates c-Myc stability and transcriptional activity. Oncogene 2013, 32, 1284–1295. [Google Scholar] [CrossRef] [PubMed]
- Minet, E.; Mottet, D.; Michel, G.; Roland, I.; Raes, M.; Remacle, J.; Michiels, C. Hypoxia-induced activation of HIF-1: Role of HIF-1α-Hsp90 interaction. FEBS Lett. 1999, 460, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Redlak, M.J.; Miller, T.A. Targeting PI3K/Akt/HSP90 Signaling Sensitizes Gastric Cancer Cells to Deoxycholate-Induced Apoptosis. Dig. Dis. Sci. 2011, 56, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Menssen, A.; Hydbring, P.; Kapelle, K.; Vervoorts, J.; Diebold, J.; Lüscher, B.; Larsson, L.-G.; Hermeking, H. The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. Proc. Natl. Acad. Sci. USA 2012, 109, E187–E196. [Google Scholar] [CrossRef]
- Li, F.; Wang, Y.; Zeller, K.I.; Potter, J.J.; Wonsey, D.R.; O’Donnell, K.A.; Kim, J.-w.; Yustein, J.T.; Lee, L.A.; Dang, C.V. Myc Stimulates Nuclearly Encoded Mitochondrial Genes and Mitochondrial Biogenesis. Mol. Cell. Biol. 2005, 25, 6225–6234. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Schumann, U.; Liu, Y.; Prokopchuk, O.; Steinacker, J.M. Heat shock protein 70 (Hsp70) inhibits oxidative phosphorylation and compensates ATP balance through enhanced glycolytic activity. J. Appl. Physiol. 2012, 113, 1669–1676. [Google Scholar] [CrossRef]
- Shi, H.; Yao, R.; Lian, S.; Liu, P.; Liu, Y.; Yang, Y.Y.; Yang, H.; Li, S. Regulating glycolysis, the TLR4 signal pathway and expression of RBM3 in mouse liver in response to acute cold exposure. Stress 2019, 22, 366–376. [Google Scholar] [CrossRef]
- Poverennaya, E.V.; Pyatnitskiy, M.A.; Dolgalev, G.V.; Arzumanian, V.A.; Kiseleva, O.I.; Kurbatov, I.Y.; Kurbatov, L.K.; Vakhrushev, I.V.; Romashin, D.D.; Kim, Y.S.; et al. Exploiting Multi-Omics Profiling and Systems Biology to Investigate Functions of TOMM34. Biology 2023, 12, 198. [Google Scholar] [CrossRef]
- Trcka, F.; Durech, M.; Man, P.; Hernychova, L.; Muller, P.; Vojtesek, B. The Assembly and Intermolecular Properties of the Hsp70-Tomm34-Hsp90 Molecular Chaperone Complex. J. Biol. Chem. 2014, 289, 9887–9901. [Google Scholar] [CrossRef] [PubMed]
- Muller, P.; Coates, P.J.; Nenutil, R.; Trcka, F.; Hrstka, R.; Chovanec, J.; Brychtova, V.; Vojtesek, B. Tomm34 is commonly expressed in epithelial ovarian cancer and associates with tumour type and high FIGO stage. J. Ovarian Res. 2019, 12, 30. [Google Scholar] [CrossRef]
- Tanabe, S.; Quader, S.; Ono, R.; Cabral, H.; Aoyagi, K.; Hirose, A.; Yokozaki, H.; Sasaki, H. Molecular Network Profiling in Intestinal- and Diffuse-Type Gastric Cancer. Cancers 2020, 12, 3833. [Google Scholar] [CrossRef] [PubMed]
- Shimokawa, T.; Matsushima, S.; Tsunoda, T.; Tahara, H.; Nakamura, Y.; Furukawa, Y. Identification of TOMM34, which shows elevated expression in the majority of human colon cancers, as a novel drug target. Int. J. Oncol. 2006, 29, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Aleskandarany, M.A.; Negm, O.H.; Rakha, E.A.; Ahmed, M.A.H.; Nolan, C.C.; Ball, G.R.; Caldas, C.; Green, A.R.; Tighe, P.J.; Ellis, I.O. TOMM34 expression in early invasive breast cancer: A biomarker associated with poor outcome. Breast Cancer Res. Treat. 2012, 136, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Siegelin, M.D.; Dohi, T.; Raskett, C.M.; Orlowski, G.M.; Powers, C.M.; Gilbert, C.A.; Ross, A.H.; Plescia, J.; Altieri, D.C. Exploiting the mitochondrial unfolded protein response for cancer therapy in mice and human cells. J. Clin. Investig. 2011, 121, 1349–1360. [Google Scholar] [CrossRef] [PubMed]
- Chae, Y.C.; Caino, M.C.; Lisanti, S.; Ghosh, J.C.; Dohi, T.; Danial, N.N.; Villanueva, J.; Ferrero, S.; Vaira, V.; Santambrogio, L.; et al. Control of Tumor Bioenergetics and Survival Stress Signaling by Mitochondrial HSP90s. Cancer Cell 2012, 22, 331–344. [Google Scholar] [CrossRef]
- Agarwal, E.; Altman, B.J.; Seo, J.H.; Ghosh, J.C.; Kossenkov, A.V.; Tang, H.-Y.; Krishn, S.R.; Languino, L.R.; Gabrilovich, D.I.; Speicher, D.W.; et al. Myc-mediated transcriptional regulation of the mitochondrial chaperone TRAP1 controls primary and metastatic tumor growth. J. Biol. Chem. 2019, 294, 10407–10414. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Choi, J.-M.; Holehouse, A.S.; Lee, H.O.; Zhang, X.; Jahnel, M.; Maharana, S.; Lemaitre, R.; Pozniakovsky, A.; Drechsel, D.; et al. A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins. Cell 2018, 174, 688–699.e16. [Google Scholar] [CrossRef] [PubMed]
- Kolhe, J.A.; Babu, N.L.; Freeman, B.C. The Hsp90 molecular chaperone governs client proteins by targeting intrinsically disordered regions. Mol. Cell 2023, 83, 2035–2044.e7. [Google Scholar] [CrossRef] [PubMed]
- Zuiderweg, E.R.P.; Hightower, L.E.; Gestwicki, J.E. The remarkable multivalency of the Hsp70 chaperones. Cell Stress. Chaperones 2017, 22, 173–189. [Google Scholar] [CrossRef] [PubMed]
- Prodromou, C.; Roe, S.M.; O’Brien, R.; Ladbury, J.E.; Piper, P.W.; Pearl, L.H. Identification and Structural Characterization of the ATP/ADP-Binding Site in the Hsp90 Molecular Chaperone. Cell 1997, 90, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, J.; Antón, R.; Valbuena, A.; Pantoja-Uceda, D.; Mukhi, M.; Hervás, R.; Laurents, D.V.; Gasset, M.; Oroz, J. Metamorphism in TDP-43 prion-like domain determines chaperone recognition. Nat. Commun. 2023, 14, 466. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Gan, L.; Di, S.; Nie, F.; Shi, H.; Wang, R.; Yang, F.; Qin, W.; Wen, W. The role of phase separation in RNA modification: Both cause and effect. Int. J. Biol. Macromol. 2024, 280, 135907. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Z.; Lu, T.-W.; Stolerman, L.M.; Tenner, B.; Yang, J.R.; Zhang, J.-F.; Falcke, M.; Rangamani, P.; Taylor, S.S.; Mehta, S.; et al. Phase Separation of a PKA Regulatory Subunit Controls cAMP Compartmentation and Oncogenic Signaling. Cell 2020, 182, 1531–1544.e15. [Google Scholar] [CrossRef]
- Mediani, L.; Antoniani, F.; Galli, V.; Vinet, J.; Carrà, A.D.; Bigi, I.; Tripathy, V.; Tiago, T.; Cimino, M.; Leo, G.; et al. Hsp90-mediated regulation of DYRK3 couples stress granule disassembly and growth via mTORC1 signaling. EMBO Rep. 2021, 22, e51740. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Z.; Mehta, S.; Zhang, J. Liquid–liquid phase separation: A principal organizer of the cell’s biochemical activity architecture. Trends Pharmacol. Sci. 2021, 42, 845–856. [Google Scholar] [CrossRef] [PubMed]
- Kedersha, N.; Ivanov, P.; Anderson, P. Stress granules and cell signaling: More than just a passing phase? Trends Biochem. Sci. 2013, 38, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Wippich, F.; Bodenmiller, B.; Trajkovska, M.G.; Wanka, S.; Aebersold, R.; Pelkmans, L. Dual Specificity Kinase DYRK3 Couples Stress Granule Condensation/Dissolution to mTORC1 Signaling. Cell 2013, 152, 791–805. [Google Scholar] [CrossRef]
- Lee, Y.H.; Yoon, A.R.; Yun, C.-O.; Chung, K.C. Dual-specificity kinase DYRK3 phosphorylates p62 at the Thr-269 residue and promotes melanoma progression. J. Biol. Chem. 2024, 300, 107206. [Google Scholar] [CrossRef]
- Miyata, Y.; Nishida, E. Protein quality control of DYRK family protein kinases by the Hsp90-Cdc37 molecular chaperone. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2021, 1868, 119081. [Google Scholar] [CrossRef]
- Hekselman, I.; Yeger-Lotem, E. Mechanisms of tissue and cell-type specificity in heritable traits and diseases. Nat. Rev. Genet. 2020, 21, 137–150. [Google Scholar] [CrossRef]
- Barabási, A.-L.; Oltvai, Z.N. Network biology: Understanding the cell’s functional organization. Nat. Rev. Genet. 2004, 5, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H. A Simple Outline of Methods for Protein Isolation and Purification. Endocrinol. Metab. 2017, 32, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, S.D.; Neubert, T.A.; Sharma, S.; Digwal, C.S.; Yan, P.; Timbus, C.; Wang, T.; Chiosis, G. Disease-specific interactome alterations via epichaperomics: The case for Alzheimer’s disease. FEBS J. 2022, 289, 2047–2066. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Gomes, E.D.; Wang, T.; Corben, A.; Taldone, T.; Gandu, S.; Xu, C.; Sharma, S.; Buddaseth, S.; Yan, P.; et al. Pharmacologically controlling protein-protein interactions through epichaperomes for therapeutic vulnerability in cancer. Commun. Biol. 2021, 4, 1333. [Google Scholar] [CrossRef]
- Pina, A.S.; Lowe, C.R.; Roque, A.C.A. Challenges and opportunities in the purification of recombinant tagged proteins. Biotechnol. Adv. 2014, 32, 366–381. [Google Scholar] [CrossRef] [PubMed]
- Rodina, A.; Taldone, T.; Kang, Y.; Patel, P.D.; Koren, J., III; Yan, P.; DaGama Gomes, E.M.; Yang, C.; Patel, M.R.; Shrestha, L.; et al. Affinity Purification Probes of Potential Use To Investigate the Endogenous Hsp70 Interactome in Cancer. ACS Chem. Biol. 2014, 9, 1698–1705. [Google Scholar] [CrossRef]
- Gong, Y.; Kakihara, Y.; Krogan, N.; Greenblatt, J.; Emili, A.; Zhang, Z.; Houry, W.A. An atlas of chaperone–protein interactions in Saccharomyces cerevisiae: Implications to protein folding pathways in the cell. Mol. Syst. Biol. 2009, 5, 275. [Google Scholar] [CrossRef]
- Leitner, A.; Faini, M.; Stengel, F.; Aebersold, R. Crosslinking and Mass Spectrometry: An Integrated Technology to Understand the Structure and Function of Molecular Machines. Trends Biochem. Sci. 2016, 41, 20–32. [Google Scholar] [CrossRef]
- Liu, F.; Rijkers, D.T.S.; Post, H.; Heck, A.J.R. Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry. Nat. Methods 2015, 12, 1179–1184. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, M.; VanderSluis, B.; Koch, E.N.; Baryshnikova, A.; Pons, C.; Tan, G.; Wang, W.; Usaj, M.; Hanchard, J.; Lee, S.D.; et al. A global genetic interaction network maps a wiring diagram of cellular function. Science 2016, 353, aaf1420. [Google Scholar] [CrossRef] [PubMed]
- Koegl, M.; Uetz, P. Improving yeast two-hybrid screening systems. Brief. Funct. Genom. 2008, 6, 302–312. [Google Scholar] [CrossRef]
- Veale, C.G.L.; Clarke, D.J. Mass spectrometry-based methods for characterizing transient protein–protein interactions. Trends Chem. 2024, 6, 377–391. [Google Scholar] [CrossRef]
- Wang, X.; He, Y.; Ye, Y.; Zhao, X.; Deng, S.; He, G.; Zhu, H.; Xu, N.; Liang, S. SILAC–based quantitative MS approach for real-time recording protein-mediated cell-cell interactions. Sci. Rep. 2018, 8, 8441. [Google Scholar] [CrossRef] [PubMed]
- Laplane, L.; Maley, C.C. The evolutionary theory of cancer: Challenges and potential solutions. Nat. Rev. Cancer 2024, 24, 718–733. [Google Scholar] [CrossRef]
- Goyal, Y.; Busch, G.T.; Pillai, M.; Li, J.; Boe, R.H.; Grody, E.I.; Chelvanambi, M.; Dardani, I.P.; Emert, B.; Bodkin, N.; et al. Diverse clonal fates emerge upon drug treatment of homogeneous cancer cells. Nature 2023, 620, 651–659. [Google Scholar] [CrossRef]
- França, G.S.; Baron, M.; King, B.R.; Bossowski, J.P.; Bjornberg, A.; Pour, M.; Rao, A.; Patel, A.S.; Misirlioglu, S.; Barkley, D.; et al. Cellular adaptation to cancer therapy along a resistance continuum. Nature 2024, 631, 876–883. [Google Scholar] [CrossRef] [PubMed]
- Taldone, T.; Gomes-DaGama, E.M.; Zong, H.; Sen, S.; Alpaugh, M.L.; Zatorska, D.; Alonso-Sabadell, R.; Guzman, M.L.; Chiosis, G. Synthesis of purine-scaffold fluorescent probes for heat shock protein 90 with use in flow cytometry and fluorescence microscopy. Bioorganic Med. Chem. Lett. 2011, 21, 5347–5352. [Google Scholar] [CrossRef]
- Taldone, T.; Rodina, A.; DaGama Gomes, E.M.; Riolo, M.; Patel, H.J.; Alonso-Sabadell, R.; Zatorska, D.; Patel, M.R.; Kishinevsky, S.; Chiosis, G. Synthesis and evaluation of cell-permeable biotinylated PU-H71 derivatives as tumor Hsp90 probes. Beilstein J. Org. Chem. 2013, 9, 544–556. [Google Scholar] [CrossRef] [PubMed]
- Taldone, T.; Zatorska, D.; Ochiana, S.O.; Smith-Jones, P.; Koziorowski, J.; Dunphy, M.P.; Zanzonico, P.; Bolaender, A.; Lewis, J.S.; Larson, S.M.; et al. Radiosynthesis of the iodine-124 labeled Hsp90 inhibitor PU-H71. J. Label. Compd. Radiopharm. 2016, 59, 129–132. [Google Scholar] [CrossRef]
- Lior, C.; Barki, D.; Halperin, C.; Iacobuzio-Donahue, C.A.; Kelsen, D.; Shouval, R.S. Mapping the tumor stress network reveals dynamic shifts in the stromal oxidative stress response. Cell Rep. 2024, 43, 114236. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Kim, J.; Geng, B.; Chen, J.; Wong, V.; Lyakisheva, A.; Snider, J.; Dimlić, M.R.; Raić, S.; Stagljar, I. A split intein and split luciferase-coupled system for detecting protein-protein interactions. Mol. Syst. Biol. 2024, 1–19, online ahead of print. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amissah, H.A.; Antwi, M.H.; Amissah, T.A.; Combs, S.E.; Shevtsov, M. More than Just Protein Folding: The Epichaperome, Mastermind of the Cancer Cell. Cells 2025, 14, 204. https://doi.org/10.3390/cells14030204
Amissah HA, Antwi MH, Amissah TA, Combs SE, Shevtsov M. More than Just Protein Folding: The Epichaperome, Mastermind of the Cancer Cell. Cells. 2025; 14(3):204. https://doi.org/10.3390/cells14030204
Chicago/Turabian StyleAmissah, Haneef Ahmed, Maxwell Hubert Antwi, Tawfeek Ahmed Amissah, Stephanie E. Combs, and Maxim Shevtsov. 2025. "More than Just Protein Folding: The Epichaperome, Mastermind of the Cancer Cell" Cells 14, no. 3: 204. https://doi.org/10.3390/cells14030204
APA StyleAmissah, H. A., Antwi, M. H., Amissah, T. A., Combs, S. E., & Shevtsov, M. (2025). More than Just Protein Folding: The Epichaperome, Mastermind of the Cancer Cell. Cells, 14(3), 204. https://doi.org/10.3390/cells14030204