Zonisamide Administration Improves Fatty Acid β-Oxidation in Parkinson’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Participants
2.3. Assessment of Clinical Symptoms
2.4. Blood Sample Collection
2.5. Metabolite Extraction
2.6. Biochemical Measurements
2.7. Data Analysis
2.8. Statistical Analysis
3. Results
3.1. Participants
3.2. Metabolomic Datasets
3.3. Increase of Long-Chain Acylcarnitine Levels in PD Patients with Zonisamide Treatment
3.4. Association of LCACs with Age, H and Y Stage, UPDRS-III Scores, and LED
3.5. Association of Skeletal Muscle Mass with Metabolites Associated with Fatty Acid β-Oxidation
3.6. Other Metabolites Significantly Changed by Zonisamide Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers 2017, 23, 17013. [Google Scholar] [CrossRef] [PubMed]
- Jankovic, J.; Poewe, W. Therapies in Parkinson’s disease. Curr. Opin. Neurol. 2012, 4, 433–447. [Google Scholar] [CrossRef]
- Saiki, S.; Sato, S.; Hattori, N. Molecular pathogenesis of Parkinson’s disease: Update. J. Neurol. Neurosurg. Psychiatry 2012, 83, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Murata, M.; Hasegawa, K.; Kanazawa, I.; Japan Zonisamide on PD Study Group. Zonisamide improves motor function in Parkinson disease: A randomized, double-blind study. Neurology 2007, 68, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Fox, S.H.; Katzenschlager, R.; Lim, S.Y.; Barton, B.; de Bie, R.M.A.; Seppi, K.; Coelho, M.; Sampaio, C.; Movement Disorder Society Evidence-Based Medicine Committee. International Parkinson and movement disorder society evidence-based medicine review: Update on treatments for the motor symptoms of Parkinson’s disease. Mov. Disord. 2018, 8, 1248–1266. [Google Scholar] [CrossRef]
- Matsumoto, K.; Miyazaki, H.; Fujii, T.; Kagemoto, A.; Maeda, T.; Hashimoto, M.; Arzneimittel-Forschung. Absorption, Distribution and Excretion of 3-(Sulfamoyl[14C]methyl)-1,2-benzisoxazole (AD810) in Rats, Dogs, Monkeys and of AD-810 in Men. Drug Res. 1983, 7, 961–968. [Google Scholar]
- Kawajiri, S.; Machida, Y.; Saiki, S.; Sato, S.; Hattori, N. Zonisamide reduces cell death in SH-SY5Y cells via an anti-apoptotic effect and by upregulating MnSOD. Neurosci. Lett. 2010, 2, 88–91. [Google Scholar] [CrossRef]
- Sano, H.; Murata, M.; Nambu, A. Zonisamide reduces nigrostriatal dopaminergic neurodegeneration in a mouse genetic model of Parkinson’s disease. J. Neurochem. 2015, 2, 371–381. [Google Scholar] [CrossRef]
- Ueda, Y.; Tokashiki, S.; Kanemaru, A.; Kojima, T. Effect of zonisamide co-administration with levodopa on global gene expression in the striata of rats with Parkinson’s disease. Biochem. Biophys. Res. Commun. 2012, 3, 401–404. [Google Scholar] [CrossRef]
- Asanuma, M.; Miyazaki, I.; Diaz-Corrales, F.J.; Kimoto, N.; Kikkawa, Y.; Takeshima, M.; Miyoshi, K.; Murata, M. Neuroprotective effects of zonisamide target astrocyte. Ann. Neurol. 2010, 2, 239–249. [Google Scholar] [CrossRef]
- Topcu, Y.; Bayram, E.; Özbal, S.; Yiş, U.; Tuğyan, K.; Karaoğlu, P.; Kumral, P.; Yılmaz, O.; Kurul, S.H. Zonisamide attenuates hyperoxia-induced apoptosis in the developing rat brain. Neurol. Sci. 2014, 11, 1769–1775. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Okada, M.; Murakami, T.; Kawata, Y.; Kamata, A.; Kaneko, S. Interaction between carbamazepine, zonisamide and voltage-sensitive Ca2+ channel on acetylcholine release in rat frontal cortex. Epilepsy Res. 2002, 1, 49–60. [Google Scholar] [CrossRef]
- Yurekli, V.A.; Gürler, S.; Nazıroğlu, M.; Uğuz, A.C.; Koyuncuoğlu, H.F. Zonisamide attenuates MPP+-induced oxidative toxicity through modulation of Ca2+ signaling and caspase-3 activity in neuronal PC12 cells. Cell Mol. Neurobiol. 2013, 2, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.M.; Weig, B.; Reuhl, K.; Gearing, M.; Wu, L.J.; Richardson, J.R. The anti-parkinsonian drug zonisamide reduces neuroinflammation: Role of microglial Nav 1.6. Exp. Neurol. 2018, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Saiki, S.; Hatano, T.; Fujimaki, M.; Ishikawa, K.I.; Mori, A.; Oji, Y.; Okuzumi, A.; Fukuhara, T.; Koinuma, T.; Imamichi, Y.; et al. Decreased long-chain acylcarnitines from insufficient beta-oxidation as potential early diagnostic markers for Parkinson’s disease. Sci. Rep. 2017, 1, 7328. [Google Scholar] [CrossRef] [PubMed]
- Hatano, T.; Saiki, S.; Okuzumi, A.; Mohney, R.P.; Hattori, N. Identification of novel biomarkers for Parkinson’s disease by metabolomic technologies. J. Neurol. Neurosurg. Psychiatry 2016, 3, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Fujimaki, M.; Saiki, S.; Li, Y.Z.; Kaga, N.; Taka, H.; Hatano, T.; Ishikawa, K.I.; Oji, Y.; Mori, A.; Okuzumi, A.; et al. Serum caffeine and metabolites are reliable biomarkers of early Parkinson disease. Neurology 2018, 90, e404–e411. [Google Scholar] [CrossRef]
- Havelund, J.F.; Heegaard, H.H.; Færgeman, N.J.K.; Gramsbergen, J.B. Biomarker Research in Parkinson’s Disease Using Metabolite Profiling. Metabolites 2017, 7, 42. [Google Scholar] [CrossRef]
- Medeiros, M.S.; Schumacher-Schuh, A.; Cardoso, A.M.; Bochi, G.V.; Baldissarelli, J.; Kegler, A.; Santana, D.; Chaves, C.M.M.B.S.; Schetinger, M.R.C.; Moresco, R.N.; et al. Iron and Oxidative Stress in Parkinson’s Disease: An Observational Study of Injury Biomarkers. PLoS ONE 2016, 1, e0146129. [Google Scholar] [CrossRef]
- Postuma, R.B.; Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 2015, 12, 1591–1601. [Google Scholar] [CrossRef]
- Yamamoto, H.; Fujimori, T.; Sato, H.; Ishikawa, G.; Kami, K.; Ohashi, Y. Statistical hypothesis testing of factor loading in principal component analysis and its application to metabolite set enrichment analysis. BMC Bioinformat. 2014, 15, 51. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, C.L.; Stowe, R.; Patel, S.; Rick, C.; Gray, R.; Clarke, C.E. Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov. Disord. 2010, 15, 2649–2653. [Google Scholar] [CrossRef] [PubMed]
- Shearer, J.; Weljie, A.M. Biomarkers of skeletal muscle regulation, mechanism and dysfunction. In Metabolomics and Systems Biology in Human Health and Medicine; Jones, O.A.H., Ed.; CABI: Wallingford, Oxfordshire, UK, 2014; pp. 157–170. [Google Scholar]
- Fukushima, T. Niacin metabolism and Parkinson’s disease. Environ. Health Prev. Med. 2005, 1, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.H.; Cheng, M.L.; Tang, H.Y.; Huang, C.Y.; Wu, Y.R.; Chen, C.M. Alternations of Metabolic Profile and Kynurenine Metabolism in the Plasma of Parkinson’s Disease. Mol. Neurobiol. 2018, 8, 6319–6328. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.L.; Cox, M.M. Lehninger. In Lehninger Principles of Biochemistry, 7th ed.; Macmillan Higher Education: New York, NY, USA; W.H. Freeman and Company: Houndmills, Basingstoke, UK, 2017. [Google Scholar]
- Thenganatt, M.A.; Jankovic, J. Parkinson disease subtypes. JAMA Neurol. 2014, 4, 499–504. [Google Scholar]
- Rodriguez-Gutierrez, R.; Lavalle-González, F.J.; Martínez-Garza, L.E.; Landeros-Olvera, E.; López-Alvarenga, J.C.; Torres-Sepúlveda, M.R.; González-González, J.G.; Mancillas-Adame, L.G.; Salazar-Gonzalez, B.; Villarreal-Pérez, J.Z. Impact of an exercise program on acylcarnitines in obesity: A prospective controlled study. J. Int. Soc. Sports Nutr. 2012, 1, 22. [Google Scholar] [CrossRef]
- Lehmann, R.; Zhao, X.; Weigert, C.; Simon, P.; Fehrenbach, E.; Fritsche, J.; Machann, J.; Schick, F.; Wang, J.; Hoene, M.; et al. Medium chain acylcarnitines dominate the metabolite pattern in humans under moderate intensity exercise and support lipid oxidation. PLoS ONE 2010, 7, e11519. [Google Scholar] [CrossRef]
- Chandrasekaran, A.; Idelchik, M.; Melendez, J.A. Redox control of senescence and age-related disease. Redox Biol. 2017, 11, 91–102. [Google Scholar] [CrossRef]
- Lin, M.T.; Beal, M.F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006, 7113, 787–795. [Google Scholar] [CrossRef]
- Starkov, A.A. The role of mitochondria in reactive oxygen species metabolism and signaling. Ann. N. Y. Acad. Sci. 2008, 1147, 37–52. [Google Scholar] [CrossRef]
- Adams, F.; Boschmann, M.; Lobsien, E.; Kupsch, A.; Lipp, A.; Franke, G.; Leisse, M.C.; Janke, J.; Gottschalk, S.; Spranger, J.; et al. Influences of levodopa on adipose tissue and skeletal muscle metabolism in patients with idiopathic Parkinson’s disease. Eur. J. Clin. Pharmacol. 2008, 9, 863–870. [Google Scholar] [CrossRef]
Participants Characteristics, Mean (SD) | Zonisamide (−) | Zonisamide (+) | p-Value |
---|---|---|---|
Number | 10 | 20 | - |
Gender, female/male | 5/5 | 13/7 | 0.431 a |
Age | 69.5 (6.7) | 68.2 (1.9) | 0.982 |
Zonisamide | - | 38.7 (12.7) | - |
Treatment period by evaluation | - | 8.15 (3.75) | - |
Body mass index | 22.0 (3.4) | 22.4 (0.75) | 0.597 |
H&Y | 2.1 (0.9) | 2.3 (1.1) | 0.762 |
H&Y, each case number | I(3), II(4), III(2), IV(1), V(0) | I(5), II(9), III(2), IV(3), V(1) | - |
Disease duration | 11.4 (6.9) | 7.7 (4.0) | 0.138 |
UPDRS-III (pre-treatment) | 17.9 (12.4) | 14.1 (3.1) | 0.425 |
UPDRS-III (post-treatment) | - | 13.6 (11.4) | - |
UPDRS-III-tremor (pre-treatment) | 0.6 (1.0) | 2.6 (1.9) | 0.00280 |
UPDRS-III-tremor (post-treatment) | - | 2.2 (1.9) | - |
LED | 855.3 (305) | 680.9 (458) | 0.165 |
LDD | 480 (209) | 430 (280) | 0.492 |
Compound, Relative Area | Ratio of Zonisamide (+) to Zonisamide (−) | p-Value |
---|---|---|
1-methylnicotinamide | 1.61 | 0.0294 |
AC(12:0) | 1.73 | 0.0407 |
AC(12:1)-1 | 1.92 | 0.0405 |
AC(16:1) | 1.75 | 0.0366 |
AC(16:2) | 1.95 | 0.0054 |
Glycerol | 0.843 | 0.0329 |
Imidazolelactic acid | 1.50 | 0.0040 |
Nervonic acid | 1.21 | 0.0068 |
Oleoyl ethanolamine | 0.785 | 0.00146 |
Ornithine | 1.32 | 0.0263 |
S-methylcysteine | 0.726 | 0.0294 |
Succinic acid | 1.46 | 0.0199 |
Age | H&Y | UPDRS-III | LED | |||||
---|---|---|---|---|---|---|---|---|
r | p-Value | r | p-Value | r | p-Value | r | p-Value | |
AC(12:0) | −0.293 | 0.115 | 0.128 | 0.499 | 0.240 | 0.200 | 0.287 | 0.123 |
AC(12:1)−1 | −0.115 | 0.541 | 0.179 | 0.343 | 0.141 | 0.457 | 0.272 | 0.145 |
AC(16:1) | −0.199 | 0.291 | 0.0476 | 0.802 | 0.124 | 0.510 | 0.132 | 0.485 |
AC(16:2) | −0.110 | 0.562 | 0.185 | 0.326 | 0.153 | 0.417 | 0.0969 | 0.610 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ueno, S.-I.; Saiki, S.; Fujimaki, M.; Takeshige-Amano, H.; Hatano, T.; Oyama, G.; Ishikawa, K.-I.; Yamaguchi, A.; Nojiri, S.; Akamatsu, W.; et al. Zonisamide Administration Improves Fatty Acid β-Oxidation in Parkinson’s Disease. Cells 2019, 8, 14. https://doi.org/10.3390/cells8010014
Ueno S-I, Saiki S, Fujimaki M, Takeshige-Amano H, Hatano T, Oyama G, Ishikawa K-I, Yamaguchi A, Nojiri S, Akamatsu W, et al. Zonisamide Administration Improves Fatty Acid β-Oxidation in Parkinson’s Disease. Cells. 2019; 8(1):14. https://doi.org/10.3390/cells8010014
Chicago/Turabian StyleUeno, Shin-Ichi, Shinji Saiki, Motoki Fujimaki, Haruka Takeshige-Amano, Taku Hatano, Genko Oyama, Kei-Ichi Ishikawa, Akihiro Yamaguchi, Shuko Nojiri, Wado Akamatsu, and et al. 2019. "Zonisamide Administration Improves Fatty Acid β-Oxidation in Parkinson’s Disease" Cells 8, no. 1: 14. https://doi.org/10.3390/cells8010014
APA StyleUeno, S. -I., Saiki, S., Fujimaki, M., Takeshige-Amano, H., Hatano, T., Oyama, G., Ishikawa, K. -I., Yamaguchi, A., Nojiri, S., Akamatsu, W., & Hattori, N. (2019). Zonisamide Administration Improves Fatty Acid β-Oxidation in Parkinson’s Disease. Cells, 8(1), 14. https://doi.org/10.3390/cells8010014