Upregulation of Lysyl Oxidase Expression in Vitreous of Diabetic Subjects: Implications for Diabetic Retinopathy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Lee, R.; Wong, T.Y.; Sabanayagam, C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis. 2015, 2. [Google Scholar] [CrossRef]
- Curtis, T.M.; Gardiner, T.A.; Stitt, A.W. Microvascular lesions of diabetic retinopathy: Clues towards understanding pathogenesis? Eye 2009, 23, 1496–1508. [Google Scholar] [CrossRef] [PubMed]
- Duh, E.J.; Sun, J.K.; Stitt, A.W. Diabetic retinopathy: Current understanding, mechanisms, and treatment strategies. JCI Insight 2017, 2. [Google Scholar] [CrossRef] [PubMed]
- Ljubimov, A.V.; Burgeson, R.E.; Butkowski, R.J.; Couchman, J.R.; Zardi, L.; Ninomiya, Y.; Sado, Y.; Huang, Z.S.; Nesburn, A.B.; Kenney, M.C. Basement membrane abnormalities in human eyes with diabetic retinopathy. J. Histochem. Cytochem. 1996, 44, 1469–1479. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Ha, J.; Trudeau, K.; Beglova, E. Vascular Basement Membrane Thickening in Diabetic Retinopathy. Curr. Eye Res. 2010, 35, 1045–1056. [Google Scholar] [CrossRef] [PubMed]
- Boyd, R.; Burke, J.; Atkin, J.; Thompson, V.; Nugent, J. Significance of capillary basement membrane changes in diabetes mellitus. J. Am. Podiatr. Med. Assoc. 1990, 80, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Scott, H.A.; Monickaraj, F.; Xu, J.; Ardekani, S.; Nitta, C.F.; Cabrera, A.; McGuire, P.G.; Mohideen, U.; Das, A.; et al. Basement membrane stiffening promotes retinal endothelial activation associated with diabetes. FASEB J. 2016, 30, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Sethi, A.; Wordinger, R.J.; Clark, A.F. Focus on molecules: Lysyl oxidase. Exp. Eye Res. 2012, 104, 97–98. [Google Scholar] [CrossRef] [PubMed]
- Chronopoulos, A.; Tang, A.; Beglova, E.; Trackman, P.C.; Roy, S. High Glucose Increases Lysyl Oxidase Expression and Activity in Retinal Endothelial Cells: Mechanism for Compromised Extracellular Matrix Barrier Function. Diabetes 2010, 59, 3159–3166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Donato, A.; Lacal, J.C.; Di Duca, M.; Giampuzzi, M.; Ghiggeri, G.M.; Gusmano, R. Micro-injection of recombinant lysyl oxidase blocks oncogenic p21-Ha-Ras and progesterone effects on Xenopus laevis oocyte maturation. FEBS Lett. 1997, 419, 63–68. [Google Scholar] [CrossRef]
- Giampuzzi, M.; Botti, G.; Cilli, M.; Gusmano, R.; Borel, A.; Sommer, P.; Di Donato, A. Down-regulation of Lysyl Oxidase-induced Tumorigenic Transformation in NRK-49F Cells Characterized by Constitutive Activation of Ras Proto-oncogene. J. Boil. Chem. 2001, 276, 29226–29232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneda, A.; Wakazono, K.; Tsukamoto, T.; Watanabe, N.; Yagi, Y.; Tatematsu, M.; Kaminishi, M.; Sugimura, T.; Ushijima, T. Lysyl Oxidase Is a Tumor Suppressor Gene Inactivated by Methylation and Loss of Heterozygosity in Human Gastric Cancers. Cancer Res. 2004, 64, 6410–6415. [Google Scholar] [CrossRef] [PubMed]
- Saad, F.A.; Torres, M.; Wang, H.; Graham, L. Intracellular lysyl oxidase: Effect of a specific inhibitor on nuclear mass in proliferating cells. Biochem. Biophys. Res. Commun. 2010, 396, 944–949. [Google Scholar] [CrossRef] [PubMed]
- Sung, F.L.; Cui, Y.; Hui, E.P.; Li, L.; Loh, T.K.; Tao, Q.; Chan, A.T. Silencing of hypoxia-inducible tumor suppressor lysyl oxidase gene by promoter methylation activates carbonic anhydrase IX in nasopharyngeal carcinoma. Am. J. Cancer Res. 2014, 4, 789–800. [Google Scholar] [PubMed]
- Varona, S.; Orriols, M.; Galán, M.; Guadall, A.; Cañes, L.; Aguiló, S.; Sirvent, M.; Martínez-González, J.; Rodríguez, C. Lysyl oxidase (LOX) limits VSMC proliferation and neointimal thickening through its extracellular enzymatic activity. Sci. Rep. 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Ejaz, S.; Chekarova, I.; Ejaz, A.; Sohail, A.; Lim, C.W. Importance of pericytes and mechanisms of pericyte loss during diabetes retinopathy. Diabetes Obes. Metab. 2008, 10, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Mecham, R.P.; Trackman, P.C.; Roy, S. Downregulation of Lysyl Oxidase Protects Retinal Endothelial Cells From High Glucose–Induced Apoptosis. Investig. Ophthalmol. Vis. Sci. 2017, 58, 2725–2731. [Google Scholar] [CrossRef]
- Harlow, C.R.; Wu, X.; Van Deemter, M.; Gardiner, F.; Poland, C.; Green, R.; Sarvi, S.; Brown, P.; Kadler, K.E.; Lu, Y.; et al. Targeting lysyl oxidase reduces peritoneal fibrosis. PLoS ONE 2017, 12. [Google Scholar] [CrossRef]
- Kagan, H. Lysyl Oxidase: Mechanism, Regulation and Relationship to Liver Fibrosis. Pathol. -Res. Pr. 1994, 190, 910–919. [Google Scholar] [CrossRef]
- Liu, S.B.; Ikenaga, N.; Peng, Z.-W.; Sverdlov, D.Y.; Greenstein, A.; Smith, V.; Schuppan, D.; Popov, Y.V. Lysyl oxidase activity contributes to collagen stabilization during liver fibrosis progression and limits spontaneous fibrosis reversal in mice. FASEB J. 2016, 30, 1599–1609. [Google Scholar] [CrossRef]
- McMeel, J.W. Diabetic retinopathy: Fibrotic proliferation and retinal detachment. Trans. Am. Ophthalmol. Soc. 1971, 69, 440–493. [Google Scholar] [PubMed]
- Roy, S.; Amin, S.; Roy, S. Retinal fibrosis in diabetic retinopathy. Exp. Eye Res. 2016, 142, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Kim, D.; Hernández, C.; Simó, R.; Roy, S. Beneficial Effects of Fenofibric Acid on Overexpression of Extracellular Matrix Components, COX-2, and Impairment of Endothelial Permeability Associated with Diabetic Retinopathy. Exp. Eye Res. 2015, 140, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Polewski, P.; Chadda, M.; Li, A.-F.; Roy, S.; Oshitari, T.; Sato, T. Effect of Combined Antisense Oligonucleotides Against High-Glucose–and Diabetes-Induced Overexpression of Extracellular Matrix Components and Increased Vascular Permeability. Diabetes 2006, 55, 86–92. [Google Scholar]
- Roy, S.; Nasser, S.; Yee, M.; Graves, D.T.; Roy, S. A long-term siRNA strategy regulates fibronectin overexpression and improves vascular lesions in retinas of diabetic rats. Mol. Vis. 2011, 17, 3166–3174. [Google Scholar] [PubMed]
- Oshitari, T.; Brown, D.; Roy, S. SiRNA strategy against overexpression of extracellular matrix in diabetic retinopathy. Exp. Eye Res. 2005, 81, 32–37. [Google Scholar] [CrossRef]
- Cherian, S.; Roy, S.; Pinheiro, A. Tight Glycemic Control Regulates Fibronectin Expression and Basement Membrane Thickening in Retinal and Glomerular Capillaries of Diabetic Rats. Investig. Ophthalmol. Vis. Sci. 2009, 50, 943–949. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Ren, J.; Loo, W.T.Y.; Hao, L.; Wang, M. Lysyl oxidases expression and histopathological changes of the diabetic rat nephron. Mol. Med. Rep. 2018, 17, 2431–2441. [Google Scholar] [CrossRef]
- Madia, A.M.; Rozovski, S.J.; Kagan, H.M. Changes in lung lysyl oxidase activity in streptozotocin-diabetes and in starvation. Biochim. Biophys. Acta (BBA)-Gen. Subj. 1979, 585, 481–487. [Google Scholar] [CrossRef]
- Tanaka, T.; Tanaka, S.; Saito, H.; Yamaguchi, J.; Higashijima, Y.; Nangaku, M. Inhibition of collagen cross-linking by lysyl oxidase prevents hypertrophy and protects from diabetic nephropathy. Nephrol. Dial. Transplant. 2015, 30. [Google Scholar] [CrossRef]
- Buckingham, B.; Reiser, K.M. Relationship between the content of lysyl oxidase-dependent cross-links in skin collagen, nonenzymatic glycosylation, and long-term complications in type I diabetes mellitus. J. Clin. Investig. 1990, 86, 1046–1054. [Google Scholar] [CrossRef]
- Sebag, J.; Buckingham, B.; Charles, M.A.; Reiser, K. Biochemical Abnormalities in Vitreous of Humans With Proliferative Diabetic Retinopathy. Arch. Ophthalmol. 1992, 110, 1472–1476. [Google Scholar] [CrossRef]
- Sebag, J.; Nie, S.; Reiser, K.; Charles, M.A.; Yu, N.T. Raman spectroscopy of human vitreous in proliferative diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 1994, 35, 2976–2980. [Google Scholar]
- Kim, D.; Lee, D.; Trackman, P.C.; Roy, S. Effects of High Glucose-Induced Lysyl Oxidase Propeptide on Retinal Endothelial Cell Survival: Implications for Diabetic Retinopathy. Am. J. Pathol. 2019. [Google Scholar] [CrossRef]
- Song, B.; Kim, D.; Nguyen, N.-H.; Roy, S. Inhibition of Diabetes-Induced Lysyl Oxidase Overexpression Prevents Retinal Vascular Lesions Associated With Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2018, 59, 5965–5972. [Google Scholar] [CrossRef] [Green Version]
- Coral, K.; Angayarkanni, N.; Madhavan, J.; Bharathselvi, M.; Ramakrishnan, S.; Nandi, K.; Rishi, P.; Kasinathan, N.; Krishnakumar, S. Lysyl Oxidase Activity in the Ocular Tissues and the Role of LOX in Proliferative Diabetic Retinopathy and Rhegmatogenous Retinal Detachment. Investig. Ophthalmol. Vis. Sci. 2008, 49, 4746–4752. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, P.G.; Munoz-Aguirre, M.; Reverter, F.; Sa Godinho, C.P.; Sousa, A.; Amadoz, A.; Sodaei, R.; Hidalgo, M.R.; Pervouchine, D.; Carbonell-Caballero, J.; et al. The effects of death and post-mortem cold ischemia on human tissue transcriptomes. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, L.; Yin, Y.; Yang, E. Systematic analysis of gene expression patterns associated with postmortem interval in human tissues. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Loukovaara, S.; Sandholm, J.; Aalto, K.; Liukkonen, J.; Jalkanen, S.; Yegutkin, G.G. Deregulation of ocular nucleotide homeostasis in patients with diabetic retinopathy. J. Mol. Med. 2017, 95, 193–204. [Google Scholar] [CrossRef]
- Asencio-Durán, M.; Vallejo-Garcia, J.L.; Pastora-Salvador, N.; Fonseca-Sandomingo, A.; Romano, M.R. Vitreous Diagnosis in Neoplastic Diseases. Mediat. Inflamm. 2012, 2012, 1–10. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subramanian, M.L.; Stein, T.D.; Siegel, N.; Ness, S.; Fiorello, M.G.; Kim, D.; Roy, S. Upregulation of Lysyl Oxidase Expression in Vitreous of Diabetic Subjects: Implications for Diabetic Retinopathy. Cells 2019, 8, 1122. https://doi.org/10.3390/cells8101122
Subramanian ML, Stein TD, Siegel N, Ness S, Fiorello MG, Kim D, Roy S. Upregulation of Lysyl Oxidase Expression in Vitreous of Diabetic Subjects: Implications for Diabetic Retinopathy. Cells. 2019; 8(10):1122. https://doi.org/10.3390/cells8101122
Chicago/Turabian StyleSubramanian, Manju L., Thor D. Stein, Nicole Siegel, Steven Ness, Marissa G. Fiorello, Dongjoon Kim, and Sayon Roy. 2019. "Upregulation of Lysyl Oxidase Expression in Vitreous of Diabetic Subjects: Implications for Diabetic Retinopathy" Cells 8, no. 10: 1122. https://doi.org/10.3390/cells8101122
APA StyleSubramanian, M. L., Stein, T. D., Siegel, N., Ness, S., Fiorello, M. G., Kim, D., & Roy, S. (2019). Upregulation of Lysyl Oxidase Expression in Vitreous of Diabetic Subjects: Implications for Diabetic Retinopathy. Cells, 8(10), 1122. https://doi.org/10.3390/cells8101122