Characterizing CDK8/19 Inhibitors through a NFκB-Dependent Cell-Based Assay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Generation of 293 Derivatives with CRISPR-Mediated Knockout of CDK8 and CDK19
2.2. Western Blot Analysis of 293-CDK8/19 Knockout Derivatives
2.3. QPCR Analysis of 293-CDK8/19 Knockout Derivatives
2.4. Generation of NFκB-Dependent Reporter Cell Lines in WT and CDK8/19 dKO 293 Cells
2.5. NFκB-Dependent Cell-Based Assays
3. Results
3.1. Generation of CDK8/19 Single- and Double-Knockout Derivatives and Evaluation of Effects of Target Knockout on NFκB Induction of Cytokine Genes
3.2. Establishment and Validation of a NFκB Dependent Cell-Based Assay for CDK8/19 Inhibition
3.3. Effects of Inhibitors of Other CDKs in the NFκB-Dependent Cell-Based Assay
3.4. Analysis of a Series of Thienopyridine-Derivatives with Bone Anabolic Activity
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Philip, S.; Kumarasiri, M.; Teo, T.; Yu, M.; Wang, S. Cyclin-Dependent Kinase 8: A New Hope in Targeted Cancer Therapy? J. Med. Chem. 2018, 61, 5073–5092. [Google Scholar] [CrossRef] [PubMed]
- Poss, Z.C.; Ebmeier, C.C.; Odell, A.T.; Tangpeerachaikul, A.; Lee, T.; Pelish, H.E.; Shair, M.D.; Dowell, R.D.; Old, W.M.; Taatjes, D.J. Identification of Mediator Kinase Substrates in Human Cells Using Cortistatin a and Quantitative Phosphoproteomics. Cell Rep. 2016, 15, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Bancerek, J.; Poss, Z.C.; Steinparzer, I.; Sedlyarov, V.; Pfaffenwimmer, T.; Mikulic, I.; Dolken, L.; Strobl, B.; Muller, M.; Taatjes, D.J.; et al. Cdk8 Kinase Phosphorylates Transcription Factor Stat1 to Selectively Regulate the Interferon Response. Immunity 2013, 38, 250–262. [Google Scholar] [CrossRef] [PubMed]
- Staab, J.; Herrmann-Lingen, C.; Meyer, T. Cdk8 as the Stat1 Serine 727 Kinase? JAKSTAT 2013, 2, e24275. [Google Scholar] [CrossRef] [PubMed]
- Fant, C.B.; Taatjes, D.J. Regulatory Functions of the Mediator Kinases Cdk8 and Cdk19. Transcription 2019, 10, 76–90. [Google Scholar] [CrossRef]
- Porter, D.C.; Farmaki, E.; Altilia, S.; Schools, G.P.; West, D.K.; Chen, M.; Chang, B.D.; Puzyrev, A.T.; Lim, C.U.; Rokow-Kittell, R.; et al. Cyclin-Dependent Kinase 8 Mediates Chemotherapy-Induced Tumor-Promoting Paracrine Activities. Proc. Natl. Acad. Sci. USA 2012, 109, 13799–13804. [Google Scholar] [CrossRef]
- Galbraith, M.D.; Allen, M.A.; Bensard, C.L.; Wang, X.; Schwinn, M.K.; Qin, B.; Long, H.W.; Daniels, D.L.; Hahn, W.C.; Dowell, R.D.; et al. Hif1a Employs Cdk8-Mediator to Stimulate Rnapii Elongation in Response to Hypoxia. Cell 2013, 153, 1327–1339. [Google Scholar] [CrossRef]
- McDermott, M.S.; Chumanevich, A.A.; Lim, C.U.; Liang, J.; Chen, M.; Altilia, S.; Oliver, D.; Rae, J.M.; Shtutman, M.; Kiaris, H.; et al. Inhibition of Cdk8 Mediator Kinase Suppresses Estrogen Dependent Transcription and the Growth of Estrogen Receptor Positive Breast Cancer. Oncotarget 2017, 8, 12558–12575. [Google Scholar] [CrossRef]
- Pelish, H.E.; Liau, B.B.; Nitulescu, I.I.; Tangpeerachaikul, A.; Poss, Z.C.; Da Silva, D.H.; Caruso, B.T.; Arefolov, A.; Fadeyi, O.; Christie, A.L.; et al. Mediator Kinase Inhibition Further Activates Super-Enhancer-Associated Genes in Aml. Nature 2015, 526, 273–276. [Google Scholar] [CrossRef]
- Rzymski, T.; Mikula, M.; Zylkiewicz, E.; Dreas, A.; Wiklik, K.; Golas, A.; Wojcik, K.; Masiejczyk, M.; Wrobel, A.; Dolata, I.; et al. Sel120-34a Is a Novel Cdk8 Inhibitor Active in Aml Cells with High Levels of Serine Phosphorylation of Stat1 and Stat5 Transactivation Domains. Oncotarget 2017, 8, 33779–33795. [Google Scholar] [CrossRef]
- Liang, J.; Chen, M.; Hughes, D.; Chumanevich, A.A.; Altilia, S.; Kaza, V.; Lim, C.U.; Kiaris, H.; Mythreye, K.; Pena, M.M.; et al. Cdk8 Selectively Promotes the Growth of Colon Cancer Metastases in the Liver by Regulating Gene Expression of Timp3 and Matrix Metalloproteinases. Cancer Res. 2018, 78, 6594–6606. [Google Scholar] [CrossRef] [PubMed]
- Firestein, R.; Bass, A.J.; Kim, S.Y.; Dunn, I.F.; Silver, S.J.; Guney, I.; Freed, E.; Ligon, A.H.; Vena, N.; Ogino, S.; et al. Cdk8 Is a Colorectal Cancer Oncogene That Regulates Beta-Catenin Activity. Nature 2008, 455, 547–551. [Google Scholar] [CrossRef]
- Morris, E.J.; Ji, J.Y.; Yang, F.; Di Stefano, L.; Herr, A.; Moon, N.S.; Kwon, E.J.; Haigis, K.M.; Naar, A.M.; Dyson, N.J. E2f1 Represses Beta-Catenin Transcription and Is Antagonized by Both Prb and Cdk8. Nature 2008, 455, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Alarcon, C.; Zaromytidou, A.I.; Xi, Q.; Gao, S.; Yu, J.; Fujisawa, S.; Barlas, A.; Miller, A.N.; Manova-Todorova, K.; Macias, M.J.; et al. Nuclear Cdks Drive Smad Transcriptional Activation and Turnover in Bmp and Tgf-Beta Pathways. Cell 2009, 139, 757–769. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Liang, J.; Ji, H.; Yang, Z.; Altilia, S.; Hu, B.; Schronce, A.; McDermott, M.S.J.; Schools, G.P.; Lim, C.U.; et al. Cdk8/19 Mediator Kinases Potentiate Induction of Transcription by Nfkappab. Proc. Natl. Acad. Sci. USA 2017, 114, 10208–10213. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Nakao, A.; Shinozuka, T.; Shimada, K.; Matsui, S.; Oizumi, K.; Yano, K.; Ohata, K.; Nakai, D.; Nagai, Y.; et al. Discovery and Structure-Activity Relationship of Thienopyridine Derivatives as Bone Anabolic Agents. Bioorg. Med. Chem. 2013, 21, 1628–1642. [Google Scholar] [CrossRef]
- Amirhosseini, M.; Bernhardsson, M.; Lang, P.; Andersson, G.; Flygare, J.; Fahlgren, A. Cyclin-Dependent Kinase 8/19 Inhibition Suppresses Osteoclastogenesis by Downregulating Rank and Promotes Osteoblast Mineralization and Cancellous Bone Healing. J. Cell Physiol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome Engineering Using the Crispr-Cas9 System. Nat. Protoc. 2013, 8, 2281–2308. [Google Scholar] [CrossRef]
- Wilson, A.A.; Kwok, L.W.; Porter, E.L.; Payne, J.G.; McElroy, G.S.; Ohle, S.J.; Greenhill, S.R.; Blahna, M.T.; Yamamoto, K.; Jean, J.C.; et al. Lentiviral Delivery of Rnai for in Vivo Lineage-Specific Modulation of Gene Expression in Mouse Lung Macrophages. Mol. Ther. 2013, 21, 825–833. [Google Scholar] [CrossRef]
- Shi, J.; Manolikakes, G.; Yeh, C.H.; Guerrero, C.A.; Shenvi, R.A.; Shigehisa, H.; Baran, P.S. Scalable Synthesis of Cortistatin a and Related Structures. J. Am. Chem. Soc. 2011, 133, 8014–8027. [Google Scholar] [CrossRef]
- Ha, K.H.; Byun, M.S.; Choi, J.; Jeong, J.; Lee, K.J.; Jue, D.M. N-Tosyl-L-Phenylalanine Chloromethyl Ketone Inhibits Nf-Kappab Activation by Blocking Specific Cysteine Residues of Ikappab Kinase Beta and P65/Rela. Biochemistry 2009, 48, 7271–7278. [Google Scholar] [CrossRef] [PubMed]
- Zeidner, J.F.; Karp, J.E. Clinical Activity of Alvocidib (Flavopiridol) in Acute Myeloid Leukemia. Leuk. Res. 2015, 39, 1312–1318. [Google Scholar] [CrossRef] [PubMed]
- Criscitiello, C.; Viale, G.; Esposito, A.; Curiglia, G. Dinaciclib for the Treatment of Breast Cancer. Expert Opin. Investig. Drugs 2014, 23, 1305–1312. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.; Kwiatkowski, N.P.; Zhang, T.; Nabet, B.; Xu, M.; Liang, Y.; Quan, C.; Wang, J.; Hao, M.; Palakurthi, S.; et al. Targeting Myc Dependency in Ovarian Cancer through Inhibition of Cdk7 and Cdk12/13. eLife 2018, 7, e39030. [Google Scholar] [CrossRef] [PubMed]
- Fry, D.W.; Harvey, P.J.; Keller, P.R.; Elliott, W.L.; Meade, M.; Trachet, E.; Albassam, M.; Zheng, X.; Leopold, W.R.; Pryer, N.K.; et al. Specific Inhibition of Cyclin-Dependent Kinase 4/6 by Pd 0332991 and Associated Antitumor Activity in Human Tumor Xenografts. Mol. Cancer Ther. 2004, 3, 1427–1438. [Google Scholar]
- Takada, Y.; Aggarwal, B.B. Flavopiridol Inhibits Nf-Kappab Activation Induced by Various Carcinogens and Inflammatory Agents through Inhibition of Ikappabalpha Kinase and P65 Phosphorylation: Abrogation of Cyclin D1, Cyclooxygenase-2, and Matrix Metalloprotease-9. J. Biol. Chem. 2004, 279, 4750–4759. [Google Scholar] [CrossRef]
- Chen, Y.; Germano, S.; Clements, C.; Samuel, J.; Shelmani, G.; Jayne, S.; Dyer, M.J.; Macip, S. Pro-Survival Signal Inhibition by Cdk Inhibitor Dinaciclib in Chronic Lymphocytic Leukaemia. Br. J. Haematol. 2016, 175, 641–651. [Google Scholar] [CrossRef]
- Amini, S.; Clavo, A.; Nadraga, Y.; Giordano, A.; Khalili, K.; Sawaya, B.E. Interplay between Cdk9 and Nf-Kappab Factors Determines the Level of Hiv-1 Gene Transcription in Astrocytic Cells. Oncogene 2002, 21, 5797–5803. [Google Scholar] [CrossRef]
- Hong, H.; Zeng, Y.; Jian, W.; Li, L.; Lin, L.; Mo, Y.; Liu, M.; Fang, S.; Xia, Y. Cdk7 Inhibition Suppresses Rheumatoid Arthritis Inflammation Via Blockage of Nf-Kappab Activation and Il-1beta/Il-6 Secretion. J. Cell Mol. Med. 2018, 22, 1292–1301. [Google Scholar]
- Henry, K.L.; Kellner, D.; Bajrami, B.; Anderson, J.E.; Beyna, M.; Bhisetti, G.; Cameron, T.; Capacci, A.G.; Bertolotti-Ciarlet, A.; Feng, J.; et al. Cdk12-Mediated Transcriptional Regulation of Noncanonical Nf-Kappab Components Is Essential for Signaling. Sci. Signal. 2018, 11, eaam8216. [Google Scholar] [CrossRef]
- Thoms, H.C.; Dunlop, M.G.; Stark, L.A. P38-Mediated Inactivation of Cyclin D1/Cyclin-Dependent Kinase 4 Stimulates Nucleolar Translocation of Rela and Apoptosis in Colorectal Cancer Cells. Cancer Res. 2007, 67, 1660–1669. [Google Scholar] [CrossRef] [PubMed]
- Thoms, H.C.; Dunlop, M.G.; Stark, L.A. Cdk4 Inhibitors and Apoptosis: A Novel Mechanism Requiring Nucleolar Targeting of Rela. Cell Cycle 2007, 6, 1293–1297. [Google Scholar] [CrossRef] [PubMed]
- Cee, V.J.; Chen, D.Y.; Lee, M.R.; Nicolaou, K.C. Cortistatin a Is a High-Affinity Ligand of Protein Kinases Rock, Cdk8, and Cdk11. Angew. Chem. Int. Ed. 2009, 48, 8952–8957. [Google Scholar] [CrossRef] [PubMed]
- Aoki, S.; Watanabe, Y.; Sanagawa, M.; Setiawan, A.; Kotoku, N.; Kobayashi, M. Cortistatins a, B, C, and D, Anti-Angiogenic Steroidal Alkaloids, from the Marine Sponge Corticium Simplex. J. Am. Chem. Soc. 2006, 128, 3148–3149. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Ji, H.; Porter, D.C.; Broude, E.V.; Roninson, I.B.; Chen, M. Characterizing CDK8/19 Inhibitors through a NFκB-Dependent Cell-Based Assay. Cells 2019, 8, 1208. https://doi.org/10.3390/cells8101208
Li J, Ji H, Porter DC, Broude EV, Roninson IB, Chen M. Characterizing CDK8/19 Inhibitors through a NFκB-Dependent Cell-Based Assay. Cells. 2019; 8(10):1208. https://doi.org/10.3390/cells8101208
Chicago/Turabian StyleLi, Jing, Hao Ji, Donald C. Porter, Eugenia V. Broude, Igor B. Roninson, and Mengqian Chen. 2019. "Characterizing CDK8/19 Inhibitors through a NFκB-Dependent Cell-Based Assay" Cells 8, no. 10: 1208. https://doi.org/10.3390/cells8101208
APA StyleLi, J., Ji, H., Porter, D. C., Broude, E. V., Roninson, I. B., & Chen, M. (2019). Characterizing CDK8/19 Inhibitors through a NFκB-Dependent Cell-Based Assay. Cells, 8(10), 1208. https://doi.org/10.3390/cells8101208