Function of Nr4a Orphan Nuclear Receptors in Proliferation, Apoptosis and Fuel Utilization Across Tissues
Abstract
:1. Introduction
2. Proliferation
2.1. Liver
2.1.1. Anti-Proliferation
2.1.2. Pro-Proliferation
2.2. Muscle
2.2.1. Anti-Proliferation
2.2.2. Pro-Proliferation
2.3. β-Cell
Pro-Proliferation
2.4. Immune System
2.4.1. Pro-Proliferation
2.4.2. Anti-Proliferation
2.5. Cancer
2.5.1. Promotes Proliferation
2.5.2. Inhibits Proliferation
2.5.3. Varied Results
2.5.4. Angiogenesis
2.6. Other Tissues of Note
2.6.1. Pro-Proliferation
2.6.2. Anti-Proliferation
2.6.3. Varied Results
3. Apoptosis
3.1. Intrinsic Apoptotic Pathway
3.1.1. Liver
3.1.2. β-Cell
3.1.3. Cancer
3.2. Extrinsic Apoptotic Pathway
3.2.1. Muscle
3.2.2. Immune System
3.2.3. Other
4. Fuel Utilization
4.1. Glucose Metabolism
4.1.1. Liver
4.1.2. Muscle
4.1.3. Adipose Tissue
4.1.4. β-cells
4.1.5. Immune System
4.1.6. Cancer
4.2. Lipid Metabolism
4.2.1. Liver
4.2.2. Muscle
4.2.3. Adipose Tissue
4.2.4. Cancer
4.3. Mitochondrial Function
4.3.1. Liver
4.3.2. Muscle
4.3.3. Adipose Tissue
4.3.4. β-Cells
4.3.5. Immune System
5. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
3-KCT3 | ketoacyl-CoA thiolase |
5-HT | 5-hydrovytryptamine |
ACDH | Acyl-CoA dehydrogenase |
Acox | acyl-CoA oxidase 1 |
ACSL | Long-chain-fatty-acid—CoA ligase |
Adcyap1 | Adenylate Cyclase Activating Polypeptide 1 |
AdipoR2 | Adiponectin Receptor 2 |
AF-2 | Activation function 2 |
Agl | amylo-1, 6-glucosidase, 4-alpha-glucanotransferase |
AKT | Protein kinase B |
Aldoa | Aldolase A |
Aldoc | Aldolase C |
Alo1 | D-arabinono-1,4-lactone oxidase |
ALP | Alprostadil |
AML | Acute Myeloid Leukemia |
ApoA5 | apolipoprotein A5 |
ATP | Adenosine triphosphate |
Atp5a1 | ATP synthase F1 subunit alpha |
Atp5c1 | ATP Synthase F1 Subunit Gamma |
Atp5f1 | ATP synthase subunit b |
Atp5h | ATP Synthase Subunit D |
Bcl-2 | B-cell lymphoma 2 |
Bpgm | Bisphosphoglycerate Mutase |
BrdU | Bromodeoxyuridine |
cAMP | Cyclic adenosine monophosphate |
CAR | chimeric antigen receptors |
CBFA2T3 | CBFA2/RUNX1 Partner Transcriptional Co-Repressor 3 |
CD36 | Cluster of differentiation 36 |
CD8 | Cluster of differentiation 8 |
C-DIM12 | 1,1-bis(3’-indolyl)-1-(p-chlorophenyl) methane |
Cdk2 | Cyclin-dependent kinase 2 |
Cdk4 | Cyclin-dependent kinase 4 |
Cdk5r1 | Cyclin-dependent kinase 5 activator 1 |
CEBPα | CCAAT Enhancer Binding Protein Alpha |
C-flar | CASP8 And FADD Like Apoptosis Regulator |
ChIP | Chromatin immunoprecipitation |
CHOP | C/EBP homologous protein |
cIAP2 | Baculoviral IAP repeat-containing protein3 |
CLACOPD | Conjugated linoleic acidChronic Obstructive Pulmonary Disease |
Cox1 | Cyclooxygenase 1 |
Cox6a1 | Cytochrome C Oxidase Subunit 6A1 |
Cox6b2 | Cytochrome C Oxidase Subunit 6B2 |
Cox7b | Cytochrome C Oxidase Subunit 7B |
CPT1a | carnitine palmitoyltransferase 1A |
Cpt1m | Carnitine Palmitoyltransferase 1B |
CRAT | Carnitine O-Acetyltransferase |
CSF1R | Colony Stimulating Factor 1 Receptor |
CSMF | Chondrosarcoma, Extraskeletal Myxoid, Fused To EWS |
Csn-b | Cytosporone B |
Dlst | Dihydrolipolylysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex |
DBD | DNA binding domain |
DHE | dihydroergotamine |
DIM-C-pPhCN | 1,1-bis(3’-indolyl)-1-(p-cyanophenyl) methane Pin1 |
DIM-C-pPhCO2Me | 1,1-bis(3′-indolyl)-1-(p-carboxymethylphenyl) methane |
DIM-C-pPhOCH3 | 1,1-bis(3′-indolyl)-1-(p-anisyl) methane |
DIM-C-pPhOH | 1,1-Bis(3’-indolyl)-1-(p-hydroxyphenyl) methane |
DNA | deoxyribonucleic acid |
DNA-Pkcs | DNA-dependent protein kinase |
DR5 | Death receptor 5 |
DUSP14 | Dual specificity protein phosphatase 14 |
DUSP2 | Dual specificity protein phosphatase 2 |
E2F | E2 family of transcription factors |
E2F1 | E2 transcription factor 1 |
ECH | Enoyl-CoA hydratase |
EDL | ETS-domain lacking |
Ehhadh | Enoyl-CoA Hydratase And 3-Hydroxyacyl CoA Dehydrogenase |
EMSA | Electrophoretic mobility shift assay |
Eno1 | Enolase 1 |
Eno3 | Enolase 3 |
ER | Endoplasmic reticulum |
ERK1/2 | Extracellular signal-regulated kinases |
ETC | Electron transport Chain |
Fabp2 | Fatty Acid Binding Protein 2 |
Fabp4 | Fatty Acid Binding Protein 4 |
FADH2 | Flavin adenine dinucleotide |
FAS | apoptosis antigen 1 |
FASL | Fas ligand |
Fbp1 | Fructose-Bisphosphatase 1 |
Fbp2 | Fructose-Bisphosphatase 2 |
Fh | Fumarate hydratase |
G6Pase | Glucose 6-phosphatase |
G6pc | Glucose-6-Phosphatase Catalytic Subunit |
GAPDH | Glyceraldehyde 3-phosphate dehydrogenase |
GATA2 | GATA-binding factor 2 |
Gbe1 | 1,4-Alpha-Glucan Branching Enzyme 1 |
GDNF | Glial cell line-derived neurotrophic factor |
GFP | Green fluorescent protein |
Glut1 | Glucose transporter 1 |
Glut2 | Glucose transporter 2 |
Glut4 | Glucose transporter 4 |
Gpam | Glycerol-3-Phosphate Acyltransferase |
Gyk | Glycerol kinase |
Gys1 | Glycogen synthase 1 |
HDL | High-density lipoproteins |
Hif1-α | Hypoxia Inducible Factor 1 Subunit Alpha |
HK1 | Hexokinase 1 |
HK2 | Hexokinase 2 |
HSC | Hepatic stellate cells |
HUC-F2 | Human umbilical cord fibroblast |
H2O2 | Hydrogen peroxide |
IAP | inhibitor of apoptosis |
Idh3 | Isocitrate dehydrogenase (NAD(+)) 3 catalytic subunit |
Idh3a | Isocitrate dehydrogenase (NAD(+)) 3 catalytic subunit |
Idh3g | Isocitrate Dehydrogenase (NAD(+)) 3 Gamma |
IL-1β | Interleukin 1 Beta |
IL-6 | Interleukin 6 |
Irf4 | Interferon regulatory factor 4 |
JNK | c-Jun N-terminal kinases |
JNK1 | c-Ju N-terminal kinase 1 |
JunB | Transcription Factor Jun-B |
Ki67 | Antigen Ki-67 |
Ku-80 | X-Ray Repair Cross Complementing 5 |
Ldha | Lactate dehydrogenase A |
LDL | Low-density lipids |
Lipin1 | Phosphatidate Phosphatase LPIN1 |
Lpl | Lipoprotein lipase |
LPS | lipopolysaccharide |
MAPK | Mitogen-activated protein kinase |
Mdh | Malate dehydrogenase |
MIN6 | Mouse Insulinoma 6 |
MINOR | Mitogen-Induced Nuclear Orphan Receptor |
mRNA | Messenger RNA |
MTT | (3-(4, 5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide |
Myc | MYC Proto-Oncogene, BHLH Transcription Factor |
NAD+ | nicotinamide adenine dinucleotide |
NADH | nicotinamide adenine dinucleotide |
NADH-TR | nicotinamide adenine dinucleotide tetrazolium reductase |
NBRE | Nerve growth factor IB response element |
Ndufa11 | NADH:Ubiquinone Oxidoreductase Subunit A11 |
Ndufa5 | NADH:Ubiquinone Oxidoreductase Subunit A5 |
Ndufa6 | NADH:Ubiquinone Oxidoreductase Subunit A6 |
Ndufa8 | NADH:Ubiquinone Oxidoreductase Subunit A8 |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
NGFI-B | Nuclear Receptor Subfamily 4 Group A Member 1 |
NOR1 | Nuclear Receptor Subfamily 4 Group A Member 3 |
NOT | Nuclear Receptor Subfamily 4 Group A Member 2 |
Nr4a1 | Nuclear Receptor Subfamily 4 Group A Member 1 |
Nr4a2 | Nuclear Receptor Subfamily 4 Group A Member 2 |
Nr4a3 | Nuclear Receptor Subfamily 4 Group A Member 3 |
NTD | N-Terminal Domain |
Nur77 | Nuclear Receptor Subfamily 4 Group A Member 1 |
NuRE | NGFIB Response Element-AAAGGTCA |
Nurr1 | Nuclear Receptor Subfamily 4 Group A Member 2 |
Ogdh | Oxoglutarate Dehydrogenase |
O-GlcNAcylation | O-Linked β-N-acetylglucosamineylation |
OxPhox | Oxidative Phosphorylation |
p21 | Cyclin-dependent kinase inhibitor 1 |
p27 | Cyclin-dependent kinase inhibitor 1B |
p38 | Mitogen-Activated Protein Kinase 14 |
p53 | Tumor protein p53 |
PA | Palmitic acid |
PARP-1 | Poly(ADP-Ribose) Polymerase 1 |
PC | Pyruvate carboxylase |
PCNA | Proliferating cell nuclear antigen |
PDCD1 | Programmed Cell Death 1 |
PDGF | Platelet-derived growth factor |
Pdh | Pyruvate Dehydrogenase E1 Alpha 1 Subunit |
Pdk1 | Pyruvate Dehydrogenase Kinase 1 |
Pdp1c | Pyruvate Dehydrogenase Phosphatase Catalytic Subunit 2 |
Pdp1r | Pyruvate Dehydrogenase Phosphatase Catalytic Subunit 1 |
PEPCK | Phosphoenolpyruvate Carboxykinase |
Pfk-1 | Phosphofructokinase 1 |
Pim-1 | Proto-Oncogene, Serine/Threonine Kinase |
PKB | Protein kinase B |
PU.1 | Hematopoietic Transcription Factor PU.1 |
GADPH | Glyceraldehyde-3-Phosphate Dehydrogenase |
PGAM | Phosphoglycerate Mutase 2 |
PGC-1α | PPARG Coactivator 1 Alpha |
PGC-1β | PPARG Coactivator 1 beta |
Pgc1a | PPARG Coactivator 1 Alpha |
Pgk1 | Phosphoglycerate Kinase 1 |
PHKG1 | Phosphorylase Kinase Catalytic Subunit Gamma 1 |
Pin1 | Peptidylprolyl Cis/Trans Isomerase, NIMA-Interacting 1 |
Pkm | Pyruvate Kinase M1/2 |
PPARγ | Peroxisome Proliferator Activated Receptor Gamma |
PPP1R1A | Protein Phosphatase 1 Regulatory Inhibitor Subunit 1A |
pRB | Retinoblastoma protein |
PTM | Post-translational modifications |
PTMs | Post-translational modifications |
pVHL | von Hippel–Lindau tumor suppressor |
Pygm | Glycogen Phosphorylase, Muscle Associated |
RNA | Ribonucleic acid |
ROS | Reactive oxygen species |
RUNX1 | Runt-related transcription factor 1 |
Scs | Succinate-CoA Ligase ADP-Forming Beta Subunit |
Sdhb | Succinate Dehydrogenase Complex Iron Sulfur Subunit B |
shRNA | small hairpin RNA |
siRNA | small interfering RNA |
SMAD3 | Mothers against decapentaplegic homolog 3 |
SOD1 | Superoxide dismutase |
SREBP1c | Sterol Regulatory Element Binding Transcription Factor 1 |
STAT3 | Signal transducer and activator of transcription 3 |
Stbd1 | Starch Binding Domain 1 |
STZ | streptozotocin |
TCA | Tricarboxylic acid cycle |
TG | Thapsigargin |
TGF-β1 | Transforming growth factor beta-1 |
TGFβ3 | Transforming growth factor beta-3 |
TINUR | Transcriptionally-Inducible Nuclear Receptor |
TNF | Tumor Necrosis Factor |
TPβ | Hydroxyacyl-CoA Dehydrogenase Trifunctional Multienzyme Complex Subunit Beta |
TRAIL | TNF-related apoptosis-inducing ligand |
TRAPγ | TRAP-Complex Gamma Subunit |
Treg | Regulatory T Cell |
TUNEL | Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling |
TXNDC5 | Thioredoxin Domain-Containing Protein 5 |
Ube2c | Ubiquitin-conjugating enzyme E2 C |
Ucp1 | Uncoupling Protein 1 |
UCP2 | Uncoupling Protein 2 |
UCP3 | Uncoupling Protein 3 |
Uqcr2 | Ubiquinol-Cytochrome C Reductase Core Protein 2 |
VCAM1 | Vascular cell adhesion protein 1 |
VEGF | Vascular endothelial growth factor |
VEGF-A | Vascular endothelial growth factor A |
VSMC | Vascular smooth muscle cell |
WT1 | Wilms tumor |
References
- Okabe, T.; Takayanagi, R.; Imasaki, K.; Haji, M.; Nawata, H.; Watanabe, T. cDNA cloning of a NGFI-B/nur77-related transcription factor from an apoptotic human T cell line. J. Immunol. 1995, 154, 3871–3879. [Google Scholar]
- Saucedo-Cardenas, O.; Kardon, R.; Ediger, T.R.; Lydon, J.P.; Conneely, O.M. Cloning and structural organization of the gene encoding the murine nuclear receptor transcription factor, NURR1. Gene 1997, 187, 135–139. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Q.; Liu, W.; Liu, F.; Ji, A.; Li, Y. The Orphan Nuclear Receptor 4A1: A Potential New Therapeutic Target for Metabolic Diseases. J. Diabetes Res. 2018, 2018, 9363461. [Google Scholar] [CrossRef] [PubMed]
- de Vera, I.M.; Giri, P.K.; Munoz-Tello, P.; Brust, R.; Fuhrmann, J.; Matta-Camacho, E.; Shang, J.; Campbell, S.; Wilson, H.D.; Granados, J.; et al. Identification of a Binding Site for Unsaturated Fatty Acids in the Orphan Nuclear Receptor Nurr1. Acs Chem. Biol. 2016, 11, 1795–1799. [Google Scholar] [CrossRef] [PubMed]
- de Vera, I.M.S.; Munoz-Tello, P.; Zheng, J.; Dharmarajan, V.; Marciano, D.P.; Matta-Camacho, E.; Giri, P.K.; Shang, J.; Hughes, T.S.; Rance, M.; et al. Defining a Canonical Ligand-Binding Pocket in the Orphan Nuclear Receptor Nurr1. Structure 2019, 27, 66.e65–77.e65. [Google Scholar] [CrossRef]
- Vinayavekhin, N.; Saghatelian, A. Discovery of a protein-metabolite interaction between unsaturated fatty acids and the nuclear receptor Nur77 using a metabolomics approach. J. Am. Chem. Soc. 2011, 133, 17168–17171. [Google Scholar] [CrossRef]
- Wilson, T.E.; Fahrner, T.J.; Johnston, M.; Milbrandt, J. Identification of the DNA binding site for NGFI-B by genetic selection in yeast. Science 1991, 252, 1296–1300. [Google Scholar] [CrossRef]
- Wilson, T.E.; Fahrner, T.J.; Milbrandt, J. The orphan receptors NGFI-B and steroidogenic factor 1 establish monomer binding as a third paradigm of nuclear receptor-DNA interaction. Mol. Cell Biol. 1993, 13, 5794–5804. [Google Scholar] [CrossRef]
- Maira, M.; Martens, C.; Philips, A.; Drouin, J. Heterodimerization between members of the Nur subfamily of orphan nuclear receptors as a novel mechanism for gene activation. Mol. Cell Biol. 1999, 19, 7549–7557. [Google Scholar] [CrossRef]
- Close, A.F.; Rouillard, C.; Buteau, J. NR4A orphan nuclear receptors in glucose homeostasis: A minireview. Diabetes Metab. 2013, 39, 478–484. [Google Scholar] [CrossRef]
- Gissendanner, C.R.; Kelley, K.; Nguyen, T.Q.; Hoener, M.C.; Sluder, A.E.; Maina, C.V. The Caenorhabditis elegans NR4A nuclear receptor is required for spermatheca morphogenesis. Dev. Biol. 2008, 313, 767–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forman, B.M.; Umesono, K.; Chen, J.; Evans, R.M. Unique response pathways are established by allosteric interactions among nuclear hormone receptors. Cell 1995, 81, 541–550. [Google Scholar] [CrossRef] [Green Version]
- Pearen, M.A.; Muscat, G.E. Minireview: Nuclear hormone receptor 4A signaling: Implications for metabolic disease. Mol. Endocrinol. 2010, 24, 1891–1903. [Google Scholar] [CrossRef] [PubMed]
- Milbrandt, J. Nerve growth factor induces a gene homologous to the glucocorticoid receptor gene. Neuron 1988, 1, 183–188. [Google Scholar] [CrossRef]
- Law, S.W.; Conneely, O.M.; DeMayo, F.J.; O’Malley, B.W. Identification of a new brain-specific transcription factor, NURR1. Mol. Endocrinol. 1992, 6, 2129–2135. [Google Scholar] [CrossRef]
- Ohkura, N.; Ito, M.; Tsukada, T.; Sasaki, K.; Yamaguchi, K.; Miki, K. Structure, mapping and expression of a human NOR-1 gene, the third member of the Nur77/NGFI-B family. Biochim. Biophys. Acta. 1996, 1308, 205–214. [Google Scholar] [CrossRef]
- Bookout, A.L.; Jeong, Y.; Downes, M.; Yu, R.T.; Evans, R.M.; Mangelsdorf, D.J. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 2006, 126, 789–799. [Google Scholar] [CrossRef]
- Mullican, S.E.; Zhang, S.; Konopleva, M.; Ruvolo, V.; Andreeff, M.; Milbrandt, J.; Conneely, O.M. Abrogation of nuclear receptors Nr4a3 and Nr4a1 leads to development of acute myeloid leukemia. Nat. Med. 2007, 13, 730–735. [Google Scholar] [CrossRef]
- Chao, L.C.; Bensinger, S.J.; Villanueva, C.J.; Wroblewski, K.; Tontonoz, P. Inhibition of adipocyte differentiation by Nur77, Nurr1 and Nor1. Mol. Endocrinol. 2008, 22, 2596–2608. [Google Scholar] [CrossRef]
- Chao, L.C.; Wroblewski, K.; Zhang, Z.; Pei, L.; Vergnes, L.; Ilkayeva, O.R.; Ding, S.Y.; Reue, K.; Watt, M.J.; Newgard, C.B.; et al. Insulin resistance and altered systemic glucose metabolism in mice lacking Nur77. Diabetes 2009, 58, 2788–2796. [Google Scholar] [CrossRef]
- Pearen, M.A.; Myers, S.A.; Raichur, S.; Ryall, J.G.; Lynch, G.S.; Muscat, G.E. The orphan nuclear receptor, NOR-1, a target of beta-adrenergic signaling, regulates gene expression that controls oxidative metabolism in skeletal muscle. Endocrinology 2008, 149, 2853–2865. [Google Scholar] [CrossRef] [PubMed]
- Tessem, J.S.; Moss, L.G.; Chao, L.C.; Arlotto, M.; Lu, D.; Jensen, M.V.; Stephens, S.B.; Tontonoz, P.; Hohmeier, H.E.; Newgard, C.B. Nkx6.1 regulates islet beta-cell proliferation via Nr4a1 and Nr4a3 nuclear receptors. Proc. Natl. Acad. Sci. USA 2014, 111, 5242–5247. [Google Scholar] [CrossRef] [PubMed]
- Myers, S.A.; Eriksson, N.; Burow, R.; Wang, S.C.; Muscat, G.E. Beta-adrenergic signaling regulates NR4A nuclear receptor and metabolic gene expression in multiple tissues. Mol. Cell Endocrinol. 2009, 309, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, M.A.; Muscat, G.E. The NR4A subgroup: Immediate early response genes with pleiotropic physiological roles. Nucl. Recept. Signal 2006, 4, e002. [Google Scholar] [CrossRef]
- Pawlak, A.; Strzadala, L.; Kalas, W. Non-genomic effects of the NR4A1/Nur77/TR3/NGFIB orphan nuclear receptor. Steroids 2015, 95, 1–6. [Google Scholar] [CrossRef]
- Hu, Y.; Zhan, Q.; Liu, H.-X.; Chau, T.; Li, Y.; Yvonne Wan, Y.-J. Accelerated Partial Hepatectomy–Induced Liver Cell Proliferation Is Associated with Liver Injury in Nur77 Knockout Mice. Am. J. Pathol. 2014, 184, 3272–3283. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Yi, B.; Chen, M.; Qi, J.; Yin, Y.; Lu, X.; Jasmin, J.-F.; Sun, J. Nur77 Suppresses Pulmonary Artery Smooth Muscle Cell Proliferation Through Inhibition of the STAT3/Pim-1/NFAT Pathway. Am. J. Respir. Cell Mol. Biol. 2013, 50. [Google Scholar] [CrossRef]
- Chen, P.; Li, J.; Huo, Y.; Lu, J.; Wan, L.; Li, B.; Gan, R.; Guo, C. Orphan nuclear receptor NR4A2 inhibits hepatic stellate cell proliferation through MAPK pathway in liver fibrosis. PeerJ 2015, 3, e1518. [Google Scholar] [CrossRef]
- Chen, P.; Li, J.; Huo, Y.; Lu, J.; Wan, L.; Yang, Q.; Huang, J.; Gan, R.; Guo, C. Adenovirus-mediated expression of orphan nuclear receptor NR4A2 targeting hepatic stellate cell attenuates liver fibrosis in rats. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef]
- de Waard, V.; Arkenbout, E.K.; Vos, M.; Mocking, A.I.; Niessen, H.W.; Stooker, W.; de Mol, B.A.; Quax, P.H.; Bakker, E.N.; VanBavel, E.; et al. TR3 nuclear orphan receptor prevents cyclic stretch-induced proliferation of venous smooth muscle cells. Am. J. Pathol. 2006, 168, 2027–2035. [Google Scholar] [CrossRef]
- Arkenbout, E.K.; de Waard, V.; van Bragt, M.; van Achterberg, T.A.; Grimbergen, J.M.; Pichon, B.; Pannekoek, H.; de Vries, C.J. Protective function of transcription factor TR3 orphan receptor in atherogenesis: Decreased lesion formation in carotid artery ligation model in TR3 transgenic mice. Circulation 2002, 106, 1530–1535. [Google Scholar] [CrossRef] [PubMed]
- Bonta, P.I.; Pols, T.W.H.; van Tiel, C.M.; Vos, M.; Arkenbout, E.K.; Rohlena, J.; Koch, K.T.; de Maat, M.P.M.; Tanck, M.W.T.; de Winter, R.J.; et al. Nuclear Receptor Nurr1 Is Expressed In and Is Associated With Human Restenosis and Inhibits Vascular Lesion Formation In Mice Involving Inhibition of Smooth Muscle Cell Proliferation and Inflammation. Circulation 2010, 121, 2023–2032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nomiyama, T.; Nakamachi, T.; Gizard, F.; Heywood, E.B.; Jones, K.L.; Ohkura, N.; Kawamori, R.; Conneely, O.M.; Bruemmer, D. The NR4A Orphan Nuclear Receptor NOR1 Is Induced by Platelet-derived Growth Factor and Mediates Vascular Smooth Muscle Cell Proliferation. J. Biol. Chem. 2006, 281, 33467–33476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.-G.; Lei, W.; Li, C.; Zeng, D.-X.; Huang, J.-A. Neuron-derived orphan receptor 1 promoted human pulmonary artery smooth muscle cells proliferation. Exp. Lung Res. 2015, 41, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Draney, C.; Hobson, A.E.; Grover, S.G.; Jack, B.O.; Tessem, J.S. Cdk5r1 Overexpression Induces Primary beta-Cell Proliferation. J. Diabetes Res. 2016, 2016, 6375804. [Google Scholar] [CrossRef] [PubMed]
- Nowyhed, H.N.; Huynh, T.R.; Thomas, G.D.; Blatchley, A.; Hedrick, C.C. Cutting Edge: The Orphan Nuclear Receptor Nr4a1 Regulates CD8+ T Cell Expansion and Effector Function through Direct Repression of Irf4. J. Immunol. 2015, 195, 3515–3519. [Google Scholar] [CrossRef]
- Tel-Karthaus, N.; Kers-Rebel, E.D.; Looman, M.W.; Ichinose, H.; de Vries, C.J.; Ansems, M. Nuclear Receptor Nur77 Deficiency Alters Dendritic Cell Function. Front. Immunol. 2018, 9. [Google Scholar] [CrossRef]
- Ashraf, S.; Hegazy, Y.K.; Harmancey, R. Nuclear receptor subfamily 4 group A member 2 inhibits activation of ERK signaling and cell growth in response to β-adrenergic stimulation in adult rat cardiomyocytes. Am. J. Physiol. Cell Physiol. 2019, 317, C513–C524. [Google Scholar] [CrossRef]
- Qing, H.; Liu, Y.; Zhao, Y.; Aono, J.; Jones, K.L.; Heywood, E.B.; Howatt, D.; Binkley, C.M.; Daugherty, A.; Liang, Y.; et al. Deficiency of the NR4A Orphan Nuclear Receptor NOR1 in Hematopoietic Stem Cells Accelerates Atherosclerosis. Stem Cells 2014, 32, 2419–2429. [Google Scholar] [CrossRef] [Green Version]
- Freire, P.R.; Conneely, O.M. NR4A1 and NR4A3 restrict HSC proliferation via reciprocal regulation of C/EBPalpha and inflammatory signaling. Blood 2018, 131, 1081–1093. [Google Scholar] [CrossRef]
- Duren, R.P.; Boudreaux, S.P.; Conneely, O.M. Genome Wide Mapping of NR4A Binding Reveals Cooperativity with ETS Factors to Promote Epigenetic Activation of Distal Enhancers in Acute Myeloid Leukemia Cells. PLoS ONE 2016, 11, e0150450. [Google Scholar] [CrossRef] [PubMed]
- Boudreaux, S.P.; Ramirez-Herrick, A.M.; Duren, R.P.; Conneely, O.M. Genome-wide profiling reveals transcriptional repression of MYC as a core component of NR4A tumor suppression in acute myeloid leukemia. Oncogenesis 2012, 1, e19. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Lo, J.H.; Kim, J.-Y.; Marsh, E.E.; Kim, J.J.; Ghosh, A.K.; Bulun, S.; Chakravarti, D. Expression Profiling of Nuclear Receptors Identifies Key Roles of NR4A Subfamily in Uterine Fibroids. Mol. Endocrinol. 2013, 27, 726–740. [Google Scholar] [CrossRef] [Green Version]
- Hedrick, E.; Lee, S.-O.; Kim, G.; Abdelrahim, M.; Jin, U.-H.; Safe, S.; Abudayyeh, A. Nuclear Receptor 4A1 (NR4A1) as a Drug Target for Renal Cell Adenocarcinoma. PLoS ONE 2015, 10, e0128308. [Google Scholar] [CrossRef]
- Deutsch, A.J.A.; Rinner, B.; Pichler, M.; Prochazka, K.; Pansy, K.; Bischof, M.; Fechter, K.; Hatzl, S.; Feichtinger, J.; Wenzl, K.; et al. NR4A3 Suppresses Lymphomagenesis through Induction of Proapoptotic Genes. Cancer Res. 2017, 77, 2375–2386. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Liu, W.; Wang, Q.; Li, Q.; Wang, H.; Wang, J.; Teng, T.; Chen, M.; Ji, A.; Li, Y. New Drug Candidate Targeting the 4A1 Orphan Nuclear Receptor for Medullary Thyroid Cancer Therapy. Molecules 2018, 565. [Google Scholar] [CrossRef]
- Ji, L.; Gong, C.; Ge, L.; Song, L.; Chen, F.; Jin, C.; Zhu, H.; Zhou, G. Orphan nuclear receptor Nurr1 as a potential novel marker for progression in human pancreatic ductal adenocarcinoma. Exp. Ther. Med. 2016, 13, 551–559. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Sun, L.; Luo, W.; Li, M.; Coy, D.H.; Yu, L.; Yu, W. Activated Notch signaling augments cell growth in hepatocellular carcinoma via up-regulating the nuclear receptor NR4A2. Oncotarget 2017, 8. [Google Scholar] [CrossRef]
- Llopis, S.; Singleton, B.; Duplessis, T.; Carrier, L.; Rowan, B.; Williams, C. Dichotomous roles for the orphan nuclear receptor NURR1 in breast cancer. BMC Cancer 2013, 13. [Google Scholar] [CrossRef]
- Zhao, D.; Desai, S.; Zeng, H. VEGF stimulates PKD-mediated CREB-dependent orphan nuclear receptor Nurr1 expression: Role in VEGF-induced angiogenesis. Int. J. Cancer 2010, 128, 2602–2612. [Google Scholar] [CrossRef]
- Eger, G.; Papadopoulos, N.; Lennartsson, J.; Heldin, C.-H. NR4A1 Promotes PDGF-BB-Induced Cell Colony Formation in Soft Agar. PLoS ONE 2014, 9, e109047. [Google Scholar] [CrossRef] [PubMed]
- Vacca, M.; Murzilli, S.; Salvatore, L.; Di Tullio, G.; D’Orazio, A.; Lo Sasso, G.; Graziano, G.; Pinzani, M.; Chieppa, M.; Mariani–Costantini, R.; et al. Neuron-Derived Orphan Receptor 1 Promotes Proliferation of Quiescent Hepatocytes. Gastroenterology 2013, 144, 1518–1529. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Cai, Z.; Cui, M.; Nie, P.; Sun, Z.H.E.; Sun, S.; Chu, S.; Wang, X.; Hu, L.; Yi, J.; et al. The orphan nuclear receptor Nur77 inhibits low shear stress-induced carotid artery remodeling in mice. Int. J. Mol. Med. 2015, 36, 1547–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.-g.; Li, C.; Lei, W.; Jiang, J.-H.; Huang, J.-a.; Zeng, D.-x. The association of neuron-derived orphan receptor 1 with pulmonary vascular remodeling in COPD patients. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 1177–1186. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tai, H.H. Activation of thromboxane A2 receptors induces orphan nuclear receptor Nurr1 expression and stimulates cell proliferation in human lung cancer cells. Carcinogenesis 2009, 30, 1606–1613. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.Z.; Li, L.; Wang, W.J.; Du, X.D.; Wen, Q.; He, J.P.; Zhao, B.X.; Li, G.D.; Zhou, W.; Xia, Y.; et al. Prolyl isomerase Pin1 stabilizes and activates orphan nuclear receptor TR3 to promote mitogenesis. Oncogene 2011, 31, 2876–2887. [Google Scholar] [CrossRef]
- Wu, H.; Bi, J.; Peng, Y.; Huo, L.; Yu, X.; Yang, Z.; Zhou, Y.; Qin, L.; Xu, Y.; Liao, L.; et al. Nuclear receptor NR4A1 is a tumor suppressor down-regulated in triple-negative breast cancer. Oncotarget 2017, 8. [Google Scholar] [CrossRef]
- Zeng, H.; Qin, L.; Zhao, D.; Tan, X.; Manseau, E.J.; Van Hoang, M.; Senger, D.R.; Brown, L.F.; Nagy, J.A.; Dvorak, H.F. Orphan nuclear receptor TR3/Nur77 regulates VEGF-A–induced angiogenesis through its transcriptional activity. J. Exp. Med. 2006, 203, 719–729. [Google Scholar] [CrossRef]
- Zu, G.; Yao, J.; Ji, A.; Ning, S.; Luo, F.; Li, Z.; Feng, D.; Rui, Y.; Li, Y.; Wang, G.; et al. Nurr1 promotes intestinal regeneration after ischemia/reperfusion injury by inhibiting the expression of p21 (Waf1/Cip1). J. Mol. Med. 2016, 95, 83–95. [Google Scholar] [CrossRef]
- Koenis, D.S.; Medzikovic, L.; Vos, M.; Beldman, T.J.; van Loenen, P.B.; van Tiel, C.M.; Hamers, A.A.J.; Otermin Rubio, I.; de Waard, V.; de Vries, C.J.M. Nur77 variants solely comprising the amino-terminal domain activate hypoxia-inducible factor-1alpha and affect bone marrow homeostasis in mice and humans. J. Biol. Chem. 2018, 293, 15070–15083. [Google Scholar] [CrossRef]
- Xiang, T.; Zhang, S.; Cheng, N.; Ge, S.; Wen, J.; Xiao, J.; Wu, X. Oxidored-nitro domain-containing protein 1 promotes liver fibrosis by activating the Wnt/β-catenin signaling pathway in vitro. Mol. Med. Rep. 2017, 16, 5050–5054. [Google Scholar] [CrossRef] [PubMed]
- Medzikovic, L.; van Roomen, C.; Baartscheer, A.; van Loenen, P.B.; de Vos, J.; Bakker, E.; Koenis, D.S.; Damanafshan, A.; Creemers, E.E.; Arkenbout, E.K.; et al. Nur77 protects against adverse cardiac remodelling by limiting neuropeptide Y signalling in the sympathoadrenal-cardiac axis. Cardiovasc. Res. 2018, 114, 1617–1628. [Google Scholar] [CrossRef] [PubMed]
- Sekiya, T.; Kashiwagi, I.; Yoshida, R.; Fukaya, T.; Morita, R.; Kimura, A.; Ichinose, H.; Metzger, D.; Chambon, P.; Yoshimura, A. Nr4a receptors are essential for thymic regulatory T cell development and immune homeostasis. Nat. Immunol. 2013, 14, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Prince, L.R.; Prosseda, S.D.; Higgins, K.; Carlring, J.; Prestwich, E.C.; Ogryzko, N.V.; Rahman, A.; Basran, A.; Falciani, F.; Taylor, P.; et al. NR4A orphan nuclear receptor family members, NR4A2 and NR4A3, regulate neutrophil number and survival. Blood 2017, 130, 1014–1025. [Google Scholar] [CrossRef]
- Nagaoka, M.; Yashiro, T.; Uchida, Y.; Ando, T.; Hara, M.; Arai, H.; Ogawa, H.; Okumura, K.; Kasakura, K.; Nishiyama, C. The Orphan Nuclear Receptor NR4A3 Is Involved in the Function of Dendritic Cells. J. Immunol. 2017, 199, 2958–2967. [Google Scholar] [CrossRef] [Green Version]
- Kolluri, S.K.; Bruey-Sedano, N.; Cao, X.; Lin, B.; Lin, F.; Han, Y.H.; Dawson, M.I.; Zhang, X.k. Mitogenic Effect of Orphan Receptor TR3 and Its Regulation by MEKK1 in Lung Cancer Cells. Mol. Cell. Biol. 2003, 23, 8651–8667. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Yang, J.-R.; Jia, Y.; Zhang, P.; Shen, L.; Li, X.-L.; Li, J.; Wang, B. Overexpression of NR4A1 is associated with tumor recurrence and poor survival in non-small-cell lung carcinoma. Oncotarget 2017, 8. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, J.; Zhong, W.; Zhao, Z.; Liu, Z. Long non-coding RNA BRE-AS1 represses non-small cell lung cancer cell growth and survival via up-regulating NR4A3. Arch. Biochem. Biophys. 2018, 660, 53–63. [Google Scholar] [CrossRef]
- Xie, X.; Lin, J.; Liu, J.; Huang, M.; Zhong, Y.; Liang, B.; Song, X.; Gu, S.; Chang, X.; Huang, D.; et al. A novel lncRNA NR4A1AS up-regulates orphan nuclear receptor NR4A1 expression by blocking UPF1-mediated mRNA destabilization in colorectal cancer. Clin. Sci. 2019, 133, 1457–1473. [Google Scholar] [CrossRef]
- Huang, M.; Xie, X.; Song, X.; Gu, S.; Chang, X.; Su, T.; Liang, B.; Huang, D. MiR-506 Suppresses Colorectal Cancer Development by Inhibiting Orphan Nuclear Receptor NR4A1 Expression. J. Cancer 2019, 10, 3560–3570. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Lin, Y.; Li, W.; Sun, Z.; Gao, W.; Zhang, H.; Xie, L.; Jiang, F.; Qin, B.; Yan, T.; et al. Regulation of Nur77 expression by β-catenin and its mitogenic effect in colon cancer cells. Faseb. J. 2011, 25, 192–205. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.D.; Yoon, K.; Chintharlapalli, S.; Abdelrahim, M.; Lei, P.; Hamilton, S.; Khan, S.; Ramaiah, S.K.; Safe, S. Nur77 Agonists Induce Proapoptotic Genes and Responses in Colon Cancer Cells through Nuclear Receptor-Dependent and Nuclear Receptor-Independent Pathways. Cancer Res. 2007, 67, 674–683. [Google Scholar] [CrossRef] [PubMed]
- Tenga, A.; Beard, J.A.; Takwi, A.; Wang, Y.-M.; Chen, T. Regulation of Nuclear Receptor Nur77 by miR-124. PLoS One 2016, 11, e0148433. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.O.; Abdelrahim, M.; Yoon, K.; Chintharlapalli, S.; Papineni, S.; Kim, K.; Wang, H.; Safe, S. Inactivation of the orphan nuclear receptor TR3/Nur77 inhibits pancreatic cancer cell and tumor growth. Cancer Res. 2010, 70, 6824–6836. [Google Scholar] [CrossRef]
- Ouyang, J.U.E.; Wu, M.; Huang, C.; Cao, L.I.; Li, G. Overexpression of oxidored-nitro domain containing protein 1 inhibits human nasopharyngeal carcinoma and cervical cancer cell proliferation and induces apoptosis: Involvement of mitochondrial apoptotic pathways. Oncol. Rep. 2012, 29, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Liu, M.; Sun, G.-C.; Yang, X.; Qian, Q.; Feng, S.; Mackey, L.V.; Coy, D.H. Notch Signaling Activation in Cervical Cancer Cells Induces Cell Growth Arrest with the Involvement of the Nuclear Receptor NR4A2. J. Cancer 2016, 7, 1388–1395. [Google Scholar] [CrossRef] [Green Version]
- Haller, F.; Bieg, M.; Will, R.; Körner, C.; Weichenhan, D.; Bott, A.; Ishaque, N.; Lutsik, P.; Moskalev, E.A.; Mueller, S.K.; et al. Enhancer hijacking activates oncogenic transcription factor NR4A3 in acinic cell carcinomas of the salivary glands. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef]
- Ramirez-Herrick, A.M.; Mullican, S.E.; Sheehan, A.M.; Conneely, O.M. Reduced NR4A gene dosage leads to mixed myelodysplastic/myeloproliferative neoplasms in mice. Blood 2011, 117, 2681–2690. [Google Scholar] [CrossRef] [Green Version]
- Boudreaux, S.P.; Duren, R.P.; Call, S.G.; Nguyen, L.; Freire, P.R.; Narayanan, P.; Redell, M.S.; Conneely, O.M. Drug targeting of NR4A nuclear receptors for treatment of acute myeloid leukemia. Leukemia 2019, 33, 52–63. [Google Scholar] [CrossRef]
- Mizushima, T.; Tirador, K.A.; Miyamoto, H. Androgen receptor activation: A prospective therapeutic target for bladder cancer? Expert Opin. Ther. Targets 2017, 21, 249–257. [Google Scholar] [CrossRef]
- Sun, L.; Zhou, R.; Dong, J.; Liu, S.; Jiao, Y.; Wang, L.; Hu, S.; He, P.; Liu, X.; Zhao, X.; et al. Lnc-NA inhibits proliferation and metastasis in endometrioid endometrial carcinoma through regulation of NR4A1. J. Cell. Mol. Med. 2019. [Google Scholar] [CrossRef] [PubMed]
- Hedrick, E.; Lee, S.-O.; Doddapaneni, R.; Singh, M.; Safe, S. Nuclear receptor 4A1 as a drug target for breast cancer chemotherapy. Endocr. Relat. Cancer 2015, 22, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Alexopoulou, A.N.; Leao, M.; Caballero, O.L.; Da Silva, L.; Reid, L.; Lakhani, S.R.; Simpson, A.J.; Marshall, J.F.; Neville, A.M.; Jat, P.S. Dissecting the transcriptional networks underlying breast cancer: NR4A1 reduces the migration of normal and breast cancer cell lines. Breast Cancer Res. 2010, 12. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, J.; Zou, Y.; Huang, G.-L.; He, Z.-W. Orphan Nuclear Receptor Nurr1 as a Potential Novel Marker for Progression in Human Prostate Cancer. Asian Pac. J. Cancer Prev. 2013, 14, 2023–2028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, Z.; Hou, Q.; Zhang, N.A.N.; Guo, L.; Zhang, X.; Ma, Y.; Zhou, Y. Overexpression of oxidored-nitro domain containing protein 1 induces growth inhibition and apoptosis in human prostate cancer PC3 cells. Oncol. Rep. 2014, 32, 1939–1946. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Zhao, D.; Xu, J.; Ren, X.; Terwilliger, E.F.; Parangi, S.; Lawler, J.; Dvorak, H.F.; Zeng, H. The vascular permeabilizing factors histamine and serotonin induce angiogenesis through TR3/Nur77 and subsequently truncate it through thrombospondin-1. Blood 2013, 121, 2154–2164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Yao, J.; Li, Z.; Zu, G.; Feng, D.; Li, Y.; Qasim, W.; Zhang, S.; Li, T.; Zeng, H.; et al. miR-381-3p knockdown improves intestinal epithelial proliferation and barrier function after intestinal ischemia/reperfusion injury by targeting nurr1. Cell Death Dis. 2018, 9. [Google Scholar] [CrossRef]
- Ding, L.-J.; Yan, G.-J.; Ge, Q.-Y.; Yu, F.; Zhao, X.; Diao, Z.-Y.; Wang, Z.-Q.; Yang, Z.-Z.; Sun, H.-X.; Hu, Y.-L. FSH acts on the proliferation of type A spermatogonia via Nur77 that increases GDNF expression in the Sertoli cells. FEBS Lett. 2011, 585, 2437–2444. [Google Scholar] [CrossRef] [Green Version]
- Mix, K.S.; McMahon, K.; McMorrow, J.P.; Walkenhorst, D.E.; Smyth, A.M.; Petrella, B.L.; Gogarty, M.; Fearon, U.; Veale, D.; Attur, M.G.; et al. Orphan nuclear receptor NR4A2 induces synoviocyte proliferation, invasion and matrix metalloproteinase 13 transcription. Arthritis Rheum. 2012, 64, 2126–2136. [Google Scholar] [CrossRef]
- Maijenburg, M.W.; Gilissen, C.; Melief, S.M.; Kleijer, M.; Weijer, K.; ten Brinke, A.; Roelofs, H.; Van Tiel, C.M.; Veltman, J.A.; de Vries, C.J.M.; et al. Nuclear Receptors Nur77 and Nurr1 Modulate Mesenchymal Stromal Cell Migration. Stem Cells Dev. 2012, 21, 228–238. [Google Scholar] [CrossRef]
- Vergaño-Vera, E.; Díaz-Guerra, E.; Rodríguez-Traver, E.; Méndez-Gómez, H.R.; Solís, Ó.; Pignatelli, J.; Pickel, J.; Lee, S.-H.; Moratalla, R.; Vicario-Abejón, C. Nurr1 blocks the mitogenic effect of FGF-2 and EGF, inducing olfactory bulb neural stem cells to adopt dopaminergic and dopaminergic-GABAergic neuronal phenotypes. Dev. Neurobiol. 2014, 75, 823–841. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-i.; Jeon, S.G.; Kim, K.A.; Kim, Y.J.; Song, E.J.; Choi, J.; Ahn, K.J.; Kim, C.-J.; Chung, H.Y.; Moon, M.; et al. The pharmacological stimulation of Nurr1 improves cognitive functions via enhancement of adult hippocampal neurogenesis. Stem Cell Res. 2016, 17, 534–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, W.; Cowie, A.; Wasfy, G.W.; Penn, L.Z.; Leber, B.; Andrews, D.W. Bcl-2 mutants with restricted subcellular location reveal spatially distinct pathways for apoptosis in different cell types. Embo. J. 1996, 15, 4130–4141. [Google Scholar] [CrossRef] [PubMed]
- Goldar, S.; Khaniani, M.S.; Derakhshan, S.M.; Baradaran, B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac. J. Cancer Prev. 2015, 16, 2129–2144. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.Y.; Kim, H.; Cho, E.J.; Youn, H.D. Nur77 upregulates HIF-alpha by inhibiting pVHL-mediated degradation. Exp. Mol. Med. 2008, 40, 71–83. [Google Scholar] [CrossRef]
- Strasser, A. The role of BH3-only proteins in the immune system. Nat. Rev. Immunol. 2005, 5, 189–200. [Google Scholar] [CrossRef]
- Simon, H.U.; Haj-Yehia, A.; Levi-Schaffer, F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 2000, 5, 415–418. [Google Scholar] [CrossRef]
- Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta 2016, 1863, 2977–2992. [Google Scholar] [CrossRef]
- Kudo, N.; Matsumori, N.; Taoka, H.; Fujiwara, D.; Schreiner, E.P.; Wolff, B.; Yoshida, M.; Horinouchi, S. Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc. Natl. Acad. Sci. United States Am. 1999, 96, 9112–9117. [Google Scholar] [CrossRef] [Green Version]
- Leevers, S.J.; Paterson, H.F.; Marshall, C.J. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 1994, 369, 411–414. [Google Scholar] [CrossRef]
- Yu, H.; Kumar, S.M.; Fang, D.; Acs, G.; Xu, X. Nuclear orphan receptor TR3/Nur77 mediates melanoma cell apoptosis. Cancer Biol. 2007, 6, 405–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Z.; Volkers, M.; Din, S.; Avitabile, D.; Khan, M.; Gude, N.; Mohsin, S.; Bo, T.; Truffa, S.; Alvarez, R.; et al. Mitochondrial translocation of Nur77 mediates cardiomyocyte apoptosis. Eur. Heart J. 2011, 32, 2179–2188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, B.X.; Chen, H.Z.; Du, X.D.; Luo, J.; He, J.P.; Wang, R.H.; Wang, Y.; Wu, R.; Hou, R.R.; Hong, M.; et al. Orphan receptor TR3 enhances p53 transactivation and represses DNA double-strand break repair in hepatoma cells under ionizing radiation. Mol. Endocrinol. 2011, 25, 1337–1350. [Google Scholar] [CrossRef] [PubMed]
- Alonso, J.; Galan, M.; Marti-Pamies, I.; Romero, J.M.; Camacho, M.; Rodriguez, C.; Martinez-Gonzalez, J. NOR-1/NR4A3 regulates the cellular inhibitor of apoptosis 2 (cIAP2) in vascular cells: Role in the survival response to hypoxic stress. Sci. Rep. 2016, 6, 34056. [Google Scholar] [CrossRef]
- Yu, C.; Cui, S.; Zong, C.; Gao, W.; Xu, T.; Gao, P.; Chen, J.; Qin, D.; Guan, Q.; Liu, Y.; et al. The Orphan Nuclear Receptor NR4A1 Protects Pancreatic beta-Cells from Endoplasmic Reticulum (ER) Stress-mediated Apoptosis. J. Biol. Chem. 2015, 290, 20687–20699. [Google Scholar] [CrossRef]
- Zong, C.; Qin, D.; Yu, C.; Gao, P.; Chen, J.; Lu, S.; Zhang, Y.; Liu, Y.; Yang, Y.; Pu, Z.; et al. The stress-response molecule NR4A1 resists ROS-induced pancreatic beta-cells apoptosis via WT1. Cell Signal 2017, 35, 129–139. [Google Scholar] [CrossRef]
- Toth, B.; Ludanyi, K.; Kiss, I.; Reichert, U.; Michel, S.; Fesus, L.; Szondy, Z. Retinoids induce Fas(CD95) ligand cell surface expression via RARgamma and nur77 in T cells. Eur. J. Immunol. 2004, 34, 827–836. [Google Scholar] [CrossRef]
- Volakakis, N.; Kadkhodaei, B.; Joodmardi, E.; Wallis, K.; Panman, L.; Silvaggi, J.; Spiegelman, B.M.; Perlmann, T. NR4A orphan nuclear receptors as mediators of CREB-dependent neuroprotection. Proc. Natl. Acad. Sci. United States Am. 2010, 107, 12317–12322. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, Y.; Miyakura, R.; Otsuka, Y. Nuclear receptor subfamily 4, group A, member 1 inhibits extrinsic apoptosis and reduces caspase-8 activity in H2O2-induced human HUC-F2 fibroblasts. Redox Rep. 2015, 20, 81–88. [Google Scholar] [CrossRef]
- Chen, H.Z.; Wen, Q.; Wang, W.J.; He, J.P.; Wu, Q. The orphan nuclear receptor TR3/Nur77 regulates ER stress and induces apoptosis via interaction with TRAPgamma. Int. J. Biochem. Cell Biol. 2013, 45, 1600–1609. [Google Scholar] [CrossRef]
- Ohkura, N.; Nagamura, Y.; Tsukada, T. Differential transactivation by orphan nuclear receptor NOR1 and its fusion gene product EWS/NOR1: Possible involvement of poly(ADP-ribose) polymerase I, PARP-1. J. Cell Biochem. 2008, 105, 785–800. [Google Scholar] [CrossRef] [PubMed]
- Munnur, D.; Somers, J.; Skalka, G.; Weston, R.; Jukes-Jones, R.; Bhogadia, M.; Dominguez, C.; Cain, K.; Ahel, I.; Malewicz, M. NR4A Nuclear Receptors Target Poly-ADP-Ribosylated DNA-PKcs Protein to Promote DNA Repair. Cell Rep. 2019, 26, 2028–2036. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.; Lu, M.; Petersen, S.; Ashkenazi, A. Apoptosis initiation through the cell-extrinsic pathway. Methods Enzym. 2014, 544, 99–128. [Google Scholar] [CrossRef]
- Movassagh, M.; Foo, R.S. Simplified apoptotic cascades. Heart Fail. Rev. 2008, 13, 111–119. [Google Scholar] [CrossRef]
- Hotchkiss, R.S.; Strasser, A.; McDunn, J.E.; Swanson, P.E. Cell death. N Engl. J. Med. 2009, 361, 1570–1583. [Google Scholar] [CrossRef]
- Thomas, H.E.; McKenzie, M.D.; Angstetra, E.; Campbell, P.D.; Kay, T.W. Beta cell apoptosis in diabetes. Apoptosis 2009, 14, 1389–1404. [Google Scholar] [CrossRef]
- Wake, K. Perisinusoidal stellate cells (fat-storing cells, interstitial cells, lipocytes), their related structure in and around the liver sinusoids and vitamin A-storing cells in extrahepatic organs. Int. Rev. Cytol. 1980, 66, 303–353. [Google Scholar] [CrossRef]
- Karaskov, E.; Scott, C.; Zhang, L.; Teodoro, T.; Ravazzola, M.; Volchuk, A. Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-cell apoptosis. Endocrinology 2006, 147, 3398–3407. [Google Scholar] [CrossRef]
- Gwiazda, K.S.; Yang, T.L.; Lin, Y.; Johnson, J.D. Effects of palmitate on ER and cytosolic Ca2+ homeostasis in beta-cells. Am J. Physiol. Endocrinol. Metab. 2009, 296, E690–E701. [Google Scholar] [CrossRef]
- Jaiswal, P.K.; Goel, A.; Mittal, R.D. Survivin: A molecular biomarker in cancer. Indian J. Med. Res. 2015, 141, 389–397. [Google Scholar] [CrossRef]
- Cnop, M.; Welsh, N.; Jonas, J.C.; Jorns, A.; Lenzen, S.; Eizirik, D.L. Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: Many differences, few similarities. Diabetes 2005, 54 Suppl. 2, S97–S107. [Google Scholar] [CrossRef]
- Steppel, J.H.; Horton, E.S. Beta-cell failure in the pathogenesis of type 2 diabetes mellitus. Curr. Diab. Rep. 2004, 4, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Laybutt, D.R.; Preston, A.M.; Akerfeldt, M.C.; Kench, J.G.; Busch, A.K.; Biankin, A.V.; Biden, T.J. Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 2007, 50, 752–763. [Google Scholar] [CrossRef] [PubMed]
- Tajiri, Y.; Moller, C.; Grill, V. Long-term effects of aminoguanidine on insulin release and biosynthesis: Evidence that the formation of advanced glycosylation end products inhibits B cell function. Endocrinology 1997, 138, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Yang, J.; Jones, D.P. Mitochondrial control of apoptosis: The role of cytochrome c. Biochim. Biophys. Acta 1998, 1366, 139–149. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, X. Cytochrome C-mediated apoptosis. Annu. Rev. Biochem. 2004, 73, 87–106. [Google Scholar] [CrossRef]
- Huttemann, M.; Pecina, P.; Rainbolt, M.; Sanderson, T.H.; Kagan, V.E.; Samavati, L.; Doan, J.W.; Lee, I. The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: From respiration to apoptosis. Mitochondrion 2011, 11, 369–381. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Kolluri, S.K.; Gu, J.; Dawson, M.I.; Cao, X.; Hobbs, P.D.; Lin, B.; Chen, G.; Lu, J.; Lin, F.; et al. Cytochrome c release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3. Science 2000, 289, 1159–1164. [Google Scholar] [CrossRef]
- Lin, B.; Kolluri, S.K.; Lin, F.; Liu, W.; Han, Y.H.; Cao, X.; Dawson, M.I.; Reed, J.C.; Zhang, X.K. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 2004, 116, 527–540. [Google Scholar] [CrossRef]
- Chen, H.Z.; Zhao, B.X.; Zhao, W.X.; Li, L.; Zhang, B.; Wu, Q. Akt phosphorylates the TR3 orphan receptor and blocks its targeting to the mitochondria. Carcinogenesis 2008, 29, 2078–2088. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Y.Y.; Wu, Q. Translocation of orphan receptor TR3 from nuclei to mitochondria induced by staurosporine. Ai Zheng 2004, 23, 1593–1598. [Google Scholar] [PubMed]
- Sun, Z.; Cao, X.; Jiang, M.M.; Qiu, Y.; Zhou, H.; Chen, L.; Qin, B.; Wu, H.; Jiang, F.; Chen, J.; et al. Inhibition of beta-catenin signaling by nongenomic action of orphan nuclear receptor Nur77. Oncogene 2012, 31, 2653–2667. [Google Scholar] [CrossRef]
- Gill, G. Post-translational modification by the small ubiquitin-related modifier SUMO has big effects on transcription factor activity. Curr. Opin. Genet. Dev. 2003, 13, 108–113. [Google Scholar] [CrossRef]
- Bode, A.M.; Dong, Z. Post-translational modification of p53 in tumorigenesis. Nat. Rev. Cancer 2004, 4, 793–805. [Google Scholar] [CrossRef]
- Han, Y.H.; Cao, X.; Lin, B.; Lin, F.; Kolluri, S.K.; Stebbins, J.; Reed, J.C.; Dawson, M.I.; Zhang, X.K. Regulation of Nur77 nuclear export by c-Jun N-terminal kinase and Akt. Oncogene 2006, 25, 2974–2986. [Google Scholar] [CrossRef] [Green Version]
- Hirata, Y.; Kiuchi, K.; Chen, H.C.; Milbrandt, J.; Guroff, G. The phosphorylation and DNA binding of the DNA-binding domain of the orphan nuclear receptor NGFI-B. J. Biol. Chem. 1993, 268, 24808–24812. [Google Scholar]
- Katagiri, Y.; Takeda, K.; Yu, Z.X.; Ferrans, V.J.; Ozato, K.; Guroff, G. Modulation of retinoid signalling through NGF-induced nuclear export of NGFI-B. Nat. Cell Biol. 2000, 2, 435–440. [Google Scholar] [CrossRef]
- Deutsch, A.J.; Rinner, B.; Wenzl, K.; Pichler, M.; Troppan, K.; Steinbauer, E.; Schwarzenbacher, D.; Reitter, S.; Feichtinger, J.; Tierling, S.; et al. NR4A1-mediated apoptosis suppresses lymphomagenesis and is associated with a favorable cancer-specific survival in patients with aggressive B-cell lymphomas. Blood 2014, 123, 2367–2377. [Google Scholar] [CrossRef]
- Fechter, K.; Feichtinger, J.; Prochazka, K.; Unterluggauer, J.J.; Pansy, K.; Steinbauer, E.; Pichler, M.; Haybaeck, J.; Prokesch, A.; Greinix, H.T.; et al. Cytoplasmic location of NR4A1 in aggressive lymphomas is associated with a favourable cancer specific survival. Sci. Rep. 2018, 8, 14528. [Google Scholar] [CrossRef]
- Fedorova, O.; Petukhov, A.; Daks, A.; Shuvalov, O.; Leonova, T.; Vasileva, E.; Aksenov, N.; Melino, G.; Barlev, N.A. Orphan receptor NR4A3 is a novel target of p53 that contributes to apoptosis. Oncogene 2019, 38, 2108–2122. [Google Scholar] [CrossRef]
- Jin, Z.; El-Deiry, W.S. Overview of cell death signaling pathways. Cancer Biol. 2005, 4, 139–163. [Google Scholar] [CrossRef] [PubMed]
- Boatright, K.M.; Salvesen, G.S. Mechanisms of caspase activation. Curr. Opin. Cell Biol. 2003, 15, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Khosravi-Far, R.; Esposti, M.D. Death receptor signals to mitochondria. Cancer Biol. 2004, 3, 1051–1057. [Google Scholar] [CrossRef] [PubMed]
- Silke, J.; Meier, P. Inhibitor of apoptosis (IAP) proteins-modulators of cell death and inflammation. Cold Spring Harb Perspect Biol. 2013, 5. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, K.E.; Feltham, R.; Yabal, M.; Conos, S.A.; Chen, K.W.; Ziehe, S.; Grass, C.; Zhan, Y.; Nguyen, T.A.; Hall, C.; et al. XIAP Loss Triggers RIPK3- and Caspase-8-Driven IL-1beta Activation and Cell Death as a Consequence of TLR-MyD88-Induced cIAP1-TRAF2 Degradation. Cell Rep. 2017, 20, 668–682. [Google Scholar] [CrossRef] [PubMed]
- Calnan, B.J.; Szychowski, S.; Chan, F.K.; Cado, D.; Winoto, A. A role for the orphan steroid receptor Nur77 in apoptosis accompanying antigen-induced negative selection. Immunity 1995, 3, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, Y.; Lu, H.; Li, J.; Yan, X.; Xiao, M.; Hao, J.; Alekseev, A.; Khong, H.; Chen, T.; et al. Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction. Nature 2019, 567, 525–529. [Google Scholar] [CrossRef]
- Kristie, T.M.; Roizman, B. DNA-binding site of major regulatory protein alpha 4 specifically associated with promoter-regulatory domains of alpha genes of herpes simplex virus type 1. Proc. Natl. Acad. Sci. United States Am. 1986, 83, 4700–4704. [Google Scholar] [CrossRef]
- Kim, Y.C.; Song, S.B.; Lee, M.H.; Kang, K.I.; Lee, H.; Paik, S.G.; Kim, K.E.; Kim, Y.S. Simvastatin induces caspase-independent apoptosis in LPS-activated RAW264.7 macrophage cells. Biochem. Biophys. Res. Commun. 2006, 339, 1007–1014. [Google Scholar] [CrossRef]
- Kim, Y.D.; Kim, S.G.; Hwang, S.L.; Choi, H.S.; Bae, J.H.; Song, D.K.; Im, S.S. B-cell translocation gene 2 regulates hepatic glucose homeostasis via induction of orphan nuclear receptor Nur77 in diabetic mouse model. Diabetes 2014, 63, 1870–1880. [Google Scholar] [CrossRef]
- Kim, Y.C.; Song, S.B.; Lee, S.K.; Park, S.M.; Kim, Y.S. The Nuclear Orphan Receptor NR4A1 is Involved in the Apoptotic Pathway Induced by LPS and Simvastatin in RAW 264.7 Macrophages. Immune Netw. 2014, 14, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Davila, M.L.; Riviere, I.; Wang, X.; Bartido, S.; Park, J.; Curran, K.; Chung, S.S.; Stefanski, J.; Borquez-Ojeda, O.; Olszewska, M.; et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 2014, 6, 224ra225. [Google Scholar] [CrossRef] [PubMed]
- Schietinger, A.; Greenberg, P.D. Tolerance and exhaustion: Defining mechanisms of T cell dysfunction. Trends Immunol. 2014, 35, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lopez-Moyado, I.F.; Seo, H.; Lio, C.J.; Hempleman, L.J.; Sekiya, T.; Yoshimura, A.; Scott-Browne, J.P.; Rao, A. NR4A transcription factors limit CAR T cell function in solid tumours. Nature 2019, 567, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.O.; Andey, T.; Jin, U.H.; Kim, K.; Singh, M.; Safe, S. The nuclear receptor TR3 regulates mTORC1 signaling in lung cancer cells expressing wild-type p53. Oncogene 2012, 31, 3265–3276. [Google Scholar] [CrossRef]
- Lee, S.O.; Jin, U.H.; Kang, J.H.; Kim, S.B.; Guthrie, A.S.; Sreevalsan, S.; Lee, J.S.; Safe, S. The orphan nuclear receptor NR4A1 (Nur77) regulates oxidative and endoplasmic reticulum stress in pancreatic cancer cells. Mol. Cancer Res. 2014, 12, 527–538. [Google Scholar] [CrossRef]
- Ishizawa, M.; Kagechika, H.; Makishima, M. NR4A nuclear receptors mediate carnitine palmitoyltransferase 1A gene expression by the rexinoid HX600. Biochem. Biophys. Res. Commun. 2012, 418, 780–785. [Google Scholar] [CrossRef]
- Chao, L.C.; Wroblewski, K.; Ilkayeva, O.R.; Stevens, R.D.; Bain, J.; Meyer, G.A.; Schenk, S.; Martinez, L.; Vergnes, L.; Narkar, V.A.; et al. Skeletal muscle Nur77 expression enhances oxidative metabolism and substrate utilization. J. Lipid Res. 2012, 53, 2610–2619. [Google Scholar] [CrossRef] [Green Version]
- Li, X.X.; Wang, Z.J.; Zheng, Y.; Guan, Y.F.; Yang, P.B.; Chen, X.; Peng, C.; He, J.P.; Ai, Y.L.; Wu, S.F.; et al. Nuclear Receptor Nur77 Facilitates Melanoma Cell Survival under Metabolic Stress by Protecting Fatty Acid Oxidation. Mol. Cell 2018, 69, 480–492. [Google Scholar] [CrossRef]
- Maxwell, M.A.; Cleasby, M.E.; Harding, A.; Stark, A.; Cooney, G.J.; Muscat, G.E. Nur77 regulates lipolysis in skeletal muscle cells. Evidence for cross-talk between the beta-adrenergic and an orphan nuclear hormone receptor pathway. J. Biol. Chem. 2005, 280, 12573–12584. [Google Scholar] [CrossRef]
- Holla, V.R.; Wu, H.; Shi, Q.; Menter, D.G.; DuBois, R.N. Nuclear orphan receptor NR4A2 modulates fatty acid oxidation pathways in colorectal cancer. J. Biol. Chem. 2011, 286, 30003–30009. [Google Scholar] [CrossRef] [PubMed]
- Perez-Sieira, S.; Martinez, G.; Porteiro, B.; Lopez, M.; Vidal, A.; Nogueiras, R.; Dieguez, C. Female Nur77-deficient mice show increased susceptibility to diet-induced obesity. PLoS ONE 2013, 8, e53836. [Google Scholar] [CrossRef]
- Praslicka, B.; Harmson, J.S.; Kim, J.; Rangaraj, V.R.; Ooi, A.; Gissendanner, C.R. Binding Site Analysis of the Caenorhabditis Elegans Nr4a Nuclear Receptor Nhr-6 during Development. Nucl. Recept. Res. 2017, 4. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.S.; Lee, H.S.; Cho, H.R.; Kim, K.J.; Kim, J.H.; Safe, S.; Lee, S.O. Dual targeting of Nur77 and AMPKalpha by isoalantolactone inhibits adipogenesis in vitro and decreases body fat mass in vivo. Int. J. Obes. 2019, 43, 952–962. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, E.J.; Stepto, N.K.; Koch, L.G.; Britton, S.L.; Hawley, J.A. Divergent skeletal muscle respiratory capacities in rats artificially selected for high and low running ability: A role for Nor1? J. Appl. Physiol. 2012, 113, 1403–1412. [Google Scholar] [CrossRef]
- Pearen, M.A.; Goode, J.M.; Fitzsimmons, R.L.; Eriksson, N.A.; Thomas, G.P.; Cowin, G.J.; Wang, S.C.; Tuong, Z.K.; Muscat, G.E. Transgenic muscle-specific Nor-1 expression regulates multiple pathways that effect adiposity, metabolism and endurance. Mol. Endocrinol. 2013, 27, 1897–1917. [Google Scholar] [CrossRef]
- Zhang, Y.; Federation, A.J.; Kim, S.; O’Keefe, J.P.; Lun, M.; Xiang, D.; Brown, J.D.; Steinhauser, M.L. Targeting nuclear receptor NR4A1-dependent adipocyte progenitor quiescence promotes metabolic adaptation to obesity. J. Clin. Invest. 2018, 128, 4898–4911. [Google Scholar] [CrossRef]
- Mohankumar, K.; Lee, J.; Wu, C.S.; Sun, Y.; Safe, S. Bis-Indole-Derived NR4A1 Ligands and Metformin Exhibit NR4A1-Dependent Glucose Metabolism and Uptake in C2C12 Cells. Endocrinology 2018, 159, 1950–1963. [Google Scholar] [CrossRef]
- Qin, D.D.; Yang, Y.F.; Pu, Z.Q.; Liu, D.; Yu, C.; Gao, P.; Chen, J.C.; Zong, C.; Zhang, Y.C.; Li, X.; et al. NR4A1 retards adipocyte differentiation or maturation via enhancing GATA2 and p53 expression. J. Cell Mol. Med. 2018, 22, 4709–4720. [Google Scholar] [CrossRef]
- Lehmann, L.H.; Jebessa, Z.H.; Kreusser, M.M.; Horsch, A.; He, T.; Kronlage, M.; Dewenter, M.; Sramek, V.; Oehl, U.; Krebs-Haupenthal, J.; et al. A proteolytic fragment of histone deacetylase 4 protects the heart from failure by regulating the hexosamine biosynthetic pathway. Nat. Med. 2018, 24, 62–72. [Google Scholar] [CrossRef]
- Pearen, M.A.; Eriksson, N.A.; Fitzsimmons, R.L.; Goode, J.M.; Martel, N.; Andrikopoulos, S.; Muscat, G.E. The nuclear receptor, Nor-1, markedly increases type II oxidative muscle fibers and resistance to fatigue. Mol. Endocrinol. 2012, 26, 372–384. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Y.; Du, X.; Chen, H.; Liu, J.; Zhao, B.; Huang, D.; Li, G.; Xu, Q.; Zhang, M.; Weimer, B.C.; et al. Cytosporone B is an agonist for nuclear orphan receptor Nur77. Nat. Chem. Biol. 2008, 4, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, M.; Wang, F.; Ji, Y.; Davidso, N.W.; Li, Z.; Tso, P. Interaction of ApoA-IV with NR4A1 and NR1D1 Represses G6Pase and PEPCK Transcription: Nuclear Receptor-Mediated Downregulation of Hepatic Gluconeogenesis in Mice and a Human Hepatocyte Cell Line. PLoS ONE 2015, 10, e0142098. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Luo, L.; Luo, N.; Zhu, X.; Garvey, W.T. NR4A orphan nuclear receptors modulate insulin action and the glucose transport system: Potential role in insulin resistance. J. Biol. Chem. 2007, 282, 31525–31533. [Google Scholar] [CrossRef]
- Zhou, H.; Du, W.; Li, Y.; Shi, C.; Hu, N.; Ma, S.; Wang, W.; Ren, J. Effects of melatonin on fatty liver disease: The role of NR4A1/DNA-PKcs/p53 pathway, mitochondrial fission and mitophagy. J. Pineal. Res. 2018, 64. [Google Scholar] [CrossRef]
- Veum, V.L.; Dankel, S.N.; Gjerde, J.; Nielsen, H.J.; Solsvik, M.H.; Haugen, C.; Christensen, B.J.; Hoang, T.; Fadnes, D.J.; Busch, C.; et al. The nuclear receptors NUR77, NURR1 and NOR1 in obesity and during fat loss. Int J. Obes. 2012, 36, 1195–1202. [Google Scholar] [CrossRef]
- Maris, M.; Waelkens, E.; Cnop, M.; D’Hertog, W.; Cunha, D.A.; Korf, H.; Koike, T.; Overbergh, L.; Mathieu, C. Oleate-induced beta cell dysfunction and apoptosis: A proteomic approach to glucolipotoxicity by an unsaturated fatty acid. J. Proteome Res. 2011, 10, 3372–3385. [Google Scholar] [CrossRef]
- Kanzleiter, T.; Schneider, T.; Walter, I.; Bolze, F.; Eickhorst, C.; Heldmaier, G.; Klaus, S.; Klingenspor, M. Evidence for Nr4a1 as a cold-induced effector of brown fat thermogenesis. Physiol. Genom. 2005, 24, 37–44. [Google Scholar] [CrossRef]
- Briand, O.; Helleboid-Chapman, A.; Ploton, M.; Hennuyer, N.; Carpentier, R.; Pattou, F.; Vandewalle, B.; Moerman, E.; Gmyr, V.; Kerr-Conte, J.; et al. The nuclear orphan receptor Nur77 is a lipotoxicity sensor regulating glucose-induced insulin secretion in pancreatic beta-cells. Mol. Endocrinol. 2012, 26, 399–413. [Google Scholar] [CrossRef]
- Koenis, D.S.; Medzikovic, L.; van Loenen, P.B.; van Weeghel, M.; Huveneers, S.; Vos, M.; Evers-van Gogh, I.J.; Van den Bossche, J.; Speijer, D.; Kim, Y.; et al. Nuclear Receptor Nur77 Limits the Macrophage Inflammatory Response through Transcriptional Reprogramming of Mitochondrial Metabolism. Cell Rep. 2018, 24, 2127–2140. [Google Scholar] [CrossRef]
- Corrocher, F.A.; Bueno de Paiva, L.; Duarte, A.S.S.; Ferro, K.P.; Silveira, L.D.R.; de Lima, T.I.; Olalla Saad, S.T.; Lazarini, M. Reduced expression of NR4A1 activates glycolytic pathway in acute promyelocytic leukemia cells. Leuk. Lymphoma 2018, 59, 1501–1504. [Google Scholar] [CrossRef] [PubMed]
- Roche, E.; Buteau, J.; Aniento, I.; Reig, J.A.; Soria, B.; Prentki, M. Palmitate and oleate induce the immediate-early response genes c-fos and nur-77 in the pancreatic beta-cell line INS-1. Diabetes 1999, 48, 2007–2014. [Google Scholar] [CrossRef] [PubMed]
- Fassett, M.S.; Jiang, W.; D’Alise, A.M.; Mathis, D.; Benoist, C. Nuclear receptor Nr4a1 modulates both regulatory T-cell (Treg) differentiation and clonal deletion. Proc. Natl. Acad. Sci. USA 2012, 109, 3891–3896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pei, L.; Waki, H.; Vaitheesvaran, B.; Wilpitz, D.C.; Kurland, I.J.; Tontonoz, P. NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism. Nat. Med. 2006, 12, 1048–1055. [Google Scholar] [CrossRef]
- Navarro, M.A.; Badimon, L.; Rodriguez, C.; Arnal, C.; Noone, E.J.; Roche, H.M.; Osada, J.; Martinez-Gonzalez, J. Trans-10,cis-12-CLA dysregulate lipid and glucose metabolism and induce hepatic NR4A receptors. Front Biosci. 2010, 2, 87–97. [Google Scholar]
- Pols, T.W.; Ottenhoff, R.; Vos, M.; Levels, J.H.; Quax, P.H.; Meijers, J.C.; Pannekoek, H.; Groen, A.K.; de Vries, C.J. Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity. Biochem. Biophys. Res. Commun. 2008, 366, 910–916. [Google Scholar] [CrossRef]
- Chao, L.C.; Zhang, Z.; Pei, L.; Saito, T.; Tontonoz, P.; Pilch, P.F. Nur77 coordinately regulates expression of genes linked to glucose metabolism in skeletal muscle. Mol. Endocrinol. 2007, 21, 2152–2163. [Google Scholar] [CrossRef]
- Cortez-Toledo, O.; Schnair, C.; Sangngern, P.; Metzger, D.; Chao, L.C. Nur77 deletion impairs muscle growth during developmental myogenesis and muscle regeneration in mice. PLoS ONE 2017, 12, e0171268. [Google Scholar] [CrossRef]
- Reynolds, M.S.; Hancock, C.R.; Ray, J.D.; Kener, K.B.; Draney, C.; Garland, K.; Hardman, J.; Bikman, B.T.; Tessem, J.S. beta-Cell deletion of Nr4a1 and Nr4a3 nuclear receptors impedes mitochondrial respiration and insulin secretion. Am. J. Physiol. Endocrinol. Metab. 2016, 311, E186–E201. [Google Scholar] [CrossRef]
- Liebmann, M.; Hucke, S.; Koch, K.; Eschborn, M.; Ghelman, J.; Chasan, A.I.; Glander, S.; Schadlich, M.; Kuhlencord, M.; Daber, N.M.; et al. Nur77 serves as a molecular brake of the metabolic switch during T cell activation to restrict autoimmunity. Proc. Natl. Acad. Sci. USA 2018, 115, E8017–E8026. [Google Scholar] [CrossRef]
- Adhikari, P.; Orozco, D.; Randhawa, H.; Wolf, F.W. Mef2 induction of the immediate early gene Hr38/Nr4a is terminated by Sirt1 to promote ethanol tolerance. Genes Brain Behav. 2019, 18, e12486. [Google Scholar] [CrossRef] [PubMed]
- Ruaud, A.F.; Lam, G.; Thummel, C.S. The Drosophila NR4A nuclear receptor DHR38 regulates carbohydrate metabolism and glycogen storage. Mol. Endocrinol. 2011, 25, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Yang, Y.; Liu, Y.; Lai, L.; Wang, L.; Zhan, Y.; Yin, R.; Yu, M.; Li, C.; Yang, X.; et al. Glycerol kinase interacts with nuclear receptor NR4A1 and regulates glucose metabolism in the liver. Faseb J. 2019, 33, 6736–6747. [Google Scholar] [CrossRef] [PubMed]
- Au, W.S.; Payne, V.A.; O’Rahilly, S.; Rochford, J.J. The NR4A family of orphan nuclear receptors are not required for adipogenesis. Int. J. Obes. 2008, 32, 388–392. [Google Scholar] [CrossRef]
- Kumar, N.; Liu, D.; Wang, H.; Robidoux, J.; Collins, S. Orphan nuclear receptor NOR-1 enhances 3’,5’-cyclic adenosine 5’-monophosphate-dependent uncoupling protein-1 gene transcription. Mol. Endocrinol. 2008, 22, 1057–1064. [Google Scholar] [CrossRef]
Tissue/Cell Line | Nr4a1 | Nr4a2 | Nr4a3 |
---|---|---|---|
Liver | |||
Primary Hepatocytes (Partial Hepatectomy) | NF-κB [26]; STAT3 [26]; Cyclin B1 [26]; Cyclin d1 [26]; Cyclin E1 [26]; Cdk4 [26]; Cdk2 [26] | Cyclin D1 [27]; Cyclin E1 [27]; VCAM1 [27]; PCNA; [27] | |
Hepatic Stellate Cells | ERK1/2 [28,29]; p38 [28,29]; JNK [28] | ||
Muscle | |||
Primary Vascular Smooth Muscle | STAT3 [30]; Pim-1 [30]; NFAT [30]; Cyclin D1 [30,31]; PCNA [30,31]; p27Kip1 [32,33] | p27Kip1 [34] | Cyclin D1 [35,36,37]; Cyclin D2 [35]; PCNA [37]; |
Primary Ventricularmyocytes | ERK1/2 [38]; AKT [38]; DUSP2 [38]; DUSP14 [38] | ||
Β-cell | |||
Ins-1 832/13 Cells | Cyclin E1 [22]; E2F1 [22]; Ube2c [22]; Cdk5r1 [39]; p21Cip1 [22]; pRB [39] | Cyclin E1 [22]; E2F1 [22]; Ube’2c [22]; Cdk5r1 [39]; p21Cip1 [22]; pRB [39] | |
Immune | |||
Primary T Cells | Irf4 [40] | ||
Primary Dendritic Cells | NF-κB [41] | ||
Macrophage; Dendritic Progenitor Cells | RUNX1 [42] | ||
Cancer | |||
Lung Cancer - H157 Cells | Cyclin D1 [43] | ||
Cervical Cancer - HeLa Cells | Cyclin D2 [44]; E2F1 [44] | ||
Breast Cancer - MDA-MB-231 Cells | JNK1 [45]; c-Jun [45]; Cyclin D1 [45] | ||
Acute Myeloid Leukemia–Mouse Models | c-Jun [18]; JunB [18]; CEBPα [46]; myc [46]; STAT1 [46]; IL-6 [46]; ERK1/2 [46]; PKB/AKT [46] | CEBPα [46]; myc [46]; STAT1 [46]; IL-6 [46]; ERK1/2 [46]; PKB/AKT [46] | c-Jun [18]; JunB [18]; CEBPα [46]; myc [46]; STAT1 [46]; IL-6 [46]; ERK1/2 [46]; PKB/AKT [46] |
Acute Myeloid Leukemia–Kusami-1 Cells | c-Myc [47,48]; Bcl2 [47,48]; CBFA2T3 [47]; CSF1R [47]; PU.1 [47]; TGF-B [48]; p57 [48] | Myc [48]; Bcl2 [48]; TGF-B [48]; p57 [48] | |
Endothelium | |||
Primary Human Umbilical Vein Endothelial Cells | Cyclin A [49]; Cyclin D1 [49]; PCNA [49]; E2F [49] | ||
Intestine | |||
Intestinal Epithelium - IEC-6 Cells | p21Cip1 [50] | ||
Uterus | |||
Leiomyoma Smooth Muscle Cells | TGFβ3 [51]; SMAD3 [51]; collagen genes 1A1, 6A1, 6A2, and 16A1 [51] | TGFβ3 [51]; SMAD3 [51]; collagen genes 1A1, 6A1, 6A2, and 16A1 [51] | TGFβ3 [51]; SMAD3 [51]; collagen genes 1A1, 6A1, 6A2, and 16A1 [51] |
Tissue/Cell Line | Nr4a1 | Nr4a2 | Nr4a3 |
---|---|---|---|
Liver | |||
HepG2 | DNA-PKcs [93] | ERK1/2 [29]; p38 [29]; Ku80 [93] | |
Muscle | |||
Primary Vascular Smooth | cIAP2 [94] | ||
Β-cell | |||
Min6 | Survivin [95]; CHOP [95] | ||
Primary Mouse Islets | WT1 [96]; BCL-2 [96]; SOD1 [96] | ||
Immune | |||
T Cells | Fasl [97] | ||
Cancer | |||
Pancreas Cancer – Panc-1, L.3.6pL | TXNDC5 [157 | ||
C57BL/6 Nude mice | TRAIL [64]; PDCD1 [64] | ||
Colon | TRAIL [64]; PDCD1 [64] | ||
Brain | |||
Neurons | Adcyap1 [98]; Sod1 [98]; C-flar [98] | ||
Umbilical Cord | |||
HUC-F2 | Caspace3 [99]; Caspase8 [99] | ||
Kidney | |||
Hek293 | TRAPγ [100]; Hif1-α [101]; pVHL [101] | Hif1-α [101]; pVHL [101] | PARP-1 [102] |
Bone | |||
U2OS | Poly-ADP-Ribose [103] |
Tissue/Cell Lines | Nr4a1 | Nr4a2 | Nr4a3 |
---|---|---|---|
Liver | |||
Primary Hepatocytes | Fbp1 [20,158]; Bpgm [20]; Pgk1 [20]; Eno3 [20,158,159]; G6pc [20,158,159]; Fbp2 [158]; Glut 2 [158]; Pgc1a [20]; Gyk [20]; PEPCK [159]; PC [159]; Lpl [20]; Ehhadh [20]; SREBP1c [20,160]; FAS [20,160]; Gpam [160]; G6Pase [20]; Lipin1 [20]; Pdk4 [20] | Fbp1 [158]; Eno3 [158,159]; G6pc [158,159]; Fbp2 [158]; Glut 2 [158]; PEPCK [159]; PC [159]; | Fbp1 [158]; Eno3 [158,159]; G6pc [158,159]; Fbp2 [158]; Glut 2 [158]; PEPCK [159]; PC [159]; |
HepG2 | G6pc [161]; PEPCK [161]; CPT1a [162]; | CPT1a [162] | |
Muscle | |||
Primary Muscle | Glut4 [20,163,164,165]; Pfkm [163]; Pygm [167, Eno3 [20,163,166,167,168],Bpgm [166,167]; Pgk1 [166,167]; CD36 [164]; AdipoR2 [164]; UCP2 [164]; UCP3 [164]; NADH-TR [165]; Cox1 [165]; Sdhb [165] | HK1 [169]; Pfk-1 [169]; GAPDH [169]; Pgam2 [169]; Eno3 [169]; Pkm [169],MDH [169]; AST [169]; Pdh [169]; Glut4 [169]; HK2 [169]; Stbd1 [169]; Gys1 [169]; PPP1R1A [169]; CRAT [169]; ACSL [169]; ACDH [169]; ECH [169]; 3-KCT [169]; Idh3 [169]; Ogdh [169]; Scs [169]; Sdhb [169]; Fh [169]; Mdh [169]; Atp5a1 [170]; Uqcr2 [170]; Cox1 [170]; Sdhb [170]; and Ndufb8 [170] | |
Cadiomyocyte | GFPT2 [171] | ||
C2C12 | Glut4 [172]; Pfkm [172]; Pygm [172]; Eno3 [172]; Aldo1 [172]; PHKG1 [172]; PGAM2 [172] | PGC-1a [21]; PGC-1b [21]; Lipin1a [21]; Pdp1c [21]; Pdp1r [21]; Ucp3 [168]; | |
Adipose | |||
3T3-L1 | SREBP1c [173]; PPARg [173] | Glut4 [174] | |
HIB-1B | Ucp1 [175,176] | Ucp1 [175,176]; | |
β-cell | |||
Ins-1 832/13 | Eno1 [177,178]; Eno3 [178]; GAPDH [178]; Pgk [178]; Idh3g [177]; Sdhb [177] | Eno1 [177]; Idh3g [177]; Sdhb [177]; | |
MIN-6 | Eno3 [179] | Eno3 [179] | |
Immune | |||
Primary T Cells | Hk2 [180]; Aldoa [180]; Aldoc [180]; Gbe1 [180]; Agl [180]; Atp5c1 [180]; Atp5f1 [180]; Atp5h [180]; Cox6a1 [180]; Cox6b2 [180]; Cox7b [180]; Ndufa6 [180]; Ndufa5 [180]; Ndufa8 [180]; Ndufa11 [180]; Dlst [180]; Idh3a [180] | ||
Macrophages | Idh2 [181]; Idh3b [181]; Idh3g [181]; | ||
Bone Marrow | Glut1 [52]; Pdk1 [52] | ||
Cancer | |||
AML-NB4 | Glut1 [182]; Ldha [182]; | ||
AML-THP1 | Glut1 [182]; Ldha [182]; | ||
AML-Kasumi1 | Eno3 [47]; | ||
Melanoma-MV3 | TPb [183] | ||
Colorectal-LS-174T | Acox [184]; Cpt1m [184]; Fabp2 [184]; Fabp4 [184] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herring, J.A.; Elison, W.S.; Tessem, J.S. Function of Nr4a Orphan Nuclear Receptors in Proliferation, Apoptosis and Fuel Utilization Across Tissues. Cells 2019, 8, 1373. https://doi.org/10.3390/cells8111373
Herring JA, Elison WS, Tessem JS. Function of Nr4a Orphan Nuclear Receptors in Proliferation, Apoptosis and Fuel Utilization Across Tissues. Cells. 2019; 8(11):1373. https://doi.org/10.3390/cells8111373
Chicago/Turabian StyleHerring, Jacob A., Weston S. Elison, and Jeffery S. Tessem. 2019. "Function of Nr4a Orphan Nuclear Receptors in Proliferation, Apoptosis and Fuel Utilization Across Tissues" Cells 8, no. 11: 1373. https://doi.org/10.3390/cells8111373
APA StyleHerring, J. A., Elison, W. S., & Tessem, J. S. (2019). Function of Nr4a Orphan Nuclear Receptors in Proliferation, Apoptosis and Fuel Utilization Across Tissues. Cells, 8(11), 1373. https://doi.org/10.3390/cells8111373