Physical Activity Prevents Cartilage Degradation: A Metabolomics Study Pinpoints the Involvement of Vitamin B6
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Circulating Progenitor Cells (CPCs)
2.3. Sera Collection
2.4. Metabolomics
2.5. XTT Test
2.6. Cell Cultures
2.7. TUNEL Assay
2.8. Senescence Assay
2.9. Cellular Reactive Oxygen Species (ROS) Detection
2.10. Total RNA Extraction
2.11. Reverse Transcription
2.12. Real Time RT-PCR
2.13. Alcian Blue Staining
2.14. Statistical and Bioinformatics Analyses
3. Results
3.1. Characterization of CPC Phenotype
3.2. Overexpression of Chondrogenic Genes in POST Run CPCs
3.3. Metabolomic Profile
3.4. Vitamin B6 Upregulates the Expression of Genes Related to Chondrogenic Differentiation and Stimulates Chondrocyte Maturation
3.5. Vitamin B6 Counteracts the Negative Effects of IL1β in MSCs during Chondrogenic Differentiation
3.6. Vitamin B6 Counteracts the Negative Effects in an In Vitro OA Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviation
CD | Cluster of differentiation |
CMP | Cytosine monophosphate |
CO2 | Carbon dioxide |
COL2A1 | Collagen Type II Alpha 1 Chain |
COMP | Cartilage Oligomeric Matrix Protein |
COX | Cyclooxygenase 2 |
CPCs | Circulating progenitor cells |
CTP | Cytidine-triphosphate |
DMEM | Dulbecco’s Modified Eagle Medium |
ECM | Extra cellular matrix |
FBS | Fetal bovin serum |
GAG | Glycosaminoglycan |
HDL | High Density Lipoprotein |
HM | Half marathon |
IL1β | Interleukin 1 Beta |
IQR | Interquartile range |
KBP | Kashin–Beck disease |
LDL | Low Density Lipoprotein |
MSC | Mesenchymal stem cell |
OA | Osteoarthritis |
PA | Physical activity |
PFA | Paraformaldehyde |
PLP | Pyridoxal 5′-phosphate |
ROS | Reactive oxygen species |
RT | Reverse transcription |
RUNX2 | Runt-Related Transcription Factor 2 |
SOX9 | Transcription Factor SOX-9 |
TIC | Total ion chromatogram |
UMP | Uridine monophosphate |
Vit.B6 | Vitamin B6 |
References
- Litwic, A.; Edwards, M.H.; Dennison, E.M.; Cooper, C. Epidemiology and burden of osteoarthritis. Br. Med. Bull. 2013, 105, 185–199. [Google Scholar] [CrossRef] [Green Version]
- Cheng, N.T.; Meng, H.; Ma, L.F.; Zhang, L.; Yu, H.M.; Wang, Z.Z.; Guo, A. Role of autophagy in the progression of osteoarthritis: The autophagy inhibitor, 3-methyladenine, aggravates the severity of experimental osteoarthritis. Int. J. Mol. Med. 2017, 39, 1224–1232. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.; Deng, J.M.; Zhang, Z.; Behringer, R.R.; de Crombrugghe, B. Sox9 is required for cartilage formation. Nat. Genet. 1999, 22, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Goldring, M.B.; Marcu, K.B. Cartilage homeostasis in health and rheumatic diseases. Arthritis Res. Ther. 2009, 11, 224. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.J.; Bierma-Zeinstra, S. Osteoarthritis. Lancet 2019, 393, 1745–1759. [Google Scholar] [CrossRef]
- Warburton, D.E.; Nicol, C.W.; Bredin, S.S. Prescribing exercise as preventive therapy. CMAJ 2006, 174, 961–974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalle Carbonare, L.; Manfredi, M.; Caviglia, G.; Conte, E.; Robotti, E.; Marengo, E.; Cheri, S.; Zamboni, F.; Gabbiani, D.; Deiana, M. Can half-marathon affect overall health? The yin-yang of sport. J. Proteom. 2018, 170, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Guilak, F. Biomechanical factors in osteoarthritis. Best Pract. Res. Clinic. Rheumatol. 2011, 25, 815–823. [Google Scholar] [CrossRef] [Green Version]
- Grabowski, P. Physiology of bone. Endocr. Dev. 2009, 16, 32–48. [Google Scholar]
- Luca Dalle, C.; Mottes, M.; Samuele, C.; Deiana, M.; Zamboni, F.; Gabbiani, D.; Schena, F.; Salvagno, G.; Lippi, G.; Valenti, M.T. Increased gene expression of RUNX2 and SOX9 in mesenchymal circulating progenitors is associated to autophagy during physical activity. Oxid. Med. Cell. Longev. 2019, in press. [Google Scholar]
- Dalle Carbonare, L.; Valenti, M.T.; Zanatta, M.; Donatelli, L.; Lo Cascio, V. Circulating mesenchymal stem cells with abnormal osteogenic differentiation in patients with osteoporosis. Arthr. Rheum. 2009, 60, 3356–3365. [Google Scholar] [CrossRef] [PubMed]
- Valenti, M.T.; Mottes, M.; Cheri, S.; Deiana, M.; Micheletti, V.; Cosaro, E.; Davi, M.V.; Francia, G.; Carbonare, L.D. Runx2 overexpression compromises bone quality in acromegalic patients. Endocr. Relat. Cancer 2018, 25, 269–277. [Google Scholar] [CrossRef]
- Yuan, M.; Breitkopf, S.B.; Yang, X.; Asara, J.M. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. Nat. Protoc. 2012, 7, 872–881. [Google Scholar] [CrossRef]
- Kubesova, A.; Tejkalova, H.; Syslova, K.; Kacer, P.; Vondrousova, J.; Tyls, F.; Fujakova, M.; Palenicek, T.; Horacek, J. Biochemical, histopathological and morphological profiling of a rat model of early immune stimulation: Relation to psychopathology. PLoS ONE 2015, 10, e0115439. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Wishart, D.S. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat. Protoc. 2011, 6, 743–760. [Google Scholar] [CrossRef]
- Xia, J.; Wishart, D.S. Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2016, 55, 14.10.1.–14.10.91. [Google Scholar] [CrossRef] [PubMed]
- Valenti, M.T.; Zanatta, M.; Donatelli, L.; Viviano, G.; Cavallini, C.; Scupoli, M.T.; Carbonare, L.D. Ascorbic acid induces either differentiation or apoptosis in MG-63 osteosarcoma lineage. Anticancer Res. 2014, 34, 1617–1628. [Google Scholar] [PubMed]
- Xue, H.; Tu, Y.; Ma, T.; Wen, T.; Yang, T.; Xue, L.; Cai, M.; Wang, F.; Guan, M. miR-93-5p attenuates IL-1beta-induced chondrocyte apoptosis and cartilage degradation in osteoarthritis partially by targeting TCF4. Bone 2019, 123, 129–136. [Google Scholar] [CrossRef]
- Bessler, H.; Djaldetti, M. Vitamin B6 Modifies the Immune Cross-Talk between Mononuclear and Colon Carcinoma Cells. Folia Biol. (Praha) 2016, 62, 47–52. [Google Scholar]
- Lv, M.; Zhou, Y.; Polson, S.W.; Wan, L.Q.; Wang, M.; Han, L.; Wang, L.; Lu, X.L. Identification of Chondrocyte Genes and Signaling Pathways in Response to Acute Joint Inflammation. Sci. Rep. 2019, 9, 93. [Google Scholar] [CrossRef]
- Dalle Carbonare, L.; Valenti, M.T.; Bertoldo, F.; Fracalossi, A.; Balducci, E.; Azzarello, G.; Vinante, O.; Lo Cascio, V. Amino-bisphosphonates decrease hTERT gene expression in breast cancer in vitro. Aging Clin. Exp. Res. 2007, 19, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Deiana, M.; Dalle Carbonare, L.; Serena, M.; Cheri, S.; Parolini, F.; Gandini, A.; Marchetto, G.; Innamorati, G.; Manfredi, M.; Marengo, E.; et al. New Insights into the Runt Domain of RUNX2 in Melanoma Cell Proliferation and Migration. Cells 2018, 7, 220. [Google Scholar] [CrossRef] [PubMed]
- Valenti, M.T.; Carbonare, L.D.; Donatelli, L.; Bertoldo, F.; Zanatta, M.; Lo Cascio, V. Gene expression analysis in osteoblastic differentiation from peripheral blood mesenchymal stem cells. Bone 2008, 43, 1084–1092. [Google Scholar] [CrossRef] [PubMed]
- Valenti, M.T.; Mottes, M.; Biotti, A.; Perduca, M.; Pisani, A.; Bovi, M.; Deiana, M.; Cheri, S.; Carbonare, L.D. Clodronate as a Therapeutic Strategy against Osteoarthritis. Int. J. Mol. Sci. 2017, 18, 2696. [Google Scholar] [CrossRef]
- Lv, F.J.; Tuan, R.S.; Cheung, K.M.; Leung, V.Y. Concise review: The surface markers and identity of human mesenchymal stem cells. Stem Cells 2014, 32, 1408–1419. [Google Scholar] [CrossRef]
- Xu, L. Circulating mesenchymal stem cells and their clinical implications. J. Orthop. Transl. 2014, 2, 1e7. [Google Scholar] [CrossRef]
- Tsuda, M.; Takahashi, S.; Takahashi, Y.; Asahara, H. Transcriptional co-activators CREB-binding protein and p300 regulate chondrocyte-specific gene expression via association with Sox9. J. Biol. Chem. 2003, 278, 27224–27229. [Google Scholar] [CrossRef]
- Chang, C.C.; Hsieh, M.S.; Liao, S.T.; Chen, Y.H.; Cheng, C.W.; Huang, P.T.; Lin, Y.F.; Chen, C.H. Hyaluronan regulates PPARgamma and inflammatory responses in IL-1beta-stimulated human chondrosarcoma cells, a model for osteoarthritis. Carbohydr. Polym. 2012, 90, 1168–1175. [Google Scholar] [CrossRef]
- Mazor, M.; Best, T.M.; Cesaro, A.; Lespessailles, E.; Toumi, H. Osteoarthritis biomarker responses and cartilage adaptation to exercise: A review of animal and human models. Scand. J. Med. Sci Sports 2019. [Google Scholar] [CrossRef]
- Andersson, M.L.; Thorstensson, C.A.; Roos, E.M.; Petersson, I.F.; Heinegard, D.; Saxne, T. Serum levels of cartilage oligomeric matrix protein (COMP) increase temporarily after physical exercise in patients with knee osteoarthritis. BMC Musculoskelet. Disord. 2006, 7, 98. [Google Scholar] [CrossRef]
- Patti, G.J.; Yanes, O.; Siuzdak, G. Innovation: Metabolomics: The apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 2012, 13, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Gella, A.; Ponce, J.; Cusso, R.; Durany, N. Effect of the nucleotides CMP and UMP on exhaustion in exercise rats. J. Physiol. Biochem. 2008, 64, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, L.J.; Brown, A.J. Controlling cholesterol synthesis beyond 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). J. Biol. Chem. 2013, 288, 18707–18715. [Google Scholar] [CrossRef] [PubMed]
- Mann, S.; Beedie, C.; Jimenez, A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: Review, synthesis and recommendations. Sports Med. 2014, 44, 211–221. [Google Scholar] [CrossRef]
- Cao, R.; Zhao, X.; Li, S.; Zhou, H.; Chen, W.; Ren, L.; Zhou, X.; Zhang, H.; Shi, R. Hypoxia induces dysregulation of lipid metabolism in HepG2 cells via activation of HIF-2alpha. Cell. Physiol. Biochem. Int. J. Experiment. Cell. Physiol. Biochem. Pharmacol. 2014, 34, 1427–1441. [Google Scholar] [CrossRef]
- Debevec, T.; Millet, G.P.; Pialoux, V. Hypoxia-Induced Oxidative Stress Modulation with Physical Activity. Front. Physiol. 2017, 8, 84. [Google Scholar] [CrossRef] [Green Version]
- Haghighatdoost, F.; Hariri, M. The effect of alpha-lipoic acid on inflammatory mediators: A systematic review and meta-analysis on randomized clinical trials. Eur. J. Pharmacol. 2019, 849, 115–123. [Google Scholar] [CrossRef]
- Merrill, A.H., Jr.; Henderson, J.M. Diseases associated with defects in vitamin B6 metabolism or utilization. Annu. Rev. Nutr. 1987, 7, 137–156. [Google Scholar] [CrossRef]
- Said, Z.M.; Subramanian, V.S.; Vaziri, N.D.; Said, H.M. Pyridoxine uptake by colonocytes: A specific and regulated carrier-mediated process. Am. J. Physiol. Cell. Physiol. 2008, 294, C1192–C1197. [Google Scholar] [CrossRef]
- Rodionov, D.A.; Arzamasov, A.A.; Khoroshkin, M.S.; Iablokov, S.N.; Leyn, S.A.; Peterson, S.N.; Novichkov, P.S.; Osterman, A.L. Micronutrient Requirements and Sharing Capabilities of the Human Gut Microbiome. Front. Microbiol. 2019, 10, 1316. [Google Scholar] [CrossRef] [Green Version]
- Cerda, B.; Perez, M.; Perez-Santiago, J.D.; Tornero-Aguilera, J.F.; Gonzalez-Soltero, R.; Larrosa, M. Gut Microbiota Modification: Another Piece in the Puzzle of the Benefits of Physical Exercise in Health? Front. Physiol. 2016, 7, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monda, V.; Villano, I.; Messina, A.; Valenzano, A.; Esposito, T.; Moscatelli, F.; Viggiano, A.; Cibelli, G.; Chieffi, S.; Monda, M.; et al. Exercise Modifies the Gut Microbiota with Positive Health Effects. Oxid. Med. Cell Longev. 2017, 2017, 3831972. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Freire, M.; de Cabo, R.; Studenski, S.A.; Ferrucci, L. The Neuromuscular Junction: Aging at the Crossroad between Nerves and Muscle. Front. Aging Neurosci. 2014, 6, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, S.K.; Lim, G. Pyridoxine and pyridoxamine inhibits superoxide radicals and prevents lipid peroxidation, protein glycosylation, and (Na+ + K+)-ATPase activity reduction in high glucose-treated human erythrocytes. Free Radic. Biol. Med. 2001, 30, 232–237. [Google Scholar] [CrossRef]
- Lepetsos, P.; Papavassiliou, A.G. ROS/oxidative stress signaling in osteoarthritis. Biochimica et Biophysica Acta 2016, 1862, 576–591. [Google Scholar] [CrossRef]
- Ueland, P.M.; McCann, A.; Midttun, O.; Ulvik, A. Inflammation, vitamin B6 and related pathways. Mol. Asp. Med. 2017, 53, 10–27. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.H.; Lin, P.T.; Liaw, Y.P.; Ho, C.C.; Tsai, T.P.; Chou, M.C.; Huang, Y.C. Plasma pyridoxal 5′-phosphate and high-sensitivity C-reactive protein are independently associated with an increased risk of coronary artery disease. Nutrition 2008, 24, 239–244. [Google Scholar] [CrossRef]
- Selhub, J.; Byun, A.; Liu, Z.; Mason, J.B.; Bronson, R.T.; Crott, J.W. Dietary vitamin B6 intake modulates colonic inflammation in the IL10-/- model of inflammatory bowel disease. J. Nutr. Biochem. 2013, 24, 2138–2143. [Google Scholar] [CrossRef]
- Friedman, A.N.; Hunsicker, L.G.; Selhub, J.; Bostom, A.G. Clinical and nutritional correlates of C-reactive protein in type 2 diabetic nephropathy. Atherosclerosis 2004, 172, 121–125. [Google Scholar] [CrossRef]
- Roubenoff, R.; Roubenoff, R.A.; Selhub, J.; Nadeau, M.R.; Cannon, J.G.; Freeman, L.M.; Dinarello, C.A.; Rosenberg, I.H. Abnormal vitamin B6 status in rheumatoid cachexia. Association with spontaneous tumor necrosis factor alpha production and markers of inflammation. Arthritis Rheum. 1995, 38, 105–109. [Google Scholar] [CrossRef]
- Friso, S.; Jacques, P.F.; Wilson, P.W.; Rosenberg, I.H.; Selhub, J. Low circulating vitamin B(6) is associated with elevation of the inflammation marker C-reactive protein independently of plasma homocysteine levels. Circulation 2001, 103, 2788–2791. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.C.; Wei, J.C.; Wu, D.J.; Huang, Y.C. Vitamin B(6) supplementation improves pro-inflammatory responses in patients with rheumatoid arthritis. Eur. J. Clin. Nutr. 2010, 64, 1007–1013. [Google Scholar] [CrossRef] [PubMed]
- Masse, P.G.; Ziv, I.; Cole, D.E.; Mahuren, J.D.; Donovan, S.M.; Yamauchi, M.; Howell, D.S. A cartilage matrix deficiency experimentally induced by vitamin B6 deficiency. Proc. Soc. Exp. Biol Med. 1998, 217, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; He, A.; Wen, Y.; Xiao, X.; Hao, J.; Zhang, F.; Guo, X. Comparison of microRNA expression profiles of Kashin-Beck disease, osteoarthritis and rheumatoid arthritis. Sci. Rep. 2017, 7, 540. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Tsuchiya, K.; Kinoshita, T.; Kushiyama, H.; Suidasari, S.; Hatakeyama, M.; Imura, H.; Kato, N.; Suda, T. Vitamin B6 Prevents IL-1beta Protein Production by Inhibiting NLRP3 Inflammasome Activation. J. Biologic. Chem. 2016, 291, 24517–24527. [Google Scholar] [CrossRef] [PubMed]
- Shultz, T.D.; Santamaria, A.G.; Gridley, D.S.; Stickney, D.R.; Slater, J.M. Effect of pyridoxine and pyridoxal on the in vitro growth of human malignant melanoma. Anticancer Res. 1988, 8, 1313–1318. [Google Scholar] [PubMed]
Cluster Differentiation Transcript | Pre Run (%) (Media and SD) | Post Run (%) (Media and SD) | p-Value |
---|---|---|---|
CD105 | 68 ± 0.3 | 67 ± 0.4 | 0.2 |
CD73 | 73 ± 0.2 | 72 ± 0.3 | 0.06 |
CD3 | 0 | 0 | NA * |
CD14 | 0.5 ± 0.07 | 0.6 ± 0.08 | 0.12 |
CD19 | 0 | 0 | NA * |
CD45 | 1.6 ± 0.3 | 1.8 ± 0.3 | 0.06 |
CD34 | Low levels | Low levels | NA * |
Name | p-Adjusted | Nominal p-Value | Log2fold | Modulation (Up/Down) |
---|---|---|---|---|
Pyridoxamine 5′-phosphate | 0.0003 | 0.0000072958 | 5.4 | UP |
Lipoic acid. reduced | 0.0003 | 0.0000076800 | −1.56 | DOWN |
Pyridoxal 5′-phosphate | 0.0006 | 0.0000000104 | 4.1 | UP |
dUMP | 0.0007 | 0.0000192660 | 5.93 | UP |
4.4-dimethylzymosterol | 0.004 | 0.0000397850 | 2.72 | UP |
1.3-Dimethyl-8-phenylxanthine | 0.012 | 0.0000458276 | 7.16 | UP |
Phosphatidylinositol-3.4.5-trisphosphate | 0.017 | 0.0000662191 | 1.56 | UP |
4α-formyl-4β-methyl-5α-cholesta-8.24-dien-3β-ol dTDP | 0.019 0.021 | 0.0000815126 0.0000837270 | −4.94 60.4 | DOWN UP |
8-oxo-dGTP | 0.049 | 0.0000930718 | −1.79 | DOWN |
Pathway | All Metabolites | Overlapping Metabolites | p-Value (Raw) | p-Adjusted |
---|---|---|---|---|
Pyrimidine deoxyribonucleotides biosynthesis from CTP | 2 | 2 | 0.0094 | 0.0361 |
Pyridoxal 5-phosphate salvage | 4 | 2 | 0.031 | 0.1164 |
Zymosterol biosynthesis | 5 | 2 | 0.05 | 0.244 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deiana, M.; Malerba, G.; Dalle Carbonare, L.; Cheri, S.; Patuzzo, C.; Tsenov, G.; Moron Dalla Tor, L.; Mori, A.; Saviola, G.; Zipeto, D.; et al. Physical Activity Prevents Cartilage Degradation: A Metabolomics Study Pinpoints the Involvement of Vitamin B6. Cells 2019, 8, 1374. https://doi.org/10.3390/cells8111374
Deiana M, Malerba G, Dalle Carbonare L, Cheri S, Patuzzo C, Tsenov G, Moron Dalla Tor L, Mori A, Saviola G, Zipeto D, et al. Physical Activity Prevents Cartilage Degradation: A Metabolomics Study Pinpoints the Involvement of Vitamin B6. Cells. 2019; 8(11):1374. https://doi.org/10.3390/cells8111374
Chicago/Turabian StyleDeiana, Michela, Giovanni Malerba, Luca Dalle Carbonare, Samuele Cheri, Cristina Patuzzo, Grygoriy Tsenov, Lucas Moron Dalla Tor, Antonio Mori, Gianantonio Saviola, Donato Zipeto, and et al. 2019. "Physical Activity Prevents Cartilage Degradation: A Metabolomics Study Pinpoints the Involvement of Vitamin B6" Cells 8, no. 11: 1374. https://doi.org/10.3390/cells8111374
APA StyleDeiana, M., Malerba, G., Dalle Carbonare, L., Cheri, S., Patuzzo, C., Tsenov, G., Moron Dalla Tor, L., Mori, A., Saviola, G., Zipeto, D., Schena, F., Mottes, M., & Valenti, M. T. (2019). Physical Activity Prevents Cartilage Degradation: A Metabolomics Study Pinpoints the Involvement of Vitamin B6. Cells, 8(11), 1374. https://doi.org/10.3390/cells8111374