MiRNAs from DLK1-DIO3 Imprinted Locus at 14q32 are Associated with Multiple Sclerosis: Gender-Specific Expression and Regulation of Receptor Tyrosine Kinases Signaling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Controls
2.2. RNA Isolation
2.3. RNA-seq Data Analysis
2.4. Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR)
2.5. Statistical Analysis
2.6. Network-Based Enrichment Analysis
3. Results
3.1. NGS Screening of Differentially Expressed miRNAs and the Following Validation
3.2. The Analysis of the Functional Role of miRNAs, Differentially Expressed from DLK1-DIO3 Locus in RRMS Pathogenesis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lublin, F.D.; Reingold, S.C. Defining the clinical course of multiple sclerosis: Results of an international survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis. Neurology 1996, 46, 907–911. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef] [PubMed]
- Baulina, N.M.; Kulakova, O.G.; Favorova, O.O. MicroRNAs: The Role in Autoimmune Inflammation. Acta Nat. 2016, 8, 21–33. [Google Scholar]
- Dolati, S.; Marofi, F.; Babaloo, Z.; Aghebati-Maleki, L.; Roshangar, L.; Ahmadi, M.; Rikhtegar, R.; Yousefi, M. Dysregulated Network of miRNAs Involved in the Pathogenesis of Multiple Sclerosis. Biomed. Pharm. 2018, 104, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimkhani, S.; Vafaee, F.; Young, P.E.; Hur, S.S.J.; Hawke, S.; Devenney, E.; Beadnall, H.; Barnett, M.H.; Suter, C.M.; Buckland, M.E. Exosomal microRNA signatures in multiple sclerosis reflect disease status. Sci. Rep. 2017, 7, 14293. [Google Scholar] [CrossRef] [PubMed]
- Keller, A.; Leidinger, P.; Meese, E.; Haas, J.; Backes, C.; Rasche, L.; Behrens, J.R.; Pfuhl, C.; Wakonig, K.; Giess, R.M.; et al. Next-generation sequencing identifies altered whole blood microRNAs in neuromyelitis optica spectrum disorder which may permit discrimination from multiple sclerosis. J. Neuroinflamm. 2015, 12, 196. [Google Scholar] [CrossRef] [PubMed]
- Keller, A.; Leidinger, P.; Steinmeyer, F.; Stahler, C.; Franke, A.; Hemmrich-Stanisak, G.; Kappel, A.; Wright, I.; Dorr, J.; Paul, F.; et al. Comprehensive analysis of microRNA profiles in multiple sclerosis including next-generation sequencing. Mult. Scler. 2014, 20, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Liguori, M.; Nuzziello, N.; Licciulli, F.; Consiglio, A.; Simone, M.; Viterbo, R.G.; Creanza, T.M.; Ancona, N.; Tortorella, C.; Margari, L.; et al. Combined microRNA and mRNA expression analysis in pediatric multiple sclerosis: An integrated approach to uncover novel pathogenic mechanisms of the disease. Hum. Mol. Genet. 2018, 27, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Selmaj, I.; Cichalewska, M.; Namiecinska, M.; Galazka, G.; Horzelski, W.; Selmaj, K.W.; Mycko, M.P. Global exosome transcriptome profiling reveals biomarkers for multiple sclerosis. Ann. Neurol. 2017, 81, 703–717. [Google Scholar] [CrossRef]
- Compston, A.; Coles, A. Multiple sclerosis. Lancet 2002, 359, 1221–1231. [Google Scholar] [CrossRef]
- Baulina, N.; Kulakova, O.; Kiselev, I.; Osmak, G.; Popova, E.; Boyko, A.; Favorova, O. Immune-related miRNA expression patterns in peripheral blood mononuclear cells differ in multiple sclerosis relapse and remission. J. Neuroimmunol. 2018, 317, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Culla, M.; Irizar, H.; Saenz-Cuesta, M.; Castillo-Trivino, T.; Osorio-Querejeta, I.; Sepulveda, L.; Lopez de Munain, A.; Olascoaga, J.; Otaegui, D. SncRNA (microRNA &snoRNA) opposite expression pattern found in multiple sclerosis relapse and remission is sex dependent. Sci. Rep. 2016, 6, 20126. [Google Scholar]
- Polman, C.H.; Reingold, S.C.; Banwell, B.; Clanet, M.; Cohen, J.A.; Filippi, M.; Fujihara, K.; Havrdova, E.; Hutchinson, M.; Kappos, L.; Lublin, F.D.; Montalban, X.; O’Connor, P.; Sandberg-Wollheim, M.; Thompson, A.J.; Waubant, E.; et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 2011, 69, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Gene Expression Omnibus. Available online: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124900 (accessed on 11 January 2019).
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Liberzon, A.; Subramanian, A.; Pinchback, R.; Thorvaldsdottir, H.; Tamayo, P.; Mesirov, J.P. Molecular signatures database (MSigDB) 3.0. Bioinformatics 2011, 27, 1739–1740. [Google Scholar] [CrossRef]
- Backes, C.; Keller, A.; Kuentzer, J.; Kneissl, B.; Comtesse, N.; Elnakady, Y.A.; Muller, R.; Meese, E.; Lenhof, H.P. GeneTrail--advanced gene set enrichment analysis. Nucleic Acids Res. 2007, 35, W186–W192. [Google Scholar] [CrossRef]
- Hagberg, A.; Schult, D.; Swart, P. Exploring network structure, dynamics, and function using NetworkX. In Proceedings of the 7th Python in Science Conference (SciPy2008), Pasadena, CA, USA, 19–24 August 2008; Varoquaux, G., Vaught, T., Eds.; HAL: Lyon, France, 2008; pp. 11–15. [Google Scholar]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Genome Reference Consortium Human Build 38 patch release 12 (GRCh38.p12). Available online: https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.38 (accessed on 21 December 2017).
- Falix, F.A.; Aronson, D.C.; Lamers, W.H.; Gaemers, I.C. Possible roles of DLK1 in the Notch pathway during development and disease. Mol. Basis Dis. 2012, 1822, 988–995. [Google Scholar] [CrossRef]
- Dentice, M.; Salvatore, D. Deiodinases: The balance of thyroid hormone: Local impact of thyroid hormone inactivation. J. Clin. Endocr. Metab. 2011, 209, 273–282. [Google Scholar]
- Court, F.; Tayama, C.; Romanelli, V.; Martin-Trujillo, A.; Iglesias-Platas, I.; Okamura, K.; Sugahara, N.; Simon, C.; Moore, H.; Harness, J.V.; et al. Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment. Genome Res. 2014, 24, 554–569. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.H.; Shrestha, S.; Yang, C.D.; Chang, N.W.; Lin, Y.L.; Liao, K.W.; Huang, W.C.; Sun, T.H.; Tu, S.J.; Lee, W.H.; et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 2018, 46, D296–D302. [Google Scholar] [CrossRef] [PubMed]
- Ghiassian, S.D.; Menche, J.; Chasman, D.I.; Giulianini, F.; Wang, R.; Ricchiuto, P.; Aikawa, M.; Iwata, H.; Muller, C.; Zeller, T.; et al. Endophenotype Network Models: Common Core of Complex Diseases. Sci. Rep. 2016, 6, 27414. [Google Scholar] [CrossRef]
- Da Rocha, S.T.; Edwards, C.A.; Ito, M.; Ogata, T.; Ferguson-Smith, A.C. Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends Genet. 2008, 24, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Tierling, S.; Dalbert, S.; Schoppenhorst, S.; Tsai, C.E.; Oliger, S.; Ferguson-Smith, A.C.; Paulsen, M.; Walter, J. High-resolution map and imprinting analysis of the Gtl2-Dnchc1 domain on mouse chromosome 12. Genomics 2006, 87, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Fiore, R.; Khudayberdiev, S.; Christensen, M.; Siegel, G.; Flavell, S.W.; Kim, T.K.; Greenberg, M.E.; Schratt, G. Mef2-mediated transcription of the miR379-410 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels. EMBO J. 2009, 28, 697–710. [Google Scholar] [CrossRef]
- Song, G.; Wang, L. Transcriptional mechanism for the paired miR-433 and miR-127 genes by nuclear receptors SHP and ERRgamma. Nucleic Acids Res. 2008, 36, 5727–5735. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.E.; Lee, P.R.; Chen, S.; Li, W.; Fields, R.D. MicroRNA regulation of homeostatic synaptic plasticity. Proc. Natl. Acad. Sci. USA 2011, 108, 11650–11655. [Google Scholar] [CrossRef]
- Schratt, G.M.; Tuebing, F.; Nigh, E.A.; Kane, C.G.; Sabatini, M.E.; Kiebler, M.; Greenberg, M.E. A brain-specific microRNA regulates dendritic spine development. Nature 2006, 439, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, G.; Ntounia-Fousara, S.; Granda, B.; Rathjen, T.; Dalmay, T. Identification of new central nervous system specific mouse microRNAs. FEBS Lett. 2006, 580, 2195–2200. [Google Scholar] [CrossRef] [PubMed]
- Nadal, E.; Zhong, J.; Lin, J.; Reddy, R.M.; Ramnath, N.; Orringer, M.B.; Chang, A.C.; Beer, D.G.; Chen, G. A MicroRNA cluster at 14q32 drives aggressive lung adenocarcinoma. Clin. Cancer Res. 2014, 20, 3107–3117. [Google Scholar] [CrossRef] [PubMed]
- Enterina, J.R.; Enfield, K.S.S.; Anderson, C.; Marshall, E.A.; Ng, K.W.; Lam, W.L. DLK1-DIO3 imprinted locus deregulation in development, respiratory disease, and cancer. Expert Rev. Respir. Med. 2017, 11, 749–761. [Google Scholar] [CrossRef] [PubMed]
- Benetatos, L.; Hatzimichael, E.; Londin, E.; Vartholomatos, G.; Loher, P.; Rigoutsos, I.; Briasoulis, E. The microRNAs within the DLK1-DIO3 genomic region: Involvement in disease pathogenesis. Cell. Mol. Life Sci. 2013, 70, 795–814. [Google Scholar] [CrossRef] [PubMed]
- Dill, T.L.; Naya, F.J. A Hearty Dose of Noncoding RNAs: The Imprinted DLK1-DIO3 Locus in Cardiac Development and Disease. J. Cardiovasc. Dev. Dis. 2018, 5, 37. [Google Scholar] [CrossRef]
- Dai, R.; Lu, R.; Ahmed, S.A. The Upregulation of Genomic Imprinted DLK1-Dio3 miRNAs in Murine Lupus Is Associated with Global DNA Hypomethylation. PLoS ONE 2016, 11, e0153509. [Google Scholar] [CrossRef]
- Kameswaran, V.; Bramswig, N.C.; McKenna, L.B.; Penn, M.; Schug, J.; Hand, N.J.; Chen, Y.; Choi, I.; Vourekas, A.; Won, K.J.; et al. Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human type 2 diabetic islets. Cell Metab. 2014, 19, 135–145. [Google Scholar] [CrossRef]
- Hollins, S.L.; Zavitsanou, K.; Walker, F.R.; Cairns, M.J. Alteration of imprinted Dlk1-Dio3 miRNA cluster expression in the entorhinal cortex induced by maternal immune activation and adolescent cannabinoid exposure. Transl. Psychiat. 2014, 4, e452. [Google Scholar] [CrossRef]
- Vistbakka, J.; Elovaara, I.; Lehtimaki, T.; Hagman, S. Circulating microRNAs as biomarkers in progressive multiple sclerosis. Mult. Scler. 2017, 23, 403–412. [Google Scholar] [CrossRef]
- Jernas, M.; Malmestrom, C.; Axelsson, M.; Nookaew, I.; Wadenvik, H.; Lycke, J.; Olsson, B. MicroRNA regulate immune pathways in T-cells in multiple sclerosis (MS). BMC Immunol. 2013, 14, 32. [Google Scholar] [CrossRef]
- Bergman, P.; James, T.; Kular, L.; Ruhrmann, S.; Kramarova, T.; Kvist, A.; Supic, G.; Gillett, A.; Pivarcsi, A.; Jagodic, M. Next-generation sequencing identifies microRNAs that associate with pathogenic autoimmune neuroinflammation in rats. J. Immunol. 2013, 190, 4066–4075. [Google Scholar] [CrossRef] [PubMed]
- Ingwersen, J.; Menge, T.; Wingerath, B.; Kaya, D.; Graf, J.; Prozorovski, T.; Keller, A.; Backes, C.; Beier, M.; Scheffler, M.; et al. Natalizumab restores aberrant miRNA expression profile in multiple sclerosis and reveals a critical role for miR-20b. Ann. Clin. Trans. Neurol. 2015, 2, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, S.; Talebi, F.; Chan, W.F.; Masoumi, F.; Vojgani, M.; Power, C.; Noorbakhsh, F. MicroRNA-181 Variants Regulate T Cell Phenotype in the Context of Autoimmune Neuroinflammation. Front. Immunol. 2017, 8, 758. [Google Scholar] [CrossRef] [PubMed]
- Junker, A.; Krumbholz, M.; Eisele, S.; Mohan, H.; Augstein, F.; Bittner, R.; Lassmann, H.; Wekerle, H.; Hohlfeld, R.; Meinl, E. MicroRNA profiling of multiple sclerosis lesions identifies modulators of the regulatory protein CD47. J. Neurol. 2009, 132, 3342–3352. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Yang, W.; Shi, J.; Zhou, Y.; Yang, J.; Cui, Q.; Zhou, Y. Identification and Analysis of Human Sex-biased MicroRNAs. Genom. Proteom. Bioinform. 2018, 16, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Dai, R.; Ahmed, S.A. Sexual dimorphism of miRNA expression: A new perspective in understanding the sex bias of autoimmune diseases. Ther. Clin. Risk Manag. 2014, 10, 151–163. [Google Scholar] [PubMed]
- Sharma, S.; Eghbali, M. Influence of sex differences on microRNA gene regulation in disease. Biol. Sex Differ. 2014, 5, 3. [Google Scholar] [CrossRef]
- Huan, T.; Rong, J.; Liu, C.; Zhang, X.; Tanriverdi, K.; Joehanes, R.; Chen, B.H.; Murabito, J.M.; Yao, C.; Courchesne, P.; et al. Genome-wide identification of microRNA expression quantitative trait loci. Nat. Commun. 2015, 6, 6601. [Google Scholar] [CrossRef]
- Singmann, P.; Shem-Tov, D.; Wahl, S.; Grallert, H.; Fiorito, G.; Shin, S.Y.; Schramm, K.; Wolf, P.; Kunze, S.; Baran, Y.; et al. Characterization of whole-genome autosomal differences of DNA methylation between men and women. Epigenet. Chromatin 2015, 8, 43. [Google Scholar] [CrossRef]
- Mirshafiey, A.; Ghalamfarsa, G.; Asghari, B.; Azizi, G. Receptor Tyrosine Kinase and Tyrosine Kinase Inhibitors: New Hope for Success in Multiple Sclerosis Therapy. Innov. Clin. Neurosci. 2014, 11, 23–36. [Google Scholar]
- Ruhrmann, S.; Stridh, P.; Kular, L.; Jagodic, M. Genomic imprinting: A missing piece of the Multiple Sclerosis puzzle? Int. J. Biochem. Cell Biol. 2015, 67, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Vinuesa, C.G.; Rigby, R.J.; Yu, D. Logic and extent of miRNA-mediated control of autoimmune gene expression. Int. Rev. Immunol. 2009, 28, 112–138. [Google Scholar] [CrossRef] [PubMed]
- Giacoppo, S.; Pollastro, F.; Grassi, G.; Bramanti, P.; Mazzon, E. Target regulation of PI3K/Akt/mTOR pathway by cannabidiol in treatment of experimental multiple sclerosis. Fitoterapia 2017, 116, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, D.T.; Liu, X.G. mTOR signaling in T cell immunity and autoimmunity. Int. Rev. Immunol. 2015, 34, 50–66. [Google Scholar] [CrossRef] [PubMed]
- Mammana, S.; Bramanti, P.; Mazzon, E.; Cavalli, E.; Basile, M.S.; Fagone, P.; Petralia, M.C.; McCubrey, J.A.; Nicoletti, F.; Mangano, K. Preclinical evaluation of the PI3K/Akt/mTOR pathway in animal models of multiple sclerosis. Oncotarget 2018, 9, 8263–8277. [Google Scholar] [CrossRef] [PubMed]
Stable RRMS (Remission) | Acute RRMS (Relapse) | HCs | |
---|---|---|---|
Sequencing | |||
N | 8 | 8 | 8 |
Gender, (M/F) | 4/4 | 4/4 | 4/4 |
Age, mean ± SD, (years) | 38.9 ± 4.3 | 35.4 ± 6.8 | 37.1 ± 6.4 |
Disease duration, mean ± SD, (years) | 5.6 ± 3.2 | 5.4 ± 3.1 | - |
EDSS, Expanded Disability Status Scale | 2.4 ± 1.0 | 3.1 ± 1.0 | - |
Validation | |||
N | 20 | 16 | 20 |
Gender, (M/F) | 10/10 | 6/10 | 10/10 |
Age, mean ± SD, (years) | 34.8 ± 5.0 | 35.8 ± 4.5 | 38.1 ± 4.6 |
Disease duration, mean ± SD, (years) | 4.5 ± 2.3 | 5.3 ± 2.9 | - |
EDSS, Expanded Disability Status Scale | 2.0 ± 0.5 | 2.7 ± 0.6 | - |
Number | miRNA | Gene | Localization | Log2FC | p-value | padj | |
---|---|---|---|---|---|---|---|
A. RRMS patients versus HCs | |||||||
Downregulated miRNAs | |||||||
1 | hsa-miR-3647-3p | SNORD111B | 16q22.1 | −4.15 | 1.04E-05 | 0.0017 | |
2 | hsa-miR-181a* | MIR181A2 | 9q33.3 | −1.50 | 5.06E-06 | 0.0017 | |
3 | hsa-miR-181a | MIR181A2 | 9q33.3 | −1.27 | 1.73E-05 | 0.0017 | |
4 | hsa-miR-181b | MIR181B1 | 1q32.1 | −1.32 | 8.69E-06 | 0.0017 | |
5 | hsa-miR-3607-3p | SNORD138 | 5q14.3 | −3.41 | 0.00040 | 0.017 | |
6 | hsa-miR-330-5p | MIR330 | 19q13.32 | −1.15 | 0.00075 | 0.021 | |
Upregulated miRNAs | |||||||
1 | hsa-miR-431 | MIR431 | 14q32.2 | 1.86 | 1.21E-05 | 0.0017 | |
2 | hsa-miR-432 | MIR432 | 14q32.2 | 1.71 | 1.73E-05 | 0.0017 | |
3 | hsa-miR-376c | MIR376C | 14q32.31 | 1.86 | 2.53E-05 | 0.0021 | |
4 | hsa-miR-656 | MIR656 | 14q32.31 | 2.37 | 3.47E-05 | 0.0025 | |
5 | hsa-miR-409-5p | MIR409 | 14q32.31 | 5.99 | 9.94E-05 | 0.0064 | |
6 | hsa-miR-411 | MIR411 | 14q32.31 | 1.54 | 0.00011 | 0.0065 | |
7 | hsa-miR-376a | MIR376A-1 | 14q32.31 | 1.99 | 0.00015 | 0.0077 | |
8 | hsa-miR-377 | MIR377 | 14q32.31 | 2.62 | 0.00016 | 0.0077 | |
9 | hsa-miR-127-3p | MIR127 | 14q32.2 | 1.50 | 0.00023 | 0.010 | |
10 | hsa-miR-410 | MIR410 | 14q32.31 | 1.29 | 0.00047 | 0.018 | |
11 | hsa-miR-379 | MIR379 | 14q32.31 | 1.69 | 0.00059 | 0.020 | |
12 | hsa-miR-758 | MIR758 | 14q32.31 | 1.51 | 0.00065 | 0.020 | |
13 | hsa-miR-889 | MIR889 | 14q32.31 | 1.47 | 0.00064 | 0.020 | |
14 | hsa-miR-337-3p | MIR337 | 14q32.2 | 2.25 | 0.00066 | 0.020 | |
15 | hsa-miR-485-5p | MIR485 | 14q32.31 | 1.88 | 0.00075 | 0.021 | |
16 | hsa-miR-485-3p | MIR485 | 14q32.31 | 1.47 | 0.00093 | 0.024 | |
17 | hsa-miR-136* | MIR136 | 14q32.2 | 1.39 | 0.00093 | 0.024 | |
18 | hsa-miR-433 | MIR433 | 14q32.2 | 1.65 | 0.0012 | 0.030 | |
19 | hsa-miR-493 | MIR493 | 14q32.2 | 1.31 | 0.0015 | 0.032 | |
20 | hsa-miR-495 | MIR495 | 14q32.31 | 1.50 | 0.0015 | 0.032 | |
21 | hsa-miR-337-5p | MIR337 | 14q32.2 | 2.02 | 0.0018 | 0.038 | |
22 | hsa-miR-409-3p | MIR409 | 14q32.31 | 1.15 | 0.0020 | 0.040 | |
23 | hsa-miR-376b | MIR376B | 14q32.31 | 2.23 | 0.0021 | 0.040 | |
24 | hsa-miR-370 | MIR370 | 14q32.31 | 1.77 | 0.0022 | 0.041 | |
25 | hsa-miR-134 | MIR134 | 14q32.31 | 1.32 | 0.0023 | 0.041 | |
26 | hsa-miR-381 | MIR381 | 14q32.31 | 1.63 | 0.0034 | 0.048 | |
B. RRMS patients in relapse versus RRMS patients in remission | |||||||
1 | hsa-miR-1 | MIR1-1/ MIR1-2 | 20q13.33/18q11.2 | 3.82 | 3.58E-06 | 0.002 |
MiRNAs | Men: RRMS versus HCs (16 versus 10) | Women: RRMS versus HCs (20 versus 10) | ||
---|---|---|---|---|
Log2FC | padj | Log2FC | padj | |
miR-431 | 3.05 | 0.00014 | 0.16 | 0.99 |
miR-127-3p | 3.00 | 0.00028 | 0.55 | 0.85 |
miR-379 | 3.06 | 0.0018 | −0.90 | 0.48 |
miR-376c | 2.50 | 0.00001 | 0.07 | 0.99 |
miR-381 | 2.52 | 0.00006 | 0.08 | 0.99 |
miR-410 | 2.49 | 0.00001 | 0.36 | 0.99 |
miR-656 | 2.81 | 0.0001 | 0.97 | 0.36 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baulina, N.; Osmak, G.; Kiselev, I.; Popova, E.; Boyko, A.; Kulakova, O.; Favorova, O. MiRNAs from DLK1-DIO3 Imprinted Locus at 14q32 are Associated with Multiple Sclerosis: Gender-Specific Expression and Regulation of Receptor Tyrosine Kinases Signaling. Cells 2019, 8, 133. https://doi.org/10.3390/cells8020133
Baulina N, Osmak G, Kiselev I, Popova E, Boyko A, Kulakova O, Favorova O. MiRNAs from DLK1-DIO3 Imprinted Locus at 14q32 are Associated with Multiple Sclerosis: Gender-Specific Expression and Regulation of Receptor Tyrosine Kinases Signaling. Cells. 2019; 8(2):133. https://doi.org/10.3390/cells8020133
Chicago/Turabian StyleBaulina, Natalia, German Osmak, Ivan Kiselev, Ekaterina Popova, Alexey Boyko, Olga Kulakova, and Olga Favorova. 2019. "MiRNAs from DLK1-DIO3 Imprinted Locus at 14q32 are Associated with Multiple Sclerosis: Gender-Specific Expression and Regulation of Receptor Tyrosine Kinases Signaling" Cells 8, no. 2: 133. https://doi.org/10.3390/cells8020133
APA StyleBaulina, N., Osmak, G., Kiselev, I., Popova, E., Boyko, A., Kulakova, O., & Favorova, O. (2019). MiRNAs from DLK1-DIO3 Imprinted Locus at 14q32 are Associated with Multiple Sclerosis: Gender-Specific Expression and Regulation of Receptor Tyrosine Kinases Signaling. Cells, 8(2), 133. https://doi.org/10.3390/cells8020133