Quantitative Distribution of DNA, RNA, Histone and Proteins Other than Histone in Mammalian Cells, Nuclei and a Chromosome at High Resolution Observed by Scanning Transmission Soft X-Ray Microscopy (STXM)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. NEXAFS of DNA, RNA, Histone, and BSA
3.2. Absorption Images
3.3. Quantitative Distribution of DNA, RNA, Histone, and Proteins Other Than Histone
3.4. Color Expression of the Molecular Distribution
3.5. Local Spectra of Absorption
3.6. Estimation of Local Quantities
4. Discussion
4.1. Analysis of Molecular Distribution
4.2. Mass Thickness Distribution of DNA, RNA, Histone, and Proteins Other Than Histone
4.3. Chromosome Structure
4.4. Molecular Distribution in the Apoptotic Nucleus
4.5. Local Analysis of Absorption Spectra
4.6. X-Ray Spectromicroscopy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kirz, J.; Jacobsen, C.; Howells, M. Soft X-ray microscopes and their biological applications. Quarterly Rev. Biophys. 1995, 28, 33–130. [Google Scholar] [CrossRef]
- Methe, O.; Spring, H.; Guttmann, P.; Schneider, G.; Rudolph, D.; Trendelenburg, M.F.; Schmahl, G. GTansmission X-ray microscopy of intact hydrated PtK2 cells during the cell cycle. J. Microsc. 1997, 188, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Mayer-Ilse, W.; Hamamoto, D.; Nair, A.; Lelièvre, S.A.; Denbeaux, G.; Johnson, L.; Pearson, A.L.; Yager, D.; Legros, M.A.; Larabell, C.A. High resolution protein localization using soft X-ray microscopy. J. Microsc. 2001, 201, 395–403. [Google Scholar] [CrossRef] [Green Version]
- Miao, J.; Hodgson, K.O.; Ishikawa, T.; Larabell, C.A.; LeGros, M.A.; Nishino, Y. Imaging whole Escherichia coli bacteria by using single-particle x-ray diffraction. Proc. Natl. Acad. Sci. USA 2003, 100, 110–112. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, D.; Thibault, P.; Beetz, T.; Elser, V.; Howells, M.; Jacobsen, C.; Kirz, J.; Lima, E.; Mial, H.; Neiman, A.M.; et al. Biological imaging by soft X-ray diffraction microscopy. Proc. Natl. Acad. Sci. USA 2005, 102, 15343–15346. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Vine, D.J.; Vhrn, D.; Nashed, Y.S.G.; Jin, Q.; Phillips, N.W.; Peterka, T.; Ross, R.; Vogt, S.; Jacobsen, C. Simultaneous cryo X-ray ptychographic and fluorescence microscopy of green algae. Proc. Natl. Acad. Sci. USA 2015, 112, 2314–2319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinjo, Y.; Shinohara, K.; Ito, A.; Nakano, H.; Watanabe, M.; Horiike, Y.; Kikuchi, Y.; Richardson, M.C.; Tanaka, K.A. Direct imaging in a water layer of human chromosome fibres composed of nucleosomes and their hitier-order structures by laser-plasma X-ray contact microscopy. J. Microsc. 1994, 176, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Shinohara, K. Application of X-ray microscopy in analysis of living hydrated cells. Anat. Rec. 2002, 269, 217–223. [Google Scholar] [CrossRef]
- Shimura, M.; Saito, A.; Matsuyama, S.; Sakuma, T.; Terui, Y.; Ueno, K.; Yumoto, H.; Yamauchi, K.; Yamamura, K.; Mimura, H.; et al. Element array by scanning X-ray fluorescence microscopy after cis-diamminedichloro-platinum (II) treatment. Cancer Res. 2005, 65, 4998–5002. [Google Scholar] [CrossRef]
- Kinebuchi, M.; Matsuura, A.; Kiyono, T.; Nomura, Y.; Kimura, S. Diagnostic copper imaging of Menkes disease by synchrotron radiation-generated X-ray fluorescence analysis. Sci. Rep. 2016, 6, 1–15. [Google Scholar] [CrossRef]
- Weiß, D.; Schneider, G.; Niemann, B.; Guttmann, P.; Rudolph, D.; Schmahl, G. Computed tomography of cryogenic biological specimens based on X-ray microscopic images. Ultramicroscopy 2000, 84, 185–197. [Google Scholar] [CrossRef]
- Müller, W.G.; Heymann, J.B.; Nagashima, K.; Guttmann, P.; Werner, S.; Rehbein, S.; Schneider, G.; McNally, J.G. Towards an atlas of mammalian cell ultrastructure by cryo soft X-ray tomography. J. Structural Biol. 2012, 177, 179–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, E.A.; McDermott, G.; Do, M.; Leung, K.; Panning, B.; Le Gros, M.A.; Larabell, C.A. Quantitatively imaging chromosomes by correlated cryo-fluorescence and soft X-ray tomographies. Biophys. J. 2014, 107, 1988–1996. [Google Scholar] [CrossRef] [PubMed]
- Duke, E.M.H.; Razi, M.; Weston, A.; Guttmann, P.; Werner, S.; Henzler, K.; Schneider, G.; Tooze, S.A.; Collinson, L.M. Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM). Ultramicroscopy 2014, 143, 77–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Gros, M.A.; Clowney, E.J.; Magklara, A.; Yen, A.; Markenscoff-Papadimitriou, E.; Colwquitt, B.; Myllys, M.; Kellis, M.; Lomvardas, S.; Larabell, C.A. Soft X-ray tomography reveals gradual chromatin compaction and reorganization during neurogenesis in vivo. Cell Rep. 2016, 17, 2125–2136. [Google Scholar] [CrossRef] [PubMed]
- Hale, V.L.; Watermeyer, J.M.; Hackett, F.; Vizcay-Barrena, G.; van Ooij, C.; Thomas, J.A.; Spink, M.C.; Harkiolaki, M.; Duke, E.; Fleck, R.A.; et al. Parasitophorous vacuole poration precedes its rupture and rapid host erythrocyte cytoskeleton collapse in Plasmodium falciparum egress. Proc. Natl. Acad. Sci. USA 2017, 114, 3439–3444. [Google Scholar] [CrossRef] [PubMed]
- Kapishnikov, S.; Leiserowitz, L.; Yang, Y.; Cloetens, P.; Pereiro, E.; Ndonglack, F.A.; Matsuschewski, K.; Als-Nielsen, J. Biochemistry of malaria parasite infected red blood cells by X-ray microscopy. Sci. Rep. 2017, 7, 802. [Google Scholar] [CrossRef]
- Ade, H.; Zhang, X.; Cameron, S.; Costello, C.; Kirz, J.; Williams, S. Chemical contrast in X-ray microscopy and spatially resolved XANES spectroscopy of organic specimens. Science 1992, 258, 972–975. [Google Scholar] [CrossRef]
- Zhang, X.; Balhorn, R.; Mazrimas, J.; Kirz, J. Mapping and measuring DNA to protein ratios in mammalian sperm head by XANES imaging. J. Struct. Biol. 1996, 116, 335–344. [Google Scholar] [CrossRef]
- Lawrence, J.R.; Swerhone, G.D.W.; Leppard, G.G.; Araki, T.; Zhang, X.; West, M.M.; Hitchcock, A.P. Scanning transmission X-ray, laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms. Appl. Environ. Microbiol. 2003, 69, 5543–5554. [Google Scholar] [CrossRef]
- Yangquanwei, Z.; Neethirajan, S.; Karunakaran, C. Cytogenetic analysis of quinoa chromosomes using nanoscale imaging and spectroscopy techniques. Nanoscale Res. Lett. 2013, 8, 463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamroskovic, J.; Shao, P.P.; Suvorova, E.; Barak, I.; Bernier-Latmani, R. Combined scanning transmission X-ray and electron microscopy for the characterization of bacterial endospores. FEMS Microbiol. Lett. 2014, 358, 188–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinohara, K.; Ohigashi, T.; Toné, S.; Kado, M.; Ito, A. Quantitative analysis of mammalian chromosome by scanning transmission soft X-ray microscopy. Ultramicroscopy 2018, 194, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, K.; Ito, A.; Ohigashi, T.; Kado, M.; Toné, S. Discrimination of DNA and RNA distribution in a mammalian cell by scanning transmission soft X-ray microscopy. J. X-ray Sci. Technol. 2018, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Toné, S.; Sugimoto, K.; Tanda, K.; Suda, T.; Uehira, K.; Kanouchi, H.; Samejima, K.; Minatogawa, Y.; Earnshaw, W.C. Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis. Exp. Cell Res. 2007, 313, 3635–3644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinohara, K.; Ohigashi, T.; Toné, S.; Kado, M.; Ito, A. Quantitative study of mammalian cells by scanning transmission soft X-ray microscopy. J. Phys. Conf. Ser. 2017, 849, 012003. [Google Scholar] [CrossRef] [Green Version]
- aXis 2000—Analysis of X-ray Images and Spectra. Available online: http://unicorn.mcmaster.ca/aXis2000.html (accessed on 11 December 2018).
- X-Ray Interactions With Matter. Available online: http://henke.lbl.gov/optical_constants/ (accessed on 11 December 2018).
- Alberts, B.; Bray, D.; Lewis, J.; Raff, M.; Roberts, K.; Watson, J.D. Approximate chemical compositions of a typical bacterium and a typical mammalian cell. In Molecular Biology of the Cell, 3rd ed.; Garland Publishing, Inc.: New York, NY, USA; London, UK, 1994; p. 90. [Google Scholar]
- Maggio, R.; Siekevitz, P.; Palade, G.E. Studies on isolated nuclei I. Isolation and chemical characterization of a nuclear fraction from guinea pig liver. J. Cell Biol. 1963, 18, 267–291. [Google Scholar] [CrossRef]
- Van Zandvoort, M.A.M.J.; de Grauw, C.J.; Gerritsen, H.C.; Broers, J.L.V.; oude Egbrink, M.G.A.; Ramaekers, F.C.S.; Slaaf, D.W. Discrimination of DNA and RNA in cells by a vital fluorescent probe: Life time imaging of SYTO13 in healthy and apoptotic cells. Cytometry 2002, 47, 226–235. [Google Scholar] [CrossRef]
- Ohta, S.; Bukowski-Wills, J.-C.; Wood, L.; de Limia Alves, F.; Chen, Z.; Rappsilber, J.; Earnshaw, W.C. Proteomics of isolated mitotic chromosomes identifies the kinetochore protein Ska3/Rama 1. Cold Spring Harb. Symp. Quant. Biol. 2010, 75, 433–438. [Google Scholar] [CrossRef]
- Lewin, B. The frequency of genetic recombination is much lower in eukaryotes than in prokaryotes. In Genes V; Oxford University Press: Oxford, UK; New York, NY, USA; London, UK, 1994; p. 128. [Google Scholar]
- Shinohara, K.; Ito, A. Radiation damage in soft X-ray microscopy of live mammalian cells. J. Microsc. 1991, 161, 463–472. [Google Scholar] [CrossRef]
Sample | Position | DNA | RNA | Histone | Other Proteins * | Total Content |
---|---|---|---|---|---|---|
Content in the Area (fg) | (fg) | |||||
CHO | 1 | 0.00 | 36.43 | 0.00 | 61.92 | 98.35 |
2 | 0.54 | 50.40 | 2.12 | 186.24 | 239.30 | |
3 | 84.48 | 0.74 | 117.60 | 146.40 | 349.22 | |
Chromosome | 1 | 4.80 | 0.50 | 2.39 | 9.12 | 16.81 |
2 | 1.14 | 1.01 | 0.15 | 9.36 | 11.66 | |
3 | 1.33 | 1.26 | 0.00 | 7.32 | 9.92 | |
4 | 0.20 | 0.12 | 0.22 | 3.15 | 3.68 | |
Whole Area | 730 | 347 | 206 | 2952 | 4235 | |
HeLa | 1 | 0.01 | 13.15 | 0.41 | 48.48 | 62.06 |
2 | 31.68 | 6.82 | 112.80 | 5.74 | 157.03 | |
Intact Nucleus | 3 | 18.00 | 0.04 | 33.55 | 6.48 | 58.07 |
Apoptotic Nucleus | 4 | 3.63 | 10.51 | 9.37 | 21.17 | 44.68 |
5 | 15.84 | 0.21 | 28.37 | 13.82 | 58.25 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shinohara, K.; Toné, S.; Ejima, T.; Ohigashi, T.; Ito, A. Quantitative Distribution of DNA, RNA, Histone and Proteins Other than Histone in Mammalian Cells, Nuclei and a Chromosome at High Resolution Observed by Scanning Transmission Soft X-Ray Microscopy (STXM). Cells 2019, 8, 164. https://doi.org/10.3390/cells8020164
Shinohara K, Toné S, Ejima T, Ohigashi T, Ito A. Quantitative Distribution of DNA, RNA, Histone and Proteins Other than Histone in Mammalian Cells, Nuclei and a Chromosome at High Resolution Observed by Scanning Transmission Soft X-Ray Microscopy (STXM). Cells. 2019; 8(2):164. https://doi.org/10.3390/cells8020164
Chicago/Turabian StyleShinohara, Kunio, Shigenobu Toné, Takeo Ejima, Takuji Ohigashi, and Atsushi Ito. 2019. "Quantitative Distribution of DNA, RNA, Histone and Proteins Other than Histone in Mammalian Cells, Nuclei and a Chromosome at High Resolution Observed by Scanning Transmission Soft X-Ray Microscopy (STXM)" Cells 8, no. 2: 164. https://doi.org/10.3390/cells8020164
APA StyleShinohara, K., Toné, S., Ejima, T., Ohigashi, T., & Ito, A. (2019). Quantitative Distribution of DNA, RNA, Histone and Proteins Other than Histone in Mammalian Cells, Nuclei and a Chromosome at High Resolution Observed by Scanning Transmission Soft X-Ray Microscopy (STXM). Cells, 8(2), 164. https://doi.org/10.3390/cells8020164