Genetic Studies of Inflammatory Bowel Disease-Focusing on Asian Patients
Abstract
:1. Introduction
2. Evidence for Genetic Factors of IBD
3. History of IBD Genetics
4. Genetic Studies in Patients with IBD in Asia
5. Susceptibility Genes and Pathophysiology
5.1. NOD2/CARD15
5.2. Autophagy Genes
5.3. TNFSF15
5.4. IL23R Pathway
5.5. IL10 Pathway
5.6. Major Histocompatibility Complex
5.7. Genetics and Microbiota
6. Genetic Factors and Disease Course
7. Pharmacogenetics in IBD
7.1. Thiopurine
7.2. Anti-TNF Treatment
8. Conclusions
Author Contributions
Conflicts of Interest
References
- Henriksen, M.; Jahnsen, J.; Lygren, I.; Sauar, J.; Kjellevold, Y.; Schulz, T.; Vatn, M.H.; Moum, B. Ulcerative colitis and clinical course: Results of a 5-year population-based follow-up study (the IBSEN study). Inflamm. Bowel Dis. 2006, 12, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Thia, K.T.; Loftus, J.E.V.; Sandborn, W.J.; Yang, S.-K.; Loftus, E.V. An Update on the Epidemiology of Inflammatory Bowel Disease in Asia. Am. J. Gastroenterol. 2008, 103, 3167–3182. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.K.; Yun, S.; Kim, J.H.; Park, J.Y.; Kim, H.Y.; Kim, Y.H.; Chang, D.K.; Kim, J.S.; Song, I.S.; Park, J.B.; et al. Epidemiology of Inflammatory Bowel Disease in the Songpa-Kangdong District, Seoul, Korea, 1986–2005: A Kasid Study. Inflamm. Bowel Dis. 2008, 14, 542–549. [Google Scholar] [CrossRef]
- Ng, S.C. Epidemiology of inflammatory bowel disease: Focus on Asia. Best Pract. Res. Clin. Gastroenterol. 2014, 28, 363–372. [Google Scholar] [CrossRef]
- Ek, W.E.; D’Amato, M.; Halfvarson, J. The history of genetics in inflammatory bowel disease. Ann. Gastroenterol. 2014, 27, 294–303. [Google Scholar]
- Kirsner, J.B.; Spencer, J.A. Family Occurrences of Ulcerative Colitis, Regional Enteritis, and Ileocolitis. Ann. Intern. Med. 1963, 59, 133. [Google Scholar] [CrossRef]
- Yang, H.; McElree, C.; Roth, M.P.; Shanahan, F.; Targan, S.R.; Rotter, J.I. Familial empirical risks for inflammatory bowel disease: Differences between Jews and non-Jews. Gut 1993, 34, 517–524. [Google Scholar] [CrossRef]
- Park, J.B.; Yang, S.-K.; Byeon, J.-S.; Park, E.-R.; Moon, G.; Myung, S.J.; Park, W.K.; Yoon, S.G.; Kim, H.S.; Lee, J.G.; et al. Familial occurrence of inflammatory bowel disease in Korea. Inflamm. Bowel Dis. 2006, 12, 1146–1151. [Google Scholar] [CrossRef]
- Annese, V.; Andreoli, A.; Astegiano, M.; Campieri, M.; Caprilli, R.; Cucchiara, S.; D’Inca, R.; Giaccari, S.; Iaquinto, G.; Lombardi, G.; et al. Clinical features in familial cases of Crohn’s disease and ulcerative colitis in Italy: A GISC study. Am. J. Gastroenterol. 2001, 96, 2939–2945. [Google Scholar] [PubMed]
- Tysk, C.; Lindberg, E.; Jarnerot, G.; Flodérus-Myrhed, B. Ulcerative colitis and Crohn’s disease in an unselected population of monozygotic and dizygotic twins. A study of heritability and the influence of smoking. Gut 1988, 29, 990–996. [Google Scholar] [CrossRef]
- Brant, S.R. Update on the heritability of inflammatory bowel disease: The importance of twin studies. Inflamm. Bowel Dis. 2011, 17, 1–5. [Google Scholar] [CrossRef]
- Ye, B.D.; McGovern, D.P.B. Genetic variation in IBD: Progress, clues to pathogenesis and possible clinical utility. Expert Rev. Clin. Immunol. 2016, 12, 1091–1107. [Google Scholar] [CrossRef]
- Halme, L.; Paavola-Sakki, P.; Turunen, U.; Lappalainen, M.; Färkkilä, M.; Kontula, K. Family and twin studies in inflammatory bowel disease. World J. Gastroenterol. 2006, 12, 3668–3672. [Google Scholar] [CrossRef]
- Moller, F.T.; Andersen, V.; Wohlfahrt, J.; Jess, T. Familial Risk of Inflammatory Bowel Disease: A Population-Based Cohort Study 1977–2011. Am. J. Gastroenterol. 2015, 110, 564–571. [Google Scholar] [CrossRef]
- Jiang, L.; Xia, B.; Li, J.; Ye, M.; Deng, C.; Ding, Y.; Luo, H.; Ren, H.; Hou, X.; Liu, H.; et al. Risk Factors for Ulcerative Colitis in a Chinese Population: An Age-Matched and Sex-Matched Case-Control Study. J. Clin. Gastroenterol. 2007, 41, 280–284. [Google Scholar] [CrossRef]
- Makharia, G.K.; Ramakrishna, B.S.; Abraham, P.; Choudhuri, G.; Misra, S.P.; Ahuja, V.; Bhatia, S.J.; Bhasin, D.K.; Dadhich, S.; Dhali, G.K.; et al. Survey of inflammatory bowel diseases in India. Indian J. Gastroenterol. 2012, 31, 299–306. [Google Scholar] [CrossRef]
- Thia, K.T.J.; Luman, W.; Jin, O.C. Crohn’s disease runs a more aggressive course in young Asian patients. Inflamm. Bowel Dis. 2006, 12, 57–61. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhu, Z.; Yang, Y.; Ruan, W.; Peng, X.; Su, Y.; Peng, L.; Chen, J.; Yin, Q.; Zhao, C.; et al. Incidence and clinical characteristics of inflammatory bowel disease in a developed region of Guangdong Province, China: A prospective population-based study. J. Gastroenterol. Hepatol. 2013, 28, 1148–1153. [Google Scholar] [CrossRef]
- Hwang, S.W.; Kwak, M.S.; Lee, J.-M.; Kim, W.S.; Park, S.H.; Yang, D.-H.; Ye, B.D.; Byeon, J.-S.; Myung, S.-J.; Yoon, Y.S.; et al. Influence of a Positive Family History on the Clinical Course of Inflammatory Bowel Disease. J. Crohn’s Coliti 2016, 10, 1024–1032. [Google Scholar] [CrossRef]
- Hugot, J.-P.; Laurent-Puig, P.; Gower-Rousseau, C.; Olson, J.M.; Lee, J.C.; Beaugerie, L.; Naom, I.; Dupas, J.-L.; Van Gossum, A.; Orholm, M.; et al. Mapping of a susceptibility locus for Crohn’s disease on chromosome 16. Nature 1996, 379, 821–823. [Google Scholar] [CrossRef]
- Hugot, J.-P.; Chamaillard, M.; Zouali, H.; Lesage, S.; Cézard, J.-P.; Belaiche, J.; Almer, S.; Tysk, C.; O’Morain, C.A.; Gassull, M.; et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001, 411, 599–603. [Google Scholar] [CrossRef]
- Yamazaki, K.; McGovern, D.; Ragoussis, J.; Paolucci, M.; Butler, H.; Jewell, D.; Cardon, L.; Takazoe, M.; Tanaka, T.; Ichimori, T.; et al. Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn’s disease. Hum. Mol. Genet. 2005, 14, 3499–3506. [Google Scholar] [CrossRef]
- Duerr, R.H.; Taylor, K.D.; Brant, S.R.; Rioux, J.D.; Silverberg, M.S.; Daly, M.J.; Steinhart, A.H.; Abraham, C.; Regueiro, M.; Griffiths, A.; et al. A Genome-Wide Association Study Identifies IL23R as an Inflammatory Bowel Disease Gene. Science 2006, 314, 1461–1463. [Google Scholar] [CrossRef]
- Hampe, J.; Franke, A.; Rosenstiel, P.; Till, A.; Teuber, M.; Huse, K.; Albrecht, M.; Mayr, G.; De La Vega, F.M.; Briggs, J.; et al. A Genome-Wide Association Scan of Nonsynonymous Snps Identifies a Susceptibility Variant for Crohn Disease in Atg16l1. Nat. Genet. 2007, 39, 207–211. [Google Scholar] [CrossRef]
- Libioulle, C.; Louis, E.; Hansoul, S.; Sandor, C.; Farnir, F.; Franchimont, D.; Vermeire, S.; Dewit, O.; De Vos, M.; Dixon, A.; et al. Novel Crohn Disease Locus Identified by Genome-Wide Association Maps to a Gene Desert on 5p13.1 and Modulates Expression of Ptger4. PLoS Genet. 2007, 3, E58. [Google Scholar] [CrossRef]
- Rioux, J.D.; Xavier, R.J.; Taylor, K.D.; Silverberg, M.S.; Goyette, P.; Huett, A.; Green, T.; Kuballa, P.; Barmada, M.M.; Datta, L.W.; et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 2007, 39, 596–604. [Google Scholar] [CrossRef]
- De Lange, K.M.; Barrett, J.C. Understanding inflammatory bowel disease via immunogenetics. J. Autoimmun. 2015, 64, 91–100. [Google Scholar] [CrossRef]
- Van Limbergen, J.; Wilson, D.C.; Satsangi, J. The Genetics of Crohn’s Disease. Annu. Genom. Hum. Genet. 2009, 10, 89–116. [Google Scholar] [CrossRef]
- Anderson, C.A.; Boucher, G.; Lees, C.W.; Franke, A.; D’Amato, M.; Taylor, K.D.; Lee, J.C.; Goyette, P.; Imielinski, M.; Latiano, A.; et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat. Genet. 2011, 43, 246–252. [Google Scholar] [CrossRef]
- Lee, J.C.; Lees, C.W.; Prescott, N.J.; Anderson, C.A.; Phillips, A.; Wesley, E.; Parnell, K.; Zhang, H.; Drummond, H.; Nimmo, E.R.; et al. Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nat. Genet. 2009, 41, 1330–1334. [Google Scholar]
- Thompson, A.I.; Lees, C.W. Genetics of ulcerative colitis. Inflamm. Bowel Dis. 2011, 17, 831–848. [Google Scholar] [CrossRef]
- Jostins, L.; Ripke, S.; Weersma, R.K.; Duerr, R.H.; McGovern, D.P.; Hui, K.Y.; Lee, J.C.; Schumm, L.P.; Sharma, Y.; Anderson, C.A.; et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012, 491, 119–124. [Google Scholar] [CrossRef]
- De Lange, K.M.; Moutsianas, L.; Lee, J.C.; Lamb, C.A.; Luo, Y.; Kennedy, N.A.; Jostins, L.; Rice, D.L.; Gutierrez-Achury, J.; Ji, S.-G.; et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 2017, 49, 256–261. [Google Scholar] [CrossRef]
- Cheon, J.H. Genetics of inflammatory bowel diseases: A comparison between Western and Eastern perspectives. J. Gastroenterol. Hepatol. 2013, 28, 220–226. [Google Scholar] [CrossRef]
- Ng, S.C.; Tsoi, K.K.; Kamm, M.A.; Xia, B.; Wu, J.; Chan, F.K.; Sung, J.J. Genetics of Inflammatory Bowel Disease in Asia: Systematic Review and Meta-Analysis. Inflamm. Bowel Dis. 2012, 18, 1164–1176. [Google Scholar] [CrossRef]
- Yang, S.K.; Ye, B.D.; Song, K. Atg16l1 Contributes to Crohn’s Disease Susceptibility in Koreans: Overmuch Concern for Ethnic Difference? Gut 2015, 64, 687–688. [Google Scholar] [CrossRef]
- Hong, S.N.; Park, C.; Park, S.J.; Lee, C.K.; Ye, B.D.; Kim, Y.S.; Lee, S.; Chae, J.; Kim, J.I.; Kim, Y.H. Deep Resequencing of 131 Crohn’s Disease Associated Genes in Pooled DNA Confirmed Three Reported Variants and Identified Eight Novel Variants. Gut 2016, 65, 788–796. [Google Scholar] [CrossRef]
- Kim, S.W.; Kim, E.S.; Moon, C.M.; Park, J.J.; Kim, T.I.; Kim, W.H.; Cheon, J.H. Genetic polymorphisms of IL-23R and IL-17A and novel insights into their associations with inflammatory bowel disease. Gut 2011, 60, 1527–1536. [Google Scholar] [CrossRef]
- Yamazaki, K.; Onouchi, Y.; Takazoe, M.; Kubo, M.; Nakamura, Y.; Hata, A. Association analysis of genetic variants in IL23R, ATG16L1 and 5p13.1 loci with Crohn’s disease in Japanese patients. J. Hum. Genet. 2007, 52, 575–583. [Google Scholar] [CrossRef]
- Bin, C.; Zhirong, Z.; Xiaoqin, W.; Minhu, C.; Mei, L.; Xiang, G.; Baili, C.; Pinjin, H. Contribution of rs11465788 in IL23R gene to Crohn’s disease susceptibility and phenotype in Chinese population. J. Genet. 2009, 88, 191–196. [Google Scholar] [CrossRef]
- Yamazaki, K.; Umeno, J.; Takahashi, A.; Hirano, A.; Johnson, T.A.; Kumasaka, N.; Morizono, T.; Hosono, N.; Kawaguchi, T.; Takazoe, M.; et al. A Genome-Wide Association Study Identifies 2 Susceptibility Loci for Crohn’s Disease in a Japanese Population. Gastroenterology 2013, 144, 781–788. [Google Scholar] [CrossRef]
- Yang, S.K.; Hong, M.; Zhao, W.; Jung, Y.; Baek, J.; Tayebi, N.; Kim, K.M.; Ye, B.D.; Kim, K.J.; Park, S.H.; et al. Genome-Wide Association Study of Crohn’s Disease in Koreans Revealed Three New Susceptibility Loci and Common Attributes of Genetic Susceptibility across Ethnic Populations. Gut 2014, 63, 80–87. [Google Scholar] [CrossRef]
- Yang, S.-K.; Hong, M.; Choi, H.; Zhao, W.; Jung, Y.; Haritunians, T.; Ye, B.D.; Kim, K.-J.; Park, S.H.; Lee, I.; et al. Immunochip Analysis Identification of 6 Additional Susceptibility Loci for Crohn’s Disease in Koreans. Inflamm. Bowel Dis. 2015, 21, 1–7. [Google Scholar] [CrossRef]
- Kakuta, Y.; Kawai, Y.; Naito, T.; Hirano, A.; Umeno, J.; Fuyuno, Y.; Liu, Z.; Li, D.; Nakano, T.; Izumiyama, Y.; et al. A Genome-wide Association Study Identifying RAP1A as a Novel Susceptibility Gene for Crohn’s Disease in Japanese Individuals. J. Crohn’s Coliti 2018, 13, 648–658. [Google Scholar] [CrossRef]
- Ishihara, S.; Nishikimi, A.; Umemoto, E.; Miyasaka, M.; Saegusa, M.; Katagiri, K. Dual functions of Rap1 are crucial for T-cell homeostasis and prevention of spontaneous colitis. Nat. Commun. 2015, 6, 8982. [Google Scholar] [CrossRef]
- Guo, C.; Wu, K. Risk Genes of Inflammatory Bowel Disease in Asia: What Are the Most Important Pathways Affected? Dig. Dis. 2016, 34, 5–11. [Google Scholar] [CrossRef]
- Asano, K.; Matsushita, T.; Umeno, J.; Hosono, N.; Takahashi, A.; Kawaguchi, T.; Matsumoto, T.; Matsui, T.; Kakuta, Y.; Kinouchi, Y.; et al. A genome-wide association study identifies three new susceptibility loci for ulcerative colitis in the Japanese population. Nat. Genet. 2009, 41, 1325–1329. [Google Scholar] [CrossRef]
- Yang, S.-K.; Hong, M.; Zhao, W.; Jung, Y.; Tayebi, N.; Ye, B.D.; Kim, K.-J.; Park, S.H.; Lee, I.; Shin, H.D.; et al. Genome-Wide Association Study of Ulcerative Colitis in Koreans Suggests Extensive Overlapping of Genetic Susceptibility with Caucasians. Inflamm. Bowel Dis. 2013, 19, 954–966. [Google Scholar] [CrossRef]
- Ye, B.D.; Choi, H.; Hong, M.; Yun, W.J.; Low, H.-Q.; Haritunians, T.; Kim, K.-J.; Park, S.H.; Lee, I.; Bang, S.-Y.; et al. Identification of Ten Additional Susceptibility Loci for Ulcerative Colitis Through Immunochip Analysis in Koreans. Inflamm. Bowel Dis. 2016, 22, 13–19. [Google Scholar] [CrossRef]
- Juyal, G.; Negi, S.; Sood, A.; Gupta, A.; Prasad, P.; Senapati, S.; Zaneveld, J.; Singh, S.; Midha, V.; Van Sommeren, S.; et al. Genome-Wide Association Scan in North Indians Reveals Three Novel Hla-Independent Risk Loci for Ulcerative Colitis. Gut 2015, 64, 571–579. [Google Scholar] [CrossRef]
- Liu, J.Z.; Van Sommeren, S.; Huang, H.; Ng, S.C.; Alberts, R.; Takahashi, A.; Ripke, S.; Lee, J.C.; Jostins, L.; Shah, T.; et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 2015, 47, 979–986. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, F.; Tao, J.; Song, L.; Ng, S.C.; Wang, X.; Chen, L.; Yi, F.; Ran, Z.; Zhou, R.; et al. Exome Sequencing Identifies Dlg1 as a Novel Gene for Potential Susceptibility to Crohn’s Disease in a Chinese Family Study. PLoS ONE 2014, 9, E99807. [Google Scholar] [CrossRef]
- Hong, M.; Ye, B.D.; Yang, S.-K.; Jung, S.; Lee, H.-S.; Kim, B.M.; Bin Lee, S.; Hong, J.; Baek, J.; Park, S.H.; et al. Immunochip Meta-Analysis of Inflammatory Bowel Disease Identifies Three Novel Loci and Four Novel Associations in Previously Reported Loci. J. Crohn’s Coliti 2018, 12, 730–741. [Google Scholar] [CrossRef]
- Biank, V.; Broeckel, U.; Kugathasan, S. Pediatric inflammatory bowel disease: Clinical and molecular genetics. Inflamm. Bowel Dis. 2007, 13, 1430–1438. [Google Scholar] [CrossRef]
- Chua, K.H.; Hilmi, I.; Ng, C.C.; Eng, T.L.; Palaniappan, S.; Lee, W.S.; Goh, K. Identification ofNOD2/CARD15mutations in Malaysian patients with Crohn’s disease. J. Dig. Dis. 2009, 10, 124–130. [Google Scholar] [CrossRef]
- Parkes, M.; Barrett, J.C.; Prescott, N.J.; Tremelling, M.; Anderson, C.A.; Fisher, S.A.; Roberts, R.G.; Nimmo, E.R.; Cummings, F.R.; Soars, D.; et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat. Genet. 2007, 39, 830–832. [Google Scholar] [CrossRef]
- Travassos, L.H.; Carneiro, L.A.; Ramjeet, M.; Hussey, S.; Kim, Y.G.; Magalhaes, J.G.; Yuan, L.; Soares, F.; Chea, E.; Le Bourhis, L.; et al. Nod1 and Nod2 Direct Autophagy by Recruiting Atg16l1 to the Plasma Membrane at the Site of Bacterial Entry. Nat. Immunol. 2010, 11, 55–62. [Google Scholar] [CrossRef]
- Cooney, R.; Baker, J.; Brain, O.; Danis, B.; Pichulik, T.; Allan, P.; Ferguson, D.J.; Campbell, B.J.; Jewell, D.; Simmons, A. Nod2 Stimulation Induces Autophagy in Dendritic Cells Influencing Bacterial Handling and Antigen Presentation. Nature Medicine 2010, 16, 90–97. [Google Scholar] [CrossRef]
- Vandussen, K.L.; Liu, T.C.; Li, D.; Towfic, F.; Modiano, N.; Winter, R.; Haritunians, T.; Taylor, K.D.; Dhall, D.; Targan, S.R.; et al. Genetic Variants Synthesize to Produce Paneth Cell Phenotypes That Define Subtypes of Crohn’s Disease. Gastroenterology 2014, 146, 200–209. [Google Scholar] [CrossRef]
- Liu, T.C.; Naito, T.; Liu, Z.; Vandussen, K.L.; Haritunians, T.; Li, D.; Endo, K.; Kawai, Y.; Nagasaki, M.; Kinouchi, Y.; et al. Lrrk2 but Not Atg16l1 Is Associated with Paneth Cell Defect in Japanese Crohn’s Disease Patients. JCI Insight 2017, 2, E91917. [Google Scholar] [CrossRef]
- Young, H.A.; Tovey, M.G. Tl1a: A Mediator of Gut Inflammation. Proc. Natl. Acad. Sci. USA 2006, 103, 8303–8304. [Google Scholar] [CrossRef]
- Bamias, G.; Mishina, M.; Nyce, M.; Ross, W.G.; Kollias, G.; Rivera-Nieves, J.; Pizarro, T.T.; Cominelli, F. Role of Tl1a and Its Receptor Dr3 in Two Models of Chronic Murine Ileitis. Proc. Natl. Acad. Sci. USA 2006, 103, 8441–8446. [Google Scholar] [CrossRef]
- Papadakis, K.A.; Zhu, D.; Prehn, J.L.; Landers, C.; Avanesyan, A.; Lafkas, G.; Targan, S.R. Dominant Role for Tl1a/Dr3 Pathway in Il-12 Plus Il-18-Induced Ifn-Gamma Production by Peripheral Blood and Mucosal Ccr9+ T Lymphocytes. J. Immunol. 2005, 174, 4985–4990. [Google Scholar]
- Ślebioda, T.J.; Kmieć, Z. Tumour Necrosis Factor Superfamily Members in the Pathogenesis of Inflammatory Bowel Disease. Mediat. Inflamm. 2014, 2014, 1–15. [Google Scholar]
- Hedl, M.; Abraham, C. A TNFSF15 disease-risk polymorphism increases pattern-recognition receptor-induced signaling through caspase-8–induced IL-1. Proc. Natl. Acad. Sci. USA 2014, 111, 13451–13456. [Google Scholar]
- Genome-Wide Association Study of 14,000 Cases of Seven Common Diseases and 3000 Shared Controls. Nature 2007, 447, 661–678. [CrossRef]
- Mckenzie, B.S.; Kastelein, R.A.; Cua, D.J. Understanding the Il-23-Il-17 Immune Pathway. Trends Immunol. 2006, 27, 17–23. [Google Scholar] [CrossRef]
- Franke, A.; Balschun, T.; Karlsen, T.H.; Sventoraityte, J.; Nikolaus, S.; Mayr, G.; Domingues, F.S.; Albrecht, M.; Nothnagel, M.; Ellinghaus, D.; et al. Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat. Genet. 2008, 40, 1319–1323. [Google Scholar] [CrossRef]
- Franke, A.; McGovern, D.P.; Barrett, J.C.; Wang, K.; Radford-Smith, G.L.; Ahmad, T.; Lees, C.W.; Balschun, T.; Lee, J.; Roberts, R.; et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat. Genet. 2010, 42, 1118–1125. [Google Scholar] [CrossRef]
- Glocker, E.-O.; Kotlarz, D.; Boztug, K.; Gertz, E.M.; Schäffer, A.A.; Noyan, F.; Perro, M.; Diestelhorst, J.; Allroth, A.; Murugan, D.; et al. Inflammatory Bowel Disease and Mutations Affecting the Interleukin-10 Receptor. N. Engl. J. Med. 2009, 361, 2033–2045. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, X.-Q.; Yu, Y.; Guo, Y.; Xu, X.; Gong, L.; Zhou, T.; Li, X.-Q.; Xu, C.-D. Comprehensive mutation screening for 10 genes in Chinese patients suffering very early onset inflammatory bowel disease. World J. Gastroenterol. 2016, 22, 5578–5588. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.O.; Seo, J.K. Very early-onset inflammatory bowel disease (IBD) in infancy is a different disease entity from adult-onset IBD; one form of interleukin-10 receptor mutations. J. Hum. Genet. 2014, 59, 337–341. [Google Scholar] [CrossRef]
- Worthey, E.A.; Mayer, A.N.; Syverson, G.D.; Helbling, D.; Bonacci, B.B.; Decker, B.; Serpe, J.M.; Dasu, T.; Tschannen, M.R.; Veith, R.L.; et al. Making A Definitive Diagnosis: Successful Clinical Application of Whole Exome Sequencing in a Child with Intractable Inflammatory Bowel Disease. Genet. Med. 2011, 13, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Okou, D.T.; Mondal, K.; Faubion, W.A.; Kobrynski, L.J.; Denson, L.A.; Mulle, J.G.; Ramachandran, D.; Xiong, Y.; Svingen, P.; Patel, V.; et al. Exome Sequencing Identifies a Novel FOXP3 Mutation in a 2-Generation Family with Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 561–568. [Google Scholar] [CrossRef]
- Blaydon, D.C.; Cabral, R.M.; Brooke, M.A.; Van Heel, D.A.; Walne, A.; O’Toole, E.A.; Martin, J.E.; Lindley, K.; Harper, J.I.; Biancheri, P.; et al. Inflammatory Skin and Bowel Disease Linked toADAM17 Deletion. N. Engl. J. Med. 2011, 365, 1502–1508. [Google Scholar] [CrossRef]
- Horton, R.; Wilming, L.; Rand, V.; Lovering, R.C.; Bruford, E.A.; Khodiyar, V.K.; Lush, M.J.; Povey, S.; Talbot, C.C.; Wright, M.W.; et al. Gene map of the extended human MHC. Nat. Rev. Microbiol. 2004, 5, 889–899. [Google Scholar] [CrossRef] [PubMed]
- Rioux, J.D.; Goyette, P.; Vyse, T.J.; Hammarstrom, L.; Fernando, M.M.; Green, T.; De Jager, P.L.; Foisy, S.; Wang, J.; De Bakker, P.I.; et al. Mapping of Multiple Susceptibility Variants within the Mhc Region for 7 Immune-Mediated Diseases. Proc. Natl. Acad. Sci. USA 2009, 106, 18680–18685. [Google Scholar] [CrossRef]
- Stokkers, P.C.F.; Reitsma, P.H.; Tytgat, G.N.J.; Van Deventer, S.J.H. HLA-DR and -DQ phenotypes in inflammatory bowel disease: A meta-analysis. Gut 1999, 45, 395–401. [Google Scholar] [CrossRef]
- Goyette, P.; Boucher, G.; Mallon, D.; Ellinghaus, E.; Jostins, L.; Huang, H.; Ripke, S.; Gusareva, E.S.; Annese, V.; Hauser, S.L.; et al. High-density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat. Genet. 2015, 47, 172–179. [Google Scholar] [CrossRef]
- Han, B.; Akiyama, M.; Kim, K.-K.; Oh, H.; Choi, H.; Lee, C.H.; Jung, S.; Lee, H.-S.; Kim, E.E.; Cook, S.; et al. Amino acid position 37 of HLA-DRβ1 affects susceptibility to Crohn’s disease in Asians. Hum. Mol. Genet. 2018, 27, 3901–3910. [Google Scholar] [CrossRef]
- Kim, K.; Bang, S.-Y.; Lee, H.-S.; Bae, S.-C. Construction and Application of a Korean Reference Panel for Imputing Classical Alleles and Amino Acids of Human Leukocyte Antigen Genes. PLoS ONE 2014, 9, e112546. [Google Scholar] [CrossRef]
- Okada, Y.; Momozawa, Y.; Ashikawa, K.; Kanai, M.; Matsuda, K.; Kamatani, Y.; Takahashi, A.; Kubo, M. Construction of a population-specific HLA imputation reference panel and its application to Graves’ disease risk in Japanese. Nat. Genet. 2015, 47, 798–802. [Google Scholar] [CrossRef]
- Pillai, N.E.; Okada, Y.; Saw, W.-Y.; Ong, R.T.-H.; Wang, X.; Tantoso, E.; Xu, W.; Peterson, T.A.; Bielawny, T.; Ali, M.; et al. Predicting HLA alleles from high-resolution SNP data in three Southeast Asian populations. Hum. Mol. Genet. 2014, 23, 4443–4451. [Google Scholar] [CrossRef]
- Masuda, H.; Nakamura, Y.; Tanaka, T.; Hayakawa, S. Distinct relationship between HLA-DR genes and intractability of ulcerative colitis. Am. J. Gastroenterol. 1994, 89, 1957–1962. [Google Scholar]
- Futami, S.; Aoyama, N.; Honsako, Y.; Tamura, T.; Morimoto, S.; Nakashima, T.; Ohmoto, A.; Okano, H.; Miyamoto, M.; Inaba, H.; et al. HLA-DRB1*1502 allele, subtype of DR15, is associated with susceptibility to ulcerative colitis and its progression. Am. J. Dig. Dis. 1995, 40, 814–818. [Google Scholar] [CrossRef]
- Okada, Y.; Yamazaki, K.; Umeno, J.; Takahashi, A.; Kumasaka, N.; Ashikawa, K.; Aoi, T.; Takazoe, M.; Matsui, T.; Hirano, A.; et al. HLA-Cw*1202-B*5201-DRB1*1502 Haplotype Increases Risk for Ulcerative Colitis but Reduces Risk for Crohn’s Disease. Gastroenterology 2011, 141, 864–871. [Google Scholar] [CrossRef]
- Myung, S.-J.; Yang, S.-K.; Jung, H.-Y.; Chang, H.-S.; Park, J.; Hong, W.-S.; Kim, J.-H.; Min, Y. HLA-DRB1*1502 confers susceptibility to ulcerative colitis, but is negatively associated with its intractability: A Korean study. Int. J. Colorectal Dis. 2002, 17, 233–237. [Google Scholar] [CrossRef]
- Arimura, Y.; Isshiki, H.; Onodera, K.; Nagaishi, K.; Yamashita, K.; Sonoda, T.; Matsumoto, T.; Takahashi, A.; Takazoe, M.; Yamazaki, K.; et al. Characteristics of Japanese Inflammatory Bowel Disease Susceptibility Loci. J. Gastroenterol. 2014, 49, 1217–1230. [Google Scholar] [CrossRef]
- Imhann, F.; Vich Vila, A.; Bonder, M.J.; Fu, J.; Gevers, D.; Visschedijk, M.C.; Spekhorst, L.M.; Alberts, R.; Franke, L.; Van Dullemen, H.M.; et al. Interplay of Host Genetics and Gut Microbiota Underlying the Onset and Clinical Presentation of Inflammatory Bowel Disease. Gut 2018, 67, 108–119. [Google Scholar] [CrossRef]
- Round, J.L.; Mazmanian, S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 2009, 9, 313–323. [Google Scholar] [CrossRef]
- Cadwell, K.; Patel, K.K.; Maloney, N.S.; Liu, T.-C.; Ng, A.C.; Storer, C.E.; Head, R.D.; Xavier, R.; Stappenbeck, T.S.; Virgin, H.W. Virus-Plus-Susceptibility Gene Interaction Determines Crohn’s Disease Gene Atg16L1 Phenotypes in Intestine. Cell 2010, 141, 1135–1145. [Google Scholar] [CrossRef]
- Chu, H.; Khosravi, A.; Kusumawardhani, I.P.; Kwon, A.H.K.; Vasconcelos, A.C.; Cunha, L.D.; Mayer, A.E.; Shen, Y.; Wu, W.-L.; Kambal, A.; et al. Gene-Microbiota Interactions Contribute to the Pathogenesis of Inflammatory Bowel Disease. Science 2016, 352, 1116–1120. [Google Scholar] [CrossRef]
- Turpin, W.; Espin-Garcia, O.; Xu, W.; Silverberg, M.S.; Kevans, D.; Smith, M.I.; Guttman, D.S.; Griffiths, A.; Panaccione, R.; Otley, A.; et al. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat. Genet. 2016, 48, 1413–1417. [Google Scholar] [CrossRef]
- Álvarez-Lobos, M.; Arostegui, J.I.; Sans, M.; Tassies, D.; Plaza, S.; Delgado, S.; Lacy, A.M.; Piqué, J.M.; Yagüe, J.; Panés, J.; et al. Crohn’s Disease Patients Carrying Nod2/CARD15 Gene Variants Have an Increased and Early Need for First Surgery due to Stricturing Disease and Higher Rate of Surgical Recurrence. Ann. Surg. 2005, 242, 693–700. [Google Scholar] [CrossRef]
- Lv, C.; Yang, X.; Zhang, Y.; Zhao, X.; Chen, Z.; Long, J.; Zhang, Y.; Zhong, C.; Zhi, J.; Yao, G.; et al. Confirmation of three inflammatory bowel disease susceptibility loci in a Chinese cohort. Int. J. Colorectal Dis. 2012, 27, 1465–1472. [Google Scholar] [CrossRef]
- Adler, J.; Rangwalla, S.C.; Dwamena, B.A.; Higgins, P.D.R. The Prognostic Power of the NOD2 Genotype for Complicated Crohn’s Disease: A Meta-Analysis. Am. J. Gastroenterol. 2011, 106, 699–712. [Google Scholar] [CrossRef]
- Potočnik, U.; Ferkolj, I.; Glavač, D.; Dean, M. Polymorphisms in multidrug resistance 1 (MDR1) gene are associated with refractory Crohn disease and ulcerative colitis. Genes Immun. 2004, 5, 530–539. [Google Scholar] [CrossRef]
- Weersma, R.K.; Stokkers, P.C.; Van Bodegraven, A.A.; Van Hogezand, R.A.; Verspaget, H.W.; De Jong, D.J.; Van Der Woude, C.J.; Oldenburg, B.; Linskens, R.K.; Festen, E.A.; et al. Molecular Prediction of Disease Risk and Severity in a Large Dutch Crohn’s Disease Cohort. Gut 2009, 58, 388–395. [Google Scholar] [CrossRef]
- Yang, D.-H.; Yang, S.-K.; Song, K.; Hong, M.; Park, S.H.; Lee, H.-S.; Kim, J.-B.; Lee, H.J.; Park, S.-K.; Jung, K.W.; et al. TNFSF15 is an independent predictor for the development of Crohn’s disease-related complications in Koreans. J. Crohn’s Coliti 2014, 8, 1315–1326. [Google Scholar] [CrossRef]
- Machida, H.; Tsukamoto, K.; Wen, C.-Y.; Narumi, Y.; Shikuwa, S.; Isomoto, H.; Takeshima, F.; Mizuta, Y.; Niikawa, N.; Murata, I.; et al. Association of polymorphic alleles of CTLA4 with inflammatory bowel disease in the Japanese. World J. Gastroenterol. 2005, 11, 4188–4193. [Google Scholar] [CrossRef]
- Yang, S.-K.; Lee, S.-G.; Cho, Y.-K.; Lim, J.; Lee, I.; Song, K. Association of TNF-α/LTA polymorphisms with Crohn’s disease in Koreans. Cytokine 2006, 35, 13–20. [Google Scholar] [CrossRef]
- Park, H.J.; Jung, E.S.; Kong, K.A.; Park, E.-M.; Cheon, J.H.; Choi, J.H. Identification of OCTN2 variants and their association with phenotypes of Crohn’s disease in a Korean population. Sci. Rep. 2016, 6, 22887. [Google Scholar] [CrossRef]
- Kakuta, Y.; Kinouchi, Y.; Negoro, K.; Takahashi, S.; Shimosegawa, T. Association study of TNFSF15 polymorphisms in Japanese patients with inflammatory bowel disease. Gut 2006, 55, 1527–1528. [Google Scholar] [CrossRef]
- Li, K.; Yao, S.; Liu, S.; Wang, B.; Mao, D. Genetic polymorphisms of interleukin 8 and risk of ulcerative colitis in the Chinese population. Clin. Chim. Acta 2009, 405, 30–34. [Google Scholar] [CrossRef]
- Lee, H.-S.; Yang, S.-K.; Hong, M.; Jung, S.; Kim, B.M.; Moon, J.W.; Park, S.H.; Ye, B.D.; Oh, S.H.; Kim, K.M.; et al. An Intergenic Variant rs9268877 Between HLA-DRA and HLA-DRB Contributes to the Clinical Course and Long-term Outcome of Ulcerative Colitis. J. Crohn’s Coliti 2018, 12, 1113–1121. [Google Scholar] [CrossRef]
- Chen, M.; Peyrin-Biroulet, L.; Xia, B.; Gueant-Rodriguez, R.M.; Bronowicki, J.P.; Bigard, M.A.; Gueant, J.L. Methionine Synthase A2756g Polymorphism May Predict Ulcerative Colitis and Methylenetetrahydrofolate Reductase C677t Pancolitis, In Central China. BMC Med. Genet. 2008, 9, 78. [Google Scholar] [CrossRef]
- Cleynen, I.; Gonzalez, J.R.; Figueroa, C.; Franke, A.; Mcgovern, D.; Bortlik, M.; Crusius, B.J.; Vecchi, M.; Artieda, M.; Szczypiorska, M.; et al. Genetic Factors Conferring an Increased Susceptibility to Develop Crohn’s Disease Also Influence Disease Phenotype: Results from the Ibdchip European Project. Gut 2013, 62, 1556–1565. [Google Scholar] [CrossRef]
- Cleynen, I.; Boucher, G.; Jostins, L.; Schumm, L.P.; Zeissig, S.; Ahmad, T.; Andersen, V.; Andrews, J.M.; Annese, V.; Brand, S.; et al. Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: A genetic association study. Lancet 2016, 387, 156–167. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, W.; Bradfield, J.; Li, J.; Cardinale, C.; Frackelton, E.; Kim, C.; Mentch, F.; Van Steen, K.; Visscher, P.M.; et al. Large Sample Size, Wide Variant Spectrum, And Advanced Machine-Learning Technique Boost Risk Prediction for Inflammatory Bowel Disease. Am. J. Hum. Genet. 2013, 92, 1008–1012. [Google Scholar] [CrossRef]
- Khera, A.V.; Chaffin, M.; Aragam, K.G.; Haas, M.E.; Roselli, C.; Choi, S.H.; Natarajan, P.; Lander, E.S.; Lubitz, S.A.; Ellinor, P.T.; et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 2018, 50, 1219–1224. [Google Scholar] [CrossRef]
- Tung, C.-C.; Wong, J.-M.; Lee, W.-C.; Liu, H.-H.; Chang, C.-H.; Chang, M.-C.; Chang, Y.-T.; Shieh, M.-J.; Wang, C.-Y.; Wei, S.-C. Combining TNFSF15 and ASCA IgA can be used as a predictor for the stenosis/perforating phenotype of Crohn’s disease. J. Gastroenterol. Hepatol. 2014, 29, 723–729. [Google Scholar] [CrossRef]
- Hedrick, S.M. The cunning little vixen: Foxo and the cycle of life and death. Nat. Immunol. 2009, 10, 1057–1063. [Google Scholar] [CrossRef]
- Gregersen, P.K.; Manjarrez-Orduño, N. FOXO in the Hole: Leveraging GWAS for Outcome and Function. Cell 2013, 155, 11–12. [Google Scholar] [CrossRef]
- Lee, J.C.; Espéli, M.; Anderson, C.A.; Linterman, M.A.; Pocock, J.M.; Williams, N.J.; Roberts, R.; Viatte, S.; Fu, B.; Peshu, N.; et al. Human SNP Links Differential Outcomes in Inflammatory and Infectious Disease to a FOXO3-Regulated Pathway. Cell 2013, 155, 57–69. [Google Scholar] [CrossRef]
- Huff, C.D.; Witherspoon, D.J.; Zhang, Y.; Gatenbee, C.; Denson, L.A.; Kugathasan, S.; Hakonarson, H.; Whiting, A.; Davis, C.T.; Wu, W.; et al. Crohn’s Disease and Genetic Hitchhiking at Ibd5. Mol. Biol. Evol. 2012, 29, 101–111. [Google Scholar] [CrossRef]
- Toh, D.S.L.; Cheung, F.S.G.; Pern, T.K.; Lee, E.J.D.; Murray, M.; Zhou, F. Functional Analysis of Novel Variants in the Organic Cation/Ergothioneine Transporter 1 Identified in Singapore Populations. Mol. Pharm. 2013, 10, 2509–2516. [Google Scholar] [CrossRef]
- Li, M.; Gao, X.; Guo, C.-C.; Wu, K.-C.; Zhang, X.; Hu, P.-J.; Li, X.G.M. OCTN and CARD15 gene polymorphism in Chinese patients with inflammatory bowel disease. World J. Gastroenterol. 2008, 14, 4923–4927. [Google Scholar] [CrossRef]
- Lee, J.C.; Biasci, D.; Roberts, R.; Gearry, R.B.; Mansfield, J.C.; Ahmad, T.; Prescott, N.J.; Satsangi, J.; Wilson, D.C.; Jostins, L.; et al. Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn’s disease. Nat. Genet. 2017, 49, 262–268. [Google Scholar] [CrossRef]
- Beaugerie, L.; Sokol, H. Clinical, serological and genetic predictors of inflammatory bowel disease course. World J. Gastroenterol. 2012, 18, 3806–3813. [Google Scholar] [CrossRef]
- Radford-Smith, G.; Doecke, J.D.; Lees, C.W.; McGovern, D.P.; Vermeire, S.; Kupcinskas, L.; Gearry, R.B.; Hov, J.R.; Andersen, V.; Colombel, J.-F.; et al. Su1762 Clinical and Molecular Characterization of Medically Refractory Acute, Severe Colitis: Preliminary Results from the International Inflammatory Bowel Disease Genetics Consortium (Iibdgc) Immunochip Study. Gastroenterology 2013, 144, S-470. [Google Scholar] [CrossRef]
- Winter, J.W.; Gaffney, D.; Shapiro, D.; Spooner, R.J.; Marinaki, A.M.; Sanderson, J.D.; Mills, P.R. Assessment of thiopurine methyltransferase enzyme activity is superior to genotype in predicting myelosuppression following azathioprine therapy in patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2007, 25, 1069–1077. [Google Scholar] [CrossRef]
- Dubinsky, M.C. Maximizing Thiopurine Therapy in Inflammatory Bowel Disease: The Role of Tpmt Analysis and Metabolite Monitoring as Predictors of Safety and Efficacy. Clin. Perspect. Gastroenterol. 2002, 5, 343–346. [Google Scholar]
- Kirchgesner, J.; Beaugerie, L.; Carrat, F.; Sokol, H.; Cosnes, J.; Schwarzinger, M.; BERENICE Study Group. Impact on Life Expectancy of Withdrawing Thiopurines in Patients with Crohn’s Disease in Sustained Clinical Remission: A Lifetime Risk-Benefit Analysis. PLoS ONE 2016, 11, e0157191. [Google Scholar] [CrossRef]
- Yang, S.-K.; Hong, M.; Baek, J.; Choi, H.; Zhao, W.; Jung, Y.; Haritunians, T.; Ye, B.D.; Kim, K.-J.; Park, S.H.; et al. A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia. Nat. Genet. 2014, 46, 1017–1020. [Google Scholar] [CrossRef]
- Moriyama, T.; Nishii, R.; Pérez-Andreu, V.; Yang, W.; Klussmann, F.A.; Zhao, X.; Lin, T.-N.; Hoshitsuki, K.; Nersting, J.; Kihira, K.; et al. NUDT15 Polymorphisms Alter Thiopurine Metabolism and Hematopoietic Toxicity. Nat. Genet. 2016, 48, 367–373. [Google Scholar] [CrossRef]
- Kakuta, Y.; Kawai, Y.; Okamoto, D.; Takagawa, T.; Ikeya, K.; Sakuraba, H.; Nishida, A.; Nakagawa, S.; Miura, M.; Toyonaga, T.; et al. NUDT15 codon 139 is the best pharmacogenetic marker for predicting thiopurine-induced severe adverse events in Japanese patients with inflammatory bowel disease: A multicenter study. J. Gastroenterol. 2018, 53, 1065–1078. [Google Scholar] [CrossRef]
- Zhang, A.L.; Yang, J.; Wang, H.; Lu, J.L.; Tang, S.; Zhang, X.J. Association of Nudt15 C.415c>T Allele and Thiopurine-Induced Leukocytopenia in Asians: A Systematic Review and Meta-Analysis. Ir. J. Med. Sci. 2018, 187, 145–153. [Google Scholar] [CrossRef]
- Coenen, M.J.; De Jong, D.J.; Van Marrewijk, C.J.; Derijks, L.J.; Vermeulen, S.H.; Wong, D.R.; Klungel, O.H.; Verbeek, A.L.; Hooymans, P.M.; Peters, W.H.; et al. Identification of Patients with Variants in TPMT and Dose Reduction Reduces Hematologic Events During Thiopurine Treatment of Inflammatory Bowel Disease. Gastroenterology 2015, 149, 907–917. [Google Scholar] [CrossRef]
- Kim, H.S.; Cheon, J.H.; Jung, E.S.; Park, J.; Aum, S.; Park, S.J.; Eun, S.; Lee, J.; Ruther, U.; Yeo, G.S.H.; et al. A Coding Variant in Fto Confers Susceptibility to Thiopurine-Induced Leukopenia In East Asian Patients with Ibd. Gut 2017, 66, 1926–1935. [Google Scholar] [CrossRef]
- Chaparro, M.; Ordas, I.; Cabre, E.; Garcia-Sanchez, V.; Bastida, G.; Penalva, M.; Gomollon, F.; Garcia-Planella, E.; Merino, O.; Gutierrez, A.; et al. Safety of Thiopurine Therapy in Inflammatory Bowel Disease: Long-Term Follow-Up Study Of 3931 Patients. Inflamm. Bowel Dis. 2013, 19, 1404–1410. [Google Scholar] [CrossRef]
- Gearry, R.B.; Barclay, M.L.; Burt, M.J.; Collett, J.A.; Chapman, B.A. Thiopurine drug adverse effects in a population of New Zealand patients with inflammatory bowel disease. Pharmacoepidemiol. Drug Saf. 2004, 13, 563–567. [Google Scholar] [CrossRef]
- Heap, G.A.; Weedon, M.N.; Bewshea, C.M.; Singh, A.; Chen, M.; Satchwell, J.B.; Vivian, J.P.; So, K.; Dubois, P.C.; Andrews, J.M.; et al. HLA-DQA1–HLA-DRB1 variants confer susceptibility to pancreatitis induced by thiopurine immunosuppressants. Nat. Genet. 2014, 46, 1131–1134. [Google Scholar] [CrossRef]
- Taylor, K.D.; Yang, H.; Landers, C.J.; Rotter, J.I.; Targan, S.R.; Plevy, S.E.; Barry, M.J. ANCA pattern and LTA haplotype relationship to clinical responses to anti-TNF antibody treatment in Crohn’s disease. Gastroenterology 2001, 120, 1347–1355. [Google Scholar] [CrossRef]
- Mascheretti, S.; Hampe, J.; Kühbacher, T.; Herfarth, H.; Krawczak, M.; Fölsch, U.R.; Schreiber, S. Pharmacogenetic investigation of the TNF/TNF-receptor system in patients with chronic active Crohn’s disease treated with infliximab. Pharmacogenomics J. 2002, 2, 127–136. [Google Scholar] [CrossRef]
- Pierik, M.; Vermeire, S.; Steen, K.V.; Joossens, S.; Claessens, G.; Vlietinck, R.; Rutgeerts, P. Tumour necrosis factor-alpha receptor 1 and 2 polymorphisms in inflammatory bowel disease and their association with response to infliximab. Aliment. Pharmacol. Ther. 2004, 20, 303–310. [Google Scholar] [CrossRef]
- Vermeire, S.; Louis, E.; Rutgeerts, P.; De Vos, M.; Van Gossum, A.; Belaiche, J.; Pescatore, P.; Fiasse, R.; Pelckmans, P.; Vlietinck, R.; et al. NOD2/CARD15 does not influence response to infliximab in Crohn’s disease. Gastroenterology 2002, 123, 106–111. [Google Scholar] [CrossRef]
- Gerich, M.E.; Mcgovern, D.P. Towards Personalized Care in Ibd. Nature Reviews. Gastroenterol. Hepatol. 2014, 11, 287–299. [Google Scholar] [CrossRef]
- Jürgens, M.; Laubender, R.P.; Hartl, F.; Weidinger, M.; Seiderer, J.; Wagner, J.; Wetzke, M.; Beigel, F.; Pfennig, S.; Stallhofer, J.; et al. Disease Activity, ANCA, and IL23R Genotype Status Determine Early Response to Infliximab in Patients with Ulcerative Colitis. Am. J. Gastroenterol. 2010, 105, 1811–1819. [Google Scholar] [CrossRef]
- Dubinsky, M.C.; Mei, L.; Friedman, M.; Dhere, T.; Haritunians, T.; Hakonarson, H.; Kim, C.; Glessner, J.; Targan, S.R.; McGovern, D.P.; et al. Genome Wide Association (GWA) Predictors of Anti-TNFα Therapeutic Responsiveness in Pediatric Inflammatory Bowel Disease (IBD). Inflamm. Bowel Dis. 2010, 16, 1357–1366. [Google Scholar] [CrossRef]
- Bek, S.; Nielsen, J.V.; Bojesen, A.B.; Franke, A.; Bank, S.; Vogel, U.; Andersen, V. Systematic review: Genetic biomarkers associated with anti-TNF treatment response in inflammatory bowel diseases. Aliment. Pharmacol. Ther. 2016, 44, 554–567. [Google Scholar] [CrossRef]
- Moroi, R.; Endo, K.; Kinouchi, Y.; Shiga, H.; Kakuta, Y.; Kuroha, M.; Kanazawa, Y.; Shimodaira, Y.; Horiuchi, T.; Takahashi, S.; et al. FCGR3A-158 polymorphism influences the biological response to infliximab in Crohn’s disease through affecting the ADCC activity. Immunogenetics 2013, 65, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Urabe, S.; Isomoto, H.; Ishida, T.; Maeda, K.; Inamine, T.; Kondo, S.; Higuchi, N.; Sato, K.; Uehara, R.; Yajima, H.; et al. Genetic Polymorphisms of IL-17F and TRAF3IP2 Could Be Predictive Factors of the Long-Term Effect of Infliximab against Crohn’s Disease. BioMed Int. 2015, 2015, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, K.; Hamada, S.; Shimizu, M.; Nanki, K.; Mizuno, S.; Kiyohara, H.; Arai, M.; Sugimoto, S.; Iwao, Y.; Ogata, H.; et al. Factors predicting the therapeutic response to infliximab during maintenance therapy in Japanese patients with Crohn’s disease. PLoS ONE 2018, 13, e0204632. [Google Scholar] [CrossRef] [PubMed]
- Aleksejs, S.; Nick, K.; Loukas, M.; Heap, G.A.; Rice, D.L.; Reppell, M.; Bewshea, C.; Walker, G.; Perry, M.H.; McDonald, T.J.; et al. Hla-Dqa1* 05 Is Associated with the Development of Antibodies to Anti-Tnf Therapy. Biorxiv 2018, 410035. [Google Scholar] [CrossRef]
Disease | Country | Study | New SNP | Positional Candidate Gene or Region | Replicated Gene or Region | Reference |
---|---|---|---|---|---|---|
CD | Japan | GWAS | rs1487630 | 4p14 | MHC | [41] |
rs7329174 | ELF1 | TNFSF15 | ||||
STAT3 | ||||||
Korea | GWAS | rs6856616 | TBC1D1-KLF3 | TNFSF15 | [42] | |
rs11195128 | SMNDC1-DUSP5 | IL23R | ||||
rs11235604 | ATG16L2 | MHC | ||||
rs11235667 | ATG16L2-FCHSD2 | RNASET2-FGFR10P-CCR6 | ||||
Korea | Immunochip | GPR35 | [43] | |||
ZNF365 | ||||||
ZMIZI | ||||||
NKX2-3 | ||||||
PTPN2 | ||||||
USP25 | ||||||
Japan | GWAS | rs488200 | RAP1A | TNFSF15 | [44] | |
HLA-DQB1 | ||||||
4p14 | ||||||
ZNF365 | ||||||
IL12B | ||||||
IL27 | ||||||
IL23R G149R | ||||||
UC | Japan | GWAS | rs1801274 | FCGR2A | JAK2, INSL6, INSL4 | [47] |
rs17085007 | 13q12 | MHC | ||||
rs2108225 | SLC26A3 | |||||
Korea | GWAS | MHC | [48] | |||
16q24.1 | ||||||
RNF186-OTUD3-PLA2G2E | ||||||
Korea | Immunochip | IL23R | [49] | |||
IRF5 | ||||||
(JAK2) | ||||||
(TNFRSF14) | ||||||
(IL10-1L19) | ||||||
TNFSF15 | ||||||
(UBE2L3-YDJC) | ||||||
FCGR2A | ||||||
(GPR12-USP12) | ||||||
India | GWAS | rs2261033 | BAT2 | PTPRC | [50] | |
rs2736428 | SLC44A4 | MHC | ||||
rs2075800 | HSPA1L | TAP2 | ||||
rs549182 | NOTCH4 | |||||
rs4151657 | CFB | |||||
rs3749946 | 3.8-1/HCG26 | |||||
rs707939 | MSH5 |
Disease | Clinical Phenotype | Genetic Variants | Country | References |
---|---|---|---|---|
CD | Structuring disease | NOD2/CARD15 (P268S mutation) | China | [95] |
NOD2/CARD15 (JW1 mutation) | China, Malaysia | [55,95] | ||
TNFSF15 rs6478108 CC | Korea | [99] | ||
Penetrating disease | CTLA-4 | Japan | [100] | |
LTA Thr60Asn | Korea | [101] | ||
TNFSF15 rs6478108 CC | Korea | [99] | ||
OCTN2 promoter haplotype HC | Korea | [102] | ||
Perianal lesions | TNFSF15 rs4574921 CC | Korea | [99] | |
TNFSF15 rs6478109 C | Japan | [103] | ||
TNFSF15 rs7848647 G | Japan | [103] | ||
TNFSF15 rs4979462 A | Japan | [103] | ||
UC | Severe disease | IL8 haplotype -353A/-251A/+678T | China | [104] |
HLA-DRA-HLA-DRB rs9268877 A | Korea | [105] | ||
Pancolitis | MTHFR 677TT | China | [106] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.C.; Jeen, Y.T. Genetic Studies of Inflammatory Bowel Disease-Focusing on Asian Patients. Cells 2019, 8, 404. https://doi.org/10.3390/cells8050404
Park SC, Jeen YT. Genetic Studies of Inflammatory Bowel Disease-Focusing on Asian Patients. Cells. 2019; 8(5):404. https://doi.org/10.3390/cells8050404
Chicago/Turabian StylePark, Sung Chul, and Yoon Tae Jeen. 2019. "Genetic Studies of Inflammatory Bowel Disease-Focusing on Asian Patients" Cells 8, no. 5: 404. https://doi.org/10.3390/cells8050404
APA StylePark, S. C., & Jeen, Y. T. (2019). Genetic Studies of Inflammatory Bowel Disease-Focusing on Asian Patients. Cells, 8(5), 404. https://doi.org/10.3390/cells8050404