Bone Marrow Involvement in Melanoma. Potentials for Detection of Disseminated Tumor Cells and Characterization of Their Subsets by Flow Cytometry
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Ashworth, T.R. A case of cancer in which cells similar to those in the tumors were seen in the blood after death. Med. J. Australia 1869, 14, 146–147. [Google Scholar]
- Paget, S. The distribution of secondary growths in cancer of the breast. Lancet 1889, 1, 571–573. [Google Scholar] [CrossRef]
- Fidler, I.J.; Kripke, M.L. Metastasis results from preexisting variant cells within a malignant tumor. Science 1977, 197, 893–895. [Google Scholar] [CrossRef] [PubMed]
- Fearon, E.R.; Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 1990, 61, 759–767. [Google Scholar] [CrossRef]
- Fidler, I.J.; Hart, I.R. Biological diversity in metastatic neoplasms: origins and implications. Science 1982, 217, 998–1003. [Google Scholar] [CrossRef] [PubMed]
- Klein, C.A. Parallel progression of primary tumours and metastases. Nat. Rev. Cancer 2009, 9, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Psaila, B.; Lyden, D. The metastatic niche: Adapting the foreign soil. Nat. Rev. Cancer 2009, 9, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Koebel, C.M.; Vermi, W.; Swann, J.B.; Zerafa, N.; Rodig, S.J.; Old, L.J.; Smyth, M.J.; Schreiber, R.D. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 2007, 450, 903–907. [Google Scholar] [CrossRef]
- Willis, R.A. The Spread of Tumours in the Human Body; J. & A. Churchill: London, UK, 1934. [Google Scholar]
- Hadfield, G. The dormant cancer cell. Br. Med. J. 1954, 2, 607–610. [Google Scholar] [CrossRef]
- Weilbaecher, K.N.; Guise, T.A.; McCauley, L.K. Cancer to bone: A fatal attraction. Nat. Rev. Cancer 2011, 11, 411–425. [Google Scholar] [CrossRef]
- Jones, D.H.; Nakashima, T.; Sanchez, O.H.; Kozieradzki, I.; Komarova, S.V.; Sarosi, I.; Morony, S.; Rubin, E.; Sarao, R.; Hojilla, C.V.; et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature 2006, 440, 692–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguirre-Ghiso, J.A. Models, mechanisms and clinical evidence for cancer dormancy. Nat. Rev. Cancer 2007, 7, 834–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sosa, M.S.; Bragado, P.; Aguirre-Ghiso, J.A. Mechanisms of disseminated cancer cell dormancy: An awakening field. Nat. Rev. Cancer 2014, 14, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Luzzi, K.J.; MacDonald, I.C.; Schmidt, E.E.; Kerkvliet, N.; Morris, V.L.; Chambers, A.F.; Groom, A.C. Multistep nature of metastatic inefficiency: Dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am. J. Pathol. 1998, 153, 865–873. [Google Scholar] [CrossRef]
- Ghajar, C.M. Metastasis prevention by targeting the dormant niche. Nat. Rev. Cancer. 2015, 15, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Malanchi, I.; Santamaria-Martínez, A.; Susanto, E.; Peng, H.; Lehr, H.A.; Delaloye, J.F.; Huelsken, J. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 2012, 481, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Janni, W.; Vogl, F.D.; Wiedswang, G.; Synnestvedt, M.; Fehm, T.; Jückstock, J.; Borgen, E.; Rack, B.; Braun, S.; Sommer, H. Persistence of disseminated tumor cells in the bone marrow of breast cancer patients predicts increased risk for relapse—A European pooled analysis. Clin. Cancer Res. 2011, 17, 2967–2976. [Google Scholar] [CrossRef]
- Pantel, K.; Izbicki, J.; Passlick, B.; Angstwurm, M.; Häussinger, K.; Thetter, O.; Riethmüller, G. Frequency and prognostic significance of isolated tumor cells in bone marrow of patients with non-small-cell lung cancer without overt metastases. Lancet 1996, 347, 649–653. [Google Scholar] [CrossRef]
- Lilleby, W.; Stensvold, A.; Mills, I.G.; Nesland, J.M. Disseminated tumor cells and their prognostic significance in nonmetastatic prostate cancer patients. Int. J. Cancer 2013, 133, 149–155. [Google Scholar] [CrossRef]
- Flatmark, K.; Borgen, E.; Nesland, J.M.; Rasmussen, H.; Johannessen, H.O.; Bukholm, I.; Rosales, R.; Hårklau, L.; Jacobsen, H.J.; Sandstad, B.; et al. Disseminated tumour cells as a prognostic biomarker in colorectal cancer. Br. J. Cancer 2011, 104, 1434–1439. [Google Scholar] [CrossRef] [Green Version]
- Besova, N.S.; Obarevich, E.S.; Davydov, M.M.; Beznos, O.A.; Tupitsyn, N.N. Prognostic values of the presence of disseminated tumor cells in the bone marrow in patients with disseminated stomach cancer before start of treatment with antitumor drugs. Pharmateca 2017, 350, 62–66. [Google Scholar]
- Besova, N.S.; Obarevich, E.S.; Beznos, O.A.; Tupitsyn, N.N.; Davydov, M.M. Prognostic value of the dynamics of disseminated tumor cells in the bone marrow in patients with disseminated adenocarcinoma of the stomach or the esophagogastric junction. Pharmateca 2017, 350, 83–86. [Google Scholar]
- Eskelin, S.; Pyrhonen, S.; Summanen, P.; Hahka-Kemppinen, M.; Kivelä, T. Tumor doubling times in metastatic malignant melanoma of the uvea: Tumor progression before and after treatment. Ophthalmology 2000, 107, 1443–1449. [Google Scholar] [CrossRef]
- Coupland, S.E.; Sidiki, S.; Clark, B.J.; McClaren, K.; Kyle, P.; Lee, W.R. Metastatic choroidal melanoma to the contralateral orbit 40 years after enucleation. Arch. Ophthalmol. 1996, 114, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Damsky, W.; Micevic, G.; Meeth, K.; Muthusamy, V.; Curley, D.P.; Santhanakrishnan, M.; Erdelyi, I.; Platt, J.T.; Huang, L.; Theodosakis, N.; et al. mTORC1 activation blocks BrafV600E-induced growth arrest but is insufficient for melanoma formation. Cancer Cell 2015, 27, 41–56. [Google Scholar] [CrossRef] [PubMed]
- Rocken, M. Early tumor dissemination, but late metastasis: Insights into tumor dormancy. J. Clin. Investig. 2010, 120, 1800–1803. [Google Scholar] [CrossRef] [PubMed]
- Wick, M.R.; Swanson, P.E. Recognition of malignant melanoma by monoclonal antibody HMB-45. An immunohistochemical study of 200 paraffin-embedded cutaneous tumors. J. Cutan. Pathol. 1988, 15, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Davydov, M.I.; Tupitsin, N.N. Assessment of minimal bone marrow involvement by flow cytometry. Hematopoiesis Immunol. 2014, 12, 8–17. [Google Scholar]
- Van Dongen, J.J.M.; van der Velden, V.H.J.; Brüggemann, M.; Orfao, A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: Need for sensitive, fast, and standardized technologies. Blood 2015, 125, 3996–4009. [Google Scholar] [CrossRef]
Stage | Frequency | Percent (%) |
---|---|---|
I | 7 | 14.9 |
IIa | 1 | 2.1 |
IIb | 5 | 10.6 |
IIc | 3 | 6.4 |
III | 11 | 23.4 |
IV | 20 | 42.6 |
Total: | 47 | 100 |
No. | MoAbs/Fluorochromes | Function | Manufacturer |
---|---|---|---|
1 | Syto41 | Nuclear dye | Thermo Fisher Scientific, Walthem, MA, USA |
2 | CD45 | Leukocyte common antigen | Beckton Dickinson |
3 | HMB-45 | Melanoma cell antigen gp100 | Santa Cruz Biotechnology, Dallas, Tx, USA |
4 | CD56 | Neuronal cell adhesion molecule (NCAM) | Beckton Dickinson |
5 | CD57 | NK-cell molecule (HNK1) | Beckton Dickinson |
6 | CD133 | Hematopoietic stem cell antigen | Beckton Dickinson |
Myelogram Parameters | DTCs | n | Mean Value | Errstdmean | p |
---|---|---|---|---|---|
Cellularity | negative | 19 | 67.0 | 6.51 | NS* |
positive | 20 | 67.3 | 7.87 | ||
Blasts | negative | 20 | 1.46 | 0.14 | 0.026 |
positive | 25 | 1.09 | 0.09 | ||
Promyelocytes | negative | 20 | 0.44 | 0.11 | NS |
positive | 25 | 0.37 | 0.08 | ||
Neutrophilic myelocytes | negative | 20 | 7.80 | 0.72 | NS |
positive | 25 | 8.95 | 0.54 | ||
Neutrophilic metamyelocytes | negative | 20 | 8.58 | 0.65 | NS |
positive | 25 | 7.83 | 0.53 | ||
Band neutrophils | negative | 20 | 16.50 | 0.91 | NS |
positive | 25 | 18.70 | 1.00 | ||
Segmented neutrophils | negative | 20 | 24.47 | 1.39 | NS |
positive | 25 | 27.266 | 1.71 | ||
All granulocyte cells | negative | 20 | 60.76 | 1.45 | 0.025 |
positive | 25 | 65.41 | 1.38 | ||
Neutrophil maturation index | negative | 20 | 0.43 | 0.034 | NS |
positive | 25 | 0.38 | 0.034 | ||
Monocytes | negative | 20 | 2.78 | 0.26 | NS |
positive | 25 | 3.30 | 0.24 | ||
Lymphocytes | negative | 20 | 12.85 | 0.79 | NS |
positive | 25 | 12.02 | 0.68 | ||
Plasmocytes | negative | 20 | 0.60 | 0.10 | NS |
positive | 25 | 0.77 | 0.15 | ||
Basophilic normoblasts | negative | 20 | 1.23 | 0.17 | NS |
positive | 25 | 0.97 | 0.13 | ||
Polychromatophilic normoblasts | negative | 20 | 11.16 | 0.91 | NS |
positive | 25 | 10.19 | 0.82 | ||
Oxyphilic normoblasts | negative | 20 | 9.08 | 0.88 | 0.006 |
positive | 25 | 6.25 | 0.52 | ||
Sum of nucleated erythroid cells | negative | 20 | 21.47 | 1.44 | 0.042 |
positive | 25 | 17.41 | 1.29 | ||
Erythroid maturation index | negative | 20 | 0.96 | 0.01 | NS |
positive | 25 | 0.96 | 0.01 | ||
Leuco–erythroid ratio | negative | 20 | 4.02 | 0.39 | 0.034 |
positive | 25 | 5.58 | 0.59 |
Stage | Number of Patients | Frequency of DTCs + Cases |
---|---|---|
I | 7 | 28.6% |
II | 9 | 55.6% |
III | 11 | 63.6% |
IV | 20 | 65.0% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chernysheva, O.; Markina, I.; Demidov, L.; Kupryshina, N.; Chulkova, S.; Palladina, A.; Antipova, A.; Tupitsyn, N. Bone Marrow Involvement in Melanoma. Potentials for Detection of Disseminated Tumor Cells and Characterization of Their Subsets by Flow Cytometry. Cells 2019, 8, 627. https://doi.org/10.3390/cells8060627
Chernysheva O, Markina I, Demidov L, Kupryshina N, Chulkova S, Palladina A, Antipova A, Tupitsyn N. Bone Marrow Involvement in Melanoma. Potentials for Detection of Disseminated Tumor Cells and Characterization of Their Subsets by Flow Cytometry. Cells. 2019; 8(6):627. https://doi.org/10.3390/cells8060627
Chicago/Turabian StyleChernysheva, Olga, Irina Markina, Lev Demidov, Natalia Kupryshina, Svetlana Chulkova, Alexandra Palladina, Alina Antipova, and Nikolai Tupitsyn. 2019. "Bone Marrow Involvement in Melanoma. Potentials for Detection of Disseminated Tumor Cells and Characterization of Their Subsets by Flow Cytometry" Cells 8, no. 6: 627. https://doi.org/10.3390/cells8060627
APA StyleChernysheva, O., Markina, I., Demidov, L., Kupryshina, N., Chulkova, S., Palladina, A., Antipova, A., & Tupitsyn, N. (2019). Bone Marrow Involvement in Melanoma. Potentials for Detection of Disseminated Tumor Cells and Characterization of Their Subsets by Flow Cytometry. Cells, 8(6), 627. https://doi.org/10.3390/cells8060627