CCR5 Promoter Polymorphism −2459G > A: Forgotten or Ignored?
Abstract
:Funding
Acknowledgments
Conflicts of Interest
References
- Dean, M.; Carrington, M.; Winkler, C.; Huttley, G.A.; Smith, M.W.; Allikmets, R.; Goedert, J.J.; Buchbinder, S.P.; Vittinghoff, E.; Gomperts, E.; et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 1996, 273, 1856–1862. [Google Scholar] [PubMed]
- Martin, M.P.; Dean, M.; Smith, M.W.; Winkler, C.; Gerrard, B.; Michael, N.L.; Lee, B.; Doms, R.W.; Margolick, J.; Buchbinder, S.; et al. Genetic acceleration of AIDS progression by a promoter variant of CCR5. Science 1998, 282, 1907–1911. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, P.A.; Buckler-White, A.; Alkhatib, G.; Spalding, T.; Kubofcik, J.; Combadiere, C.; Weissman, D.; Cohen, O.; Rubbert, A.; Lam, G.; et al. Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5: Studies in populations with contrasting clinical phenotypes, defined racial background, and quantified risk. Mol. Med. 1997, 3, 23–36. [Google Scholar] [CrossRef] [PubMed]
- McDermott, D.H.; Zimmerman, P.A.; Guignard, F.; Kleeberger, C.A.; Leitman, S.F.; Murphy, P.M. CCR5 promoter polymorphism and HIV-1 disease progression. Multicenter AIDS Cohort Study (MACS). Lancet 1998, 352, 866–870. [Google Scholar] [CrossRef]
- Hladik, F.; Liu, H.; Speelmon, E.; Livingston-Rosanoff, D.; Wilson, S.; Sakchalathorn, P.; Hwangbo, Y.; Greene, B.; Zhu, T.; McElrath, M.J. Combined effect of CCR5-Δ32 heterozygosity and the CCR5 promoter polymorphism -2459 A/G on CCR5 expression and resistance to human immunodeficiency virus type 1 transmission. J. Virol. 2005, 79, 11677–11684. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, T.; Gulden, F.O.; Sugaya, M.; McNamara, D.T.; Borris, D.L.; Lederman, M.M.; Orenstein, J.M.; Zimmerman, P.A.; Blauvelt, A. R5 HIV productively infects Langerhans cells, and infection levels are regulated by compound CCR5 polymorphisms. Proc. Natl. Acad. Sci. USA 2003, 100, 8401–8406. [Google Scholar] [CrossRef] [PubMed]
- Mummidi, S.; Bamshad, M.; Ahuja, S.S.; Gonzalez, E.; Feuillet, P.M.; Begum, K.; Galvis, M.C.; Kostecki, V.; Valente, A.J.; Murthy, K.K.; et al. Evolution of human and non-human primate CC chemokine receptor 5 gene and mRNA. Potential roles for haplotype and mRNA diversity, differential haplotype-specific transcriptional activity, and altered transcription factor binding to polymorphic nucleotides in the pathogenesis of HIV-1 and simian immunodeficiency virus. J. Biol. Chem. 2000, 275, 18946–18961. [Google Scholar]
- Salkowitz, J.R.; Bruse, S.E.; Meyerson, H.; Valdez, H.; Mosier, D.E.; Harding, C.V.; Zimmerman, P.A.; Lederman, M.M. CCR5 promoter polymorphism determines macrophage CCR5 density and magnitude of HIV-1 propagation in vitro. Clin. Immunol. 2003, 108, 234–240. [Google Scholar] [CrossRef]
- Shieh, B.; Liau, Y.E.; Hsieh, P.S.; Yan, Y.P.; Wang, S.T.; Li, C. Influence of nucleotide polymorphisms in the CCR2 gene and the CCR5 promoter on the expression of cell surface CCR5 and CXCR4. Int. Immunol. 2000, 12, 1311–1318. [Google Scholar] [CrossRef]
- Gonzalo-Gil, E.; Rapuano, P.B.; Ikediobi, U.; Leibowitz, R.; Mehta, S.; Coskun, A.K.; Porterfield, J.Z.; Lampkin, T.D.; Marconi, V.C.; Rimland, D.; et al. Transcriptional down-regulation of ccr5 in a subset of HIV+ controllers and their family members. Elife 2019, 8. [Google Scholar] [CrossRef]
- Joshi, A.; Punke, E.B.; Sedano, M.; Beauchamp, B.; Patel, R.; Hossenlopp, C.; Alozie, O.K.; Gupta, J.; Mukherjee, D.; Garg, H. CCR5 promoter activity correlates with HIV disease progression by regulating CCR5 cell surface expression and CD4 T cell apoptosis. Sci. Rep. 2017, 7, 232. [Google Scholar] [CrossRef] [PubMed]
- Garg, H.; Joshi, A. Host and viral factors in HIV-mediated bystander apoptosis. Viruses 2017, 9, 237. [Google Scholar] [CrossRef] [PubMed]
- Solloch, U.V.; Lang, K.; Lange, V.; Bohme, I.; Schmidt, A.H.; Sauter, J. Frequencies of gene variant CCR5-Delta32 in 87 countries based on next-generation sequencing of 1.3 million individuals sampled from 3 national DKMS donor centers. Hum. Immunol. 2017, 78, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Clark, V.J.; Dean, M. Haplotype structure and linkage disequilibrium in chemokine and chemokine receptor genes. Hum. Genomics 2004, 1, 255–273. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, E.; Dhanda, R.; Bamshad, M.; Mummidi, S.; Geevarghese, R.; Catano, G.; Anderson, S.A.; Walter, E.A.; Stephan, K.T.; Hammer, M.F.; et al. Global survey of genetic variation in CCR5, RANTES, and MIP-1α: Impact on the epidemiology of the HIV-1 pandemic. Proc. Natl. Acad. Sci. USA 2001, 98, 5199–5204. [Google Scholar] [CrossRef] [PubMed]
- Mehlotra, R.K.; Cheruvu, V.K.; Blood Zikursh, M.J.; Benish, R.L.; Lederman, M.M.; Salata, R.A.; Gripshover, B.; McComsey, G.A.; Lisgaris, M.V.; Fulton, S.; et al. Chemokine (C-C motif) receptor 5 -2459 genotype in patients receiving highly active antiretroviral therapy: Race-specific influence on virologic success. J. Infect. Dis. 2011, 204, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Mehlotra, R.K.; Hall, N.B.; Bruse, S.E.; John, B.; Zikursh, M.J.B.; Stein, C.M.; Siba, P.M.; Zimmerman, P.A. CCR2, CCR5, and CXCL12 variation and HIV/AIDS in Papua New Guinea. Infect. Genet. Evol. 2015, 36, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, E.; Bamshad, M.; Sato, N.; Mummidi, S.; Dhanda, R.; Catano, G.; Cabrera, S.; McBride, M.; Cao, X.H.; Merrill, G.; et al. Race-specific HIV-1 disease-modifying effects associated with CCR5 haplotypes. Proc. Natl. Acad. Sci. USA 1999, 96, 12004–12009. [Google Scholar] [CrossRef]
- Huik, K.; Avi, R.; Uibopuu, H.; Pauskar, M.; Margus, T.; Karki, T.; Krispin, T.; Kool, P.; Ruutel, K.; Talu, A.; et al. Association Between HIV-1 Tropism and CCR5 Human Haplotype E in a Caucasian Population. J. Acquir. Immune Defic. Syndr. 2014, 66, 239–244. [Google Scholar] [CrossRef]
- Mangano, A.; Gonzalez, E.; Dhanda, R.; Catano, G.; Bamshad, M.; Bock, A.; Duggirala, R.; Williams, K.; Mummidi, S.; Clark, R.A.; et al. Concordance between the CC chemokine receptor 5 genetic determinants that alter risks of transmission and disease progression in children exposed perinatally to human immunodeficiency virus. J. Infect. Dis. 2001, 183, 1574–1585. [Google Scholar] [CrossRef]
- Tang, J.; Shelton, B.; Makhatadze, N.J.; Zhang, Y.; Schaen, M.; Louie, L.G.; Goedert, J.J.; Seaberg, E.C.; Margolick, J.B.; Mellors, J.; et al. Distribution of chemokine receptor CCR2 and CCR5 genotypes and their relative contribution to human immunodeficiency virus type 1 (HIV-1) seroconversion, early HIV-1 RNA concentration in plasma, and later disease progression. J. Virol. 2002, 76, 662–672. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Wilson, C.M.; Schaen, M.; Myracle, A.; Douglas, S.D.; Kaslow, R.A.; Group, R.S. CCR2 and CCR5 genotypes in HIV type 1-infected adolescents: Limited contributions to variability in plasma HIV type 1 RNA concentration in the absence of antiretroviral therapy. AIDS Res. Hum. Retroviruses 2002, 18, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Kostrikis, L.G.; Neumann, A.U.; Thomson, B.; Korber, B.T.; McHardy, P.; Karanicolas, R.; Deutsch, L.; Huang, Y.; Lew, J.F.; McIntosh, K.; et al. A polymorphism in the regulatory region of the CC-chemokine receptor 5 gene influences perinatal transmission of human immunodeficiency virus type 1 to African-American infants. J. Virol. 1999, 73, 10264–10271. [Google Scholar] [PubMed]
- Kaslow, R.A. Presented at 8th Conference on Retroviruses and Opportunistic Infections, Chicago, IL, USA, 2001. Abstract #45B.
- Li, M.; Song, R.; Masciotra, S.; Soriano, V.; Spira, T.J.; Lal, R.B.; Yang, C. Association of CCR5 human haplogroup E with rapid HIV type 1 disease progression. AIDS Res. Hum. Retroviruses 2005, 21, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.; Li, M.; Chaowanachan, T.; Hu, D.J.; Vanichseni, S.; Mock, P.A.; van Griensven, F.; Martin, M.; Sangkum, U.; Choopanya, K.; et al. CCR5 promoter human haplogroups associated with HIV-1 disease progression in Thai injection drug users. AIDS 2004, 18, 1327–1333. [Google Scholar] [CrossRef]
- Coloccini, R.S.; Dilernia, D.; Ghiglione, Y.; Turk, G.; Laufer, N.; Rubio, A.; Socias, M.E.; Figueroa, M.I.; Sued, O.; Cahn, P.; et al. Host genetic factors associated with symptomatic primary HIV infection and disease progression among Argentinean seroconverters. PLoS ONE 2014, 9, e113146. [Google Scholar] [CrossRef] [PubMed]
- Jaumdally, S.Z.; Picton, A.; Tiemessen, C.T.; Paximadis, M.; Jaspan, H.B.; Gamieldien, H.; Masson, L.; Coetzee, D.; Williamson, A.L.; Little, F.; et al. CCR5 expression, haplotype and immune activation in protection from infection in HIV-exposed uninfected individuals in HIV-serodiscordant relationships. Immunology 2017, 151, 464–473. [Google Scholar] [CrossRef]
- Malhotra, R.; Hu, L.; Song, W.; Brill, I.; Mulenga, J.; Allen, S.; Hunter, E.; Shrestha, S.; Tang, J.; Kaslow, R.A. Association of chemokine receptor gene (CCR2-CCR5) haplotypes with acquisition and control of HIV-1 infection in Zambians. Retrovirology 2011, 8, 22. [Google Scholar] [CrossRef]
- Mehlotra, R.K. Human genetic variation and HIV/AIDS in Papua New Guinea: Time to connect the dots. Curr. HIV/AIDS Rep. 2018, 15, 431–440. [Google Scholar] [CrossRef]
- Allen, A.G.; Chung, C.H.; Atkins, A.; Dampier, W.; Khalili, K.; Nonnemacher, M.R.; Wigdahl, B. Gene editing of HIV-1 co-receptors to prevent and/or cure virus infection. Front. Microbiol. 2018, 9, 2940. [Google Scholar] [CrossRef]
- Kou, J.; Kuang, Y.Q. Mutations in chemokine receptors and AIDS. Prog. Mol. Biol. Transl. Sci. 2019, 161, 113–124. [Google Scholar] [PubMed]
- Prathipati, P.K.; Mandal, S.; Destache, C.J. A review of CCR5 antibodies against HIV: Current and future aspects. Ther. Deliv. 2019, 10, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Bar-On, Y.; Gruell, H.; Schoofs, T.; Pai, J.A.; Nogueira, L.; Butler, A.L.; Millard, K.; Lehmann, C.; Suarez, I.; Oliveira, T.Y.; et al. Safety and antiviral activity of combination HIV-1 broadly neutralizing antibodies in viremic individuals. Nat. Med. 2018, 24, 1701–1707. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, P.; Gruell, H.; Nogueira, L.; Pai, J.A.; Butler, A.L.; Millard, K.; Lehmann, C.; Suarez, I.; Oliveira, T.Y.; Lorenzi, J.C.C.; et al. Combination therapy with anti-HIV-1 antibodies maintains viral suppression. Nature 2018, 561, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, J.M.; Khalili, K. Toward the cure of HIV-1 infection: Lessons learned and yet to be learned as new strategies are developed. AIDS Rev. 2018, 20, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Grande, F.; Occhiuzzi, M.A.; Rizzuti, B.; Ioele, G.; De Luca, M.; Tucci, P.; Svicher, V.; Aquaro, S.; Garofalo, A. CCR5/CXCR4 dual antagonism for the improvement of HIV infection therapy. Molecules 2019, 24. [Google Scholar] [CrossRef]
- Mostashari Rad, T.; Saghaie, L.; Fassihi, A. HIV-1 entry inhibitors: A review of experimental and computational studies. Chem. Biodivers. 2018, 15, e1800159. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, D.; Zhan, P.; Liu, X. Medicinal chemistry of small molecule CCR5 antagonists for blocking HIV-1 entry: A review of structural evolution. Curr. Top. Med. Chem. 2014, 14, 1515–1538. [Google Scholar] [CrossRef] [PubMed]
- Manak, M.M.; Moshkoff, D.A.; Nguyen, L.T.; Meshki, J.; Tebas, P.; Tuluc, F.; Douglas, S.D. Anti-HIV-1 activity of the neurokinin-1 receptor antagonist aprepitant and synergistic interactions with other antiretrovirals. AIDS 2010, 24, 2789–2796. [Google Scholar] [CrossRef] [Green Version]
- Tebas, P.; Tuluc, F.; Barrett, J.S.; Wagner, W.; Kim, D.; Zhao, H.; Gonin, R.; Korelitz, J.; Douglas, S.D. A randomized, placebo controlled, double masked phase IB study evaluating the safety and antiviral activity of aprepitant, a neurokinin-1 receptor antagonist in HIV-1 infected adults. PLoS ONE 2011, 6, e24180. [Google Scholar] [CrossRef]
- Cheruvu, V.K.; Igo, R.P., Jr.; Jurevic, R.J.; Serre, D.; Zimmerman, P.A.; Rodriguez, B.; Mehlotra, R.K. African ancestry influences CCR5 -2459G>A genotype-associated virologic success of highly active antiretroviral therapy. J. Acquir. Immune Defic. Syndr. 2014, 66, 102–107. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehlotra, R.K. CCR5 Promoter Polymorphism −2459G > A: Forgotten or Ignored? Cells 2019, 8, 651. https://doi.org/10.3390/cells8070651
Mehlotra RK. CCR5 Promoter Polymorphism −2459G > A: Forgotten or Ignored? Cells. 2019; 8(7):651. https://doi.org/10.3390/cells8070651
Chicago/Turabian StyleMehlotra, Rajeev K. 2019. "CCR5 Promoter Polymorphism −2459G > A: Forgotten or Ignored?" Cells 8, no. 7: 651. https://doi.org/10.3390/cells8070651
APA StyleMehlotra, R. K. (2019). CCR5 Promoter Polymorphism −2459G > A: Forgotten or Ignored? Cells, 8(7), 651. https://doi.org/10.3390/cells8070651