Intramolecular Domain Movements of Free and Bound pMHC and TCR Proteins: A Molecular Dynamics Simulation Study
Abstract
:1. Introduction
2. Methods and Materials
2.1. System and Start Configurations
2.2. Molecular Dynamics Simulations
2.3. Distance between Domains
2.4. Relative Orientation of Two Intramolecular Domains
2.5. Domain Deformations and Fluctuations
3. Results
3.1. Relative Movements between TCR Vα and TCR Vβ
3.2. Relative Movements between MHC α1 and MHC α2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Data Availability
Funding
Acknowledgments
Conflicts of Interest
References
- Rudolph, M.G.; Wilson, I.A. The specificity of TCR/pMHC interaction. Curr. Opin. Immunol. 2002, 14, 52–65. [Google Scholar] [CrossRef]
- Garcia, K.C.; Degano, M.; Stanfield, R.L.; Brunmark, A.; Jackson, M.R.; Peterson, P.A.; Teyton, L.; Wilson, I.A. An alphabeta T cell receptor structure at 2.5 A and its orientation in the TCR-MHC complex. Science 1996, 274, 209–219. [Google Scholar] [CrossRef]
- Armstrong, K.M.; Piepenbrink, K.H.; Baker, B.M. Conformational changes and flexibility in T-cell receptor recognition of peptide-MHC complexes. Biochem. J. 2008, 415, 183–196. [Google Scholar] [CrossRef]
- Rudolph, M.G.; Stanfield, R.L.; Wilson, I.A. How TCRs bind MHCs, peptides, and coreceptors. Annu. Rev. Immunol. 2006, 24, 419–466. [Google Scholar] [CrossRef]
- Bjorkman, P.J. MHC restriction in three dimensions: A view of T cell receptor/ligand interactions. Cell 1997, 89, 167–170. [Google Scholar] [CrossRef]
- Kass, I.; Buckle, A.M.; Borg, N.A. Understanding the structural dynamics of TCR-pMHC complex interactions. Trends Immunol. 2014, 35, 604–612. [Google Scholar] [CrossRef]
- Baker, B.M.; Scott, D.R.; Blevins, S.J.; Hawse, W.F. Structural and dynamic control of T-cell receptor specificity, cross-reactivity, and binding mechanism. Immunol. Rev. 2012, 250, 10–31. [Google Scholar] [CrossRef]
- Reiser, J.B.; Gregoire, C.; Darnault, C.; Mosser, T.; Guimezanes, A.; Schmitt-Verhulst, A.M.; Fontecilla-Camps, J.C.; Mazza, G.; Malissen, B.; Housset, D. A T cell receptor CDR3beta loop undergoes conformational changes of unprecedented magnitude upon binding to a peptide/MHC class I complex. Immunity 2002, 16, 345–354. [Google Scholar] [CrossRef]
- Ma, Z.; Janmey, P.A.; Finkel, T.H. The receptor deformation model of TCR triggering. FASEB J. 2008, 22, 1002–1008. [Google Scholar] [CrossRef]
- Choudhuri, K.; Van Der Merwe, P.A. Molecular mechanisms involved in T cell receptor triggering. Semin. Immunol. 2007, 19, 255–261. [Google Scholar] [CrossRef]
- Ribarics, R.; Kenn, M.; Karch, R.; Ilieva, N.; Schreiner, W. Geometry Dynamics of Alpha- Helices in Different Class I Major Histocompatibility Complexes. J. Immunol. Res. 2015, 2015, 20. [Google Scholar] [CrossRef]
- Zacharias, M.; Springer, S. Conformational flexibility of the MHC class I alpha1-alpha2 domain in peptide bound and free states: A molecular dynamics simulation study. Biophys. J. 2004, 87, 2203–2214. [Google Scholar] [CrossRef]
- Toh, H.; Kamikawaji, N.; Tana, T.; Sasazuki, T.; Kuhara, S. Molecular dynamics simulations of HLA-DR4 (DRB1*0405) complexed with analogue peptide: Conformational changes in the putative T-cell receptor binding regions. Protein Eng. 1998, 11, 1027–1032. [Google Scholar] [CrossRef]
- Reboul, C.F.; Meyer, G.R.; Porebski, B.T.; Borg, N.A.; Buckle, A.M. Epitope flexibility and dynamic footprint revealed by molecular dynamics of a pMHC-TCR complex. PLoS Comput. Biol. 2012, 8, e100240. [Google Scholar] [CrossRef]
- Wolfson, M.Y.; Nam, K.; Chakraborty, A.K. The effect of mutations on the alloreactive T cell receptor/peptide-MHC interface structure: A molecular dynamics study. J. Phys. Chem. B 2011, 115, 8317–8327. [Google Scholar] [CrossRef]
- Stavrakoudis, A. Insights into the structure of the LC13 TCR/HLA-B8-EBV peptide complex with molecular dynamics simulations. Cell Biochem. Biophys. 2011, 60, 283–295. [Google Scholar] [CrossRef]
- Tedeschi, V.; Alba, J.; Paladini, F.; Paroli, M.; Cauli, A.; Mathieu, A.; Sorrentino, R.; D’Abramo, M.; Fiorillo, T.M. Unusual Placement of an EBV Epitope into the Groove of the Ankylosing Spondylitis-Associated HLA-B27 Allele Allows CD8+ T Cell Activation. Cells 2019, 8, 572. [Google Scholar] [CrossRef]
- Macdonald, W.A.; Chen, Z.; Gras, S.; Archbold, J.K.; Tynan, F.E.; Clements, C.S.; Bharadwaj, M.; Kjer-Nielsen, L.; Saunders, P.M.; Wilce, M.C.; et al. T Cell Allorecognition via Molecular Mimicry. Immunity 2009, 31, 897–908. [Google Scholar] [CrossRef] [Green Version]
- Ferber, M.; Zoete, V.; Michielin, O. T-cell receptors binding orientation over peptide/MHC class I is driven by long-range interactions. PLoS ONE 2012, 7, e51943. [Google Scholar] [CrossRef]
- Ribarics, R.; Karch, R.; Ilieva, N.; Schreiner, W. Geometric analysis of alloreactive HLA α-helices. Biomed Res. Int. 2014, 2014, 943186. [Google Scholar] [CrossRef]
- Kenn, M.; Ribarics, R.; Ilieva, N.; Schreiner, W. Finding semirigid domains in biomolecules by clustering pair-distance variations. Biomed Res. Int. 2014, 2014, 731325. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [Google Scholar] [CrossRef] [Green Version]
- Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J.L.; Dror, R.O.; Shaw, D.E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 2010, 78, 1950–1958. [Google Scholar] [CrossRef] [Green Version]
- Berendsen, H.J.C.; Postma, J.P.M.; Van Gunsteren, W.F.; Hermans, J. Interaction models for water in relation to protein hydration. In Intermolecular Forces; Springer: Dordrecht, The Netherlands, 1981; pp. 331–342. [Google Scholar]
- Amadei, A.; Linssen, A.B.M.; Berendsen, H.J. Essential Dynamics of Proteins. Proteins 1993, 17, 412–425. [Google Scholar] [CrossRef]
- Kim, H.J.; Choi, M.Y.; Kim, H.J.; Llinás, M. Conformational Dynamics and Ligand Binding in the Multi-Domain Protein PDC109. PLoS ONE 2010, 5, e9180. [Google Scholar] [CrossRef]
- Hub, J.S.; de Groot, B.L. Detection of functional modes in protein dynamics. PLoS Comput. Biol. 2009, 5, e1000480. [Google Scholar] [CrossRef]
- Schreiner, W.; Karch, R.; Ribarics, R.; Cibena, M.; Ilieva, N. Relative Movements of Domains in Large Molecules of the Immune System. J. Immunol. Res. 2015, 2015, 210675. [Google Scholar] [CrossRef]
- Gakamsky, D.M.; Luescher, I.F.; Pecht, I. T cell receptor-ligand interactions: A conformational preequilibrium or an induced fit. Proc. Natl. Acad. Sci. USA 2004, 101, 9063. [Google Scholar] [CrossRef]
- Ahmad, M.; Gu, W.; Geyer, T.; Helms, V. Adhesive water networks facilitate binding of protein interfaces. Nat. Commun. 2011, 2, 261. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.K.; Stewart-Jones, G.; Dong, T.; Harlos, K.; Di Gleria, K.; Dorrell, L.; Douek, D.C.; van der Merwe, P.A.; Jones, E.Y.; McMichael, A.J. T cell cross-reactivity and conformational changes during TCR engagement. J. Exp. Med. 2004, 200, 1455–1466. [Google Scholar] [CrossRef]
- Borbulevych, O.Y.; Piepenbrink, K.H.; Gloor, B.E.; Scott, D.R.; Sommese, R.F.; Cole, D.K.; Sewell, A.K.; Baker, B.M. T cell receptor cross-reactivity directed by antigen-dependent tuning of peptide-MHC molecular flexibility. Immunity 2009, 31, 885–896. [Google Scholar] [CrossRef]
- Borbulevych, O.Y.; Piepenbrink, K.H.; Baker, B.M. Conformational melding permits a conserved binding geometry in TCR recognition of foreign and self molecular mimics. J. Immunol. 2011, 186, 2950–2958. [Google Scholar] [CrossRef]
- Madden, D.R.; Garboczi, D.N.; Wiley, D.C. The antigenic identity of peptide-MHC complexes: A comparison of the conformations of five viral peptides presented by HLA-A2. Cell 1993, 75, 693–708. [Google Scholar] [CrossRef]
- Tynan, F.E.; Burrows, S.R.; Buckle, A.M.; Clements, C.S.; Borg, N.A.; Miles, J.J.; Beddoe, T.; Whisstock, J.C.; Wilce, M.C.; Silins, S.L.; et al. T cell receptor recognition of a ‘super-bulged’ major histocompatibility complex class I-bound peptide. Nat. Immunol. 2005, 6, 1114–1122. [Google Scholar] [CrossRef]
- Wieczorek, M.; Abualrous, E.T.; Sticht, J.; Alvaro-Benito, M.; Stolzenberg, S.; Noé, F.; Freund, C. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation. Front. Immunol. 2017, 8, 292. [Google Scholar] [CrossRef] [Green Version]
- Ayres, C.M.; Corcelli, S.A.; Baker, B.M. Peptide and Peptide-Dependent Motions in MHC Proteins: Immunological Implications and Biophysical Underpinnings. Front. Immunol. 2017, 8, 935. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, K.; Jiang, J.; May, N.A.; Mage, M.G.; Boyd, L.F.; McShan, A.C.; Sgourakis, N.G.; Bax, A.; Margulies, D.H. The Role of Molecular Flexibility in Antigen Presentation and T Cell Receptor-Mediated Signaling. Front. Immunol. 2018, 9, 1657. [Google Scholar] [CrossRef]
- Hawse, W.F.; Champion, M.M.; Joyce, M.V.; Hellman, L.M.; Hossain, M.; Ryan, V.; Pierce, B.G.; Weng, Z.; Baker, B.M. Cutting edge: Evidence for a dynamically driven T cell signaling mechanism. J. Immunol. 2012, 188, 5819–5823. [Google Scholar] [CrossRef]
- Rossjohn, J.; Gras, S.; Miles, J.J.; Turner, S.J.; Godfrey, D.I.; McCluskey, J. T cell antigen receptor recognition of antigen-presenting molecules. Annu. Rev. Immunol. 2015, 33, 169–200. [Google Scholar] [CrossRef]
- Hoffmann, T.; Krackhardt, A.M.; Antes, I. Quantitative Analysis of the Association Angle between T-cell Receptor Vα/Vβ Domains Reveals Important Features for Epitope Recognition. PLoS Comput. Biol. 2015, 11, e1004244. [Google Scholar] [CrossRef]
- Adler, M.; Beroza, P. Improved Ligand Binding Energies Derived from Molecular Dynamics: Replicate Sampling Enhances the Search of Conformational Space. J. Chem. Inf. Model. 2013, 53, 2065–2072. [Google Scholar] [CrossRef]
- He, H.T.; Bongrand, P. Membrane dynamics shape TCR-generated signaling. Front. Immunol. 2012, 3, 90. [Google Scholar] [CrossRef] [Green Version]
- Wan, S.; Flower, D.R.; Coveney, P.V. Toward an atomistic understanding of the immune synapse: Large-scale molecular dynamics simulation of a membrane-embedded TCR-pMHC-CD4 complex. Mol. Immunol. 2008, 45, 1221–1230. [Google Scholar] [CrossRef]
- Bello, M.; Correa-Basurto, J. Molecular dynamics simulations to provide insights into epitopes coupled to the soluble and membrane-bound MHC-II complexes. PLoS ONE 2013, 8, e72575. [Google Scholar] [CrossRef]
- Bello, M.; Correa-Basurto, J. Energetic and flexibility properties captured by long molecular dynamics simulations of a membrane-embedded pMHCII-TCR complex. Mol. Biosyst. 2016, 12, 1350–1366. [Google Scholar] [CrossRef]
- Kmiecik, S.; Kouza, M.A.O.; Badaczewska-Dawid, A.E.; Kloczkowski, A.; Kolinski, A.A.O. Modeling of Protein Structural Flexibility and Large-Scale Dynamics: Coarse-Grained Simulations and Elastic Network Models. Int. J. Mol. Sci. 2018, 19, 3496. [Google Scholar] [CrossRef]
- Kmiecik, S.; Gront, D.; Kolinski, M.; Wieteska, L.; Dawid, A.E.; Kolinski, A. Coarse-Grained Protein Models and Their Applications. Chem. Rev. 2016, 116, 7898–7936. [Google Scholar] [CrossRef] [Green Version]
- Cuendet, M.A.; Michielin, O. Protein-protein interaction investigated by steered molecular dynamics: The TCR-pMHC complex. Biophys. J. 2008, 95, 3575–3590. [Google Scholar] [CrossRef]
- Tobi, D.; Bahar, I. Structural changes involved in protein binding correlate with intrinsic motions of proteins in the unbound state. Proc. Natl. Acad. Sci. USA 2005, 102, 18908–18913. [Google Scholar] [CrossRef] [Green Version]
Run | TCR Vα | TCR Vβ | MHC α1 | MHC α2 | MHC Peptide |
---|---|---|---|---|---|
1 | 0.101 ± 0.013 | 0.109 ± 0.017 | 0.087 ± 0.019 | 0.132 ± 0.021 | 0.157 ± 0.015 |
2 | 0.106 ± 0.011 | 0.084 ± 0.009 | 0.059 ± 0.013 | 0.111 ± 0.014 | 0.061 ± 0.017 |
3 | 0.112 ± 0.015 | 0.083 ± 0.011 | 0.075 ± 0.011 | 0.079 ± 0.011 | 0.123 ± 0.012 |
4 | 0.126 ± 0.010 | 0.087 ± 0.011 | 0.061 ± 0.010 | 0.117 ± 0.019 | 0.117 ± 0.034 |
5 | 0.114 ± 0.016 | 0.087 ± 0.009 | 0.066 ± 0.009 | 0.079 ± 0.019 | 0.085 ± 0.017 |
6 | 0.102 ± 0.011 | 0.093 ± 0.014 | 0.083 ± 0.011 | 0.153 ± 0.039 | 0.096 ± 0.020 |
7 | 0.129 ± 0.011 | 0.119 ± 0.011 | 0.061 ± 0.010 | 0.097 ± 0.013 | 0.085 ± 0.014 |
8 | 0.114 ± 0.011 | 0.087 ± 0.010 | 0.084 ± 0.016 | 0.073 ± 0.013 | 0.104 ± 0.020 |
9 | 0.118 ± 0.011 | 0.122 ± 0.016 | 0.076 ± 0.012 | 0.118 ± 0.031 | 0.064 ± 0.018 |
10 | 0.124 ± 0.009 | 0.091 ± 0.010 | 0.080 ± 0.015 | 0.107 ± 0.016 | 0.094 ± 0.014 |
11 | 0.108 ± 0.016 | 0.085 ± 0.013 | 0.077 ± 0.013 | 0.067 ± 0.015 | 0.085 ± 0.011 |
Run | TCR Vα | TCR Vβ | MHC α1 | MHC α2 | MHC Peptide |
---|---|---|---|---|---|
1 | 0.099 ± 0.010 | 0.071 ± 0.007 | 0.074 ± 0.009 | 0.076 ± 0.010 | 0.052 ± 0.010 |
2 | 0.098 ± 0.008 | 0.069 ± 0.008 | 0.070 ± 0.009 | 0.094 ± 0.011 | 0.056 ± 0.007 |
3 | 0.101 ± 0.011 | 0.087 ± 0.018 | 0.093 ± 0.014 | 0.095 ± 0.022 | 0.048 ± 0.007 |
4 | 0.111 ± 0.010 | 0.069 ± 0.007 | 0.070 ± 0.015 | 0.127 ± 0.024 | 0.082 ± 0.015 |
5 | 0.098 ± 0.009 | 0.080 ± 0.012 | 0.076 ± 0.007 | 0.072 ± 0.009 | 0.046 ± 0.006 |
6 | 0.090 ± 0.008 | 0.064 ± 0.007 | 0.079 ± 0.011 | 0.120 ± 0.022 | 0.047 ± 0.006 |
7 | 0.100 ± 0.013 | 0.068 ± 0.007 | 0.084 ± 0.013 | 0.117 ± 0.028 | 0.052 ± 0.011 |
8 | 0.105 ± 0.009 | 0.067 ± 0.008 | 0.084 ± 0.014 | 0.134 ± 0.021 | 0.057 ± 0.011 |
9 | 0.100 ± 0.011 | 0.070 ± 0.008 | 0.076 ± 0.011 | 0.079 ± 0.014 | 0.057 ± 0.016 |
10 | 0.109 ± 0.016 | 0.066 ± 0.006 | 0.067 ± 0.016 | 0.105 ± 0.029 | 0.083 ± 0.011 |
11 | 0.097 ± 0.011 | 0.073 ± 0.010 | 0.073 ± 0.013 | 0.081 ± 0.012 | 0.066 ± 0.008 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karch, R.; Stocsits, C.; Ilieva, N.; Schreiner, W. Intramolecular Domain Movements of Free and Bound pMHC and TCR Proteins: A Molecular Dynamics Simulation Study. Cells 2019, 8, 720. https://doi.org/10.3390/cells8070720
Karch R, Stocsits C, Ilieva N, Schreiner W. Intramolecular Domain Movements of Free and Bound pMHC and TCR Proteins: A Molecular Dynamics Simulation Study. Cells. 2019; 8(7):720. https://doi.org/10.3390/cells8070720
Chicago/Turabian StyleKarch, Rudolf, Claudia Stocsits, Nevena Ilieva, and Wolfgang Schreiner. 2019. "Intramolecular Domain Movements of Free and Bound pMHC and TCR Proteins: A Molecular Dynamics Simulation Study" Cells 8, no. 7: 720. https://doi.org/10.3390/cells8070720
APA StyleKarch, R., Stocsits, C., Ilieva, N., & Schreiner, W. (2019). Intramolecular Domain Movements of Free and Bound pMHC and TCR Proteins: A Molecular Dynamics Simulation Study. Cells, 8(7), 720. https://doi.org/10.3390/cells8070720