Polyamines: Small Amines with Large Effects on Plant Abiotic Stress Tolerance
Abstract
:1. Introduction
2. Polyamines and Drought Stress
2.1. Protective Effects by Exogenous Application of PAs during Drought
Plant Species | Polyamine Application | Stress Treatment | Performance | Citations |
---|---|---|---|---|
Citrus | Spm (1 mM) plantets incubated in solution for 5 h | Drought (dehydration for 12 h) | Dehydration tolerance | [27] |
Wheat | Put (0.1 mM) foliar spray at the time of anthesis | Drought (witholding water at the time of anthesis) | Drought Tolerance | [22] |
Bermudagrass | Spd (5 mM) 21-old-plants in solutions for 7 days | Drought (with holding water for 21 days + 3 days recovery) | Drought Tolerance | [25] |
Maize | * Put (0.1 mM) seeds soaked for 10 h | Drought (withholding water for 3 weeks after sowing) | Improved seed germination under water stress | [34] |
White clover | * Spd (30 μM) seeds soaked for 3 h | Water stress (PEG 6000) for 7 days | Improved seed germination under water stress | [35] |
Tobacco | Put (1 mM) to leaf discs for 2 h | Water stress (PEG 6000) for 1 h | Improved water stress tolerance | [23] |
Valerian | Spd, Spm (1 mM) foliar spray at 30 days after transplanting | Drought (witholding water at 30 days after trasnplanting) | Improved drought tolerance | [26] |
Wheat | * Spd, Spm, Put (0.1 mM) seeds soaked for 6 h | Water stress (PEG 6000) for 7 days | Improved seed germination under water stress | [36] |
Wheat | * Put, Spd, Spm (100 μM) seed soaking for 10 h | Drought (witholding water for 21 days) | Drought tolerance | [37] |
Finger Millet | Spd spray (0.2 mM) during 3 weeks at early flowering stage | 25, 50 and 75% of water deficits | Alleviate water deficit | [28] |
Damask rose | Spd, Spm (0.5 mM) foliar application in plants | 50 to 100% water field capacity | Alleviate water deficit | [29] |
Lettuce | Put (0.1 mM) foliar application for 8 days in seedlings | Drought PEG 6000 (10%) | Improved drought tolerance | [24] |
Mung bean | Seeds soaked in (0 or 100 μM) * Put, Spd, Spm or their mixture for 10 h | In field conditions drought stress (May–August) | Improved seed germination and growth | [38] |
Wheat | * Put, Spm and their mixture (100 μM) in seed priming and foliar spray | Drought (withholding water) | Drought tolerance | [39] |
2.2. Drought Tolerance in Genetically Modified Plants with Altered PA Metabolism
3. Polyamines and Salt Stress
3.1. Protective Effects by Exogenous Application of PAs during Salinity
Plant Species | Polyamine Application | Stress Treatment | Performance | Citations |
---|---|---|---|---|
Cucumber | Spd (0.1 mM) 3 days old seedlings for 7 days | Salinity (50 mM NaCl) 3 days old seedlings for 7 days | Salt tolerance enhancement | [66] |
Cucumber | Put (65 mM) seedlings with leaf emerging 7 days spray | Salt (65 mM NaCl) seedlings for 8 h | Improved tolerance to salt | [61] |
Chamomile | * Put (0.01–1.5 mM) seeds soaked for 10 days | Salinity (25–150 mM NaCl) for 10 days | Improved seed germination under salinity | [65] |
Sweet majoran | * Spd (0.01–1.5 mM) seeds soaked for 10 days | Salinity (25–150mM NaCl) for 10 days | Improved seed germination under salinity stress | [65] |
Spinach | * Spd (0.01–0.1 mM) seeds soaked | Salinity (50 mM NaCl) | Improved seed germination under salinity | [71] |
Amarathus | * Spd (0.01–0.1 mM) soaked | Salinity (50 mM) | Improved seed germination under salinity | [71] |
Rice | Put (1 mM) 10 days old seedlings for 12 h | Salinity (100 mM NaCl) 10 days old seedlings for 12 h | Reduced Na+ accumulation in salt sensitive cultivars | [62] |
Tomato | * Spd (0.25 mM) seeds soaked for 10 h | Salinity-alkalinity solution | Improved tolerance | [72] |
Bermudagrass | Spd (5 mM) 21 old plants solution for 7 days | Salt (50–300 mM NaCl) to 28 days old plants for 24 h | Salt tolerance | [25] |
Ginseng | Spd (1 mM) 2-week-old seedlings for 7 days | Salt (150 mM) for 7 days | Salt tolerance enhancement | [67] |
Lemon | Put (1 mM) foliar spray for 2 weeks to 2-month-old plants | Salt (25–100 mM NaCl) for 2 weeks | Enhanced salt tolerance | [63] |
Rice | * Spd (1 mM) soaked seeds for 14 days | Salinity (150 mM NaCl) for 10 days | Salt tolerance enhanced | [70] |
Tomato | Spd (0.25 mM) foliar spray to seedlings for 8 days | Salinity-alkalinity solution | Enhanced tolerance to stress | [73] |
Bluegrass | Spd (1 mM) 2 week-old-seedlings for 7–28 days | Salt (50–200 mM NaCl) gradual increment during 7–28 days | Salt tolerance enhancement | [68] |
Chrysantemum | Spd (0.5–2 mM) 4 foliar application 20 days old | Salt (NaCl 75 mM) 6 days old seedlings with 3 leaves | Salt tolerance enhancement | [69] |
Cucumber | Spd (0.1 mM) for 6 days to seedlings with 3 leaves | Salt (75 mM) to seedlings with 3 leaves | Salt tolerance enhancement | [74] |
Zoysiagrass | Spd (0.15 mM) in two cultivars with high and lower salinity tolerance | NaCl (150 mM) and mix (Spd and NaCl) from 0–8 days | Salt tolerance enhancement | [75] |
Tea | Put (5 mM) in plants of 2-years-old and 7–8 leaves on bud foliar application | Put (5 mM) + NaCl (50–100 mM) during 1–8 days | Alleviating salt-stress | [64] |
Sweet sorghum | Spd (0.25 mM) in Hoagland solution in 10 days-old-seedlings | NaCl (100–150 mM) and mix (NaCl and Spd) | Enhanced photosynthetic efficiency | [76] |
Soybean | * Spd (0.10 mM) in soaked seeds from 4–6 days | Salt (50 mM NaCl) and Mix (Spd + NaCl) | Alleviated salt stress | [77] |
Rice | Spd (from 0–1.5 mM), 7 days treatment, and 4th fully expanded leaves | NaCl (100 mM) and mix (NaCl + Spd) | Stability of chloroplasts against salt stress | [78] |
3.2. Protective Effects against Salinity in Genetically Modified Plants with Altered PA Metabolism
4. Polyamines and Low Temperature Stress
4.1. Protective Effects by Exogenous Application of PA during Low Temperature Stress
4.2. Protective Effects to Low Temperature Stress in Genetically Modified Plants with Altered PA Metabolism
5. Polyamines and Heat Stress
5.1. Protective Effects Produced by Exogenous PA Application Against Heat Stress
Plant Species | Polyamine Application | Stress Treatment | Performance | Citations |
---|---|---|---|---|
Cucumber | Spd (0.5 mM) second leaf fully expanded for 2 days | Chilling (10/7 °C) for 8 days returned at (28/22 °C) for 3 days | Enhaced tolerance to low temperature | [92] |
Fennel | * Put (10–20 ppm) for 24 h soaked seeds | Chilling (10 °C) | Enhanced tolerance to low temperature | [87] |
Mung bean | Spd (0.25 mM) pretreated 4 days old seedlings for 24 h | Low temperature (6 °C) for 2–3 days | Enhanced tolerance to low temperature | [93] |
Tomato | Put (1 mM) foliar spray, one for a week to 5-leaf seedlings | Chilling (4 °C) for 24 h and recovery (25/15 °C) for 10 days | Enhanced tolerance to low temperatures | [89] |
Rice | * Spd (5 mM) for 24 h soaked seeds | Chilling (10 °C) | Enhanced chilling tolerance | [94] |
Tomato | Put (1 mM) in 5 th leaf stage | Chilling (10 °C) | Enhanced tolerance to chilling | [88] |
Centipedegrass | Put or Spd (0.1 mM) solution/pot in plants of 60 days | Chilling (8 °C) for 30 days, analysis of the 3rd leaf from the top | Enhanced tolerance to chilling | [95] |
Peach | Put (0, 1, 2, 3 mM) in 3 stages of fruit development | Storage of fruits at (1 °C) for 6 weeks | Chilling injury alleviated | [91] |
Oilseed rape | Put, Spd, Spm (1 mM) foliar spray in plants cultivated 22 days | Cold acclimation, 4 days (4 °C) and two d increasing cold (from −1 to −3 °C) | Improved cold resistance | [96] |
Soybean | Put, Spd (1 mM) pretreatment of germinating seedlings 2 h | (45 °C) for 2 h | Enhanced tolerance to heat | [108] |
Wheat | Put (2.5 mM) foliar spray 30 days old seedlings | Heat (35 °C) for 4–8 h | Enhanced tolerance to heat | [109] |
Tomato | Spd (1 mM) immersion of green fruits 30 min | Heat (37/27 °C) for 1–12 h | Enhanced tolerance to heat | [110] |
Tomato | Spd (1 mM) 3rd true leaf foliar spray | Heat (28/38 °C), 7 days | Enhanced tolerance to heat | [111] |
Trifoliate orange | Spm (1 mM) 3-months-old seedling 30 h pretreatment | Heat (45 °C) for 180 min produced HT and dehydration | Enhanced tolerance to heat and drought | [114] |
Mung bean | Spm (0.2 mM) 5 days old seedlings pretreatment for 24 h | Heat (40 °C) + drought 0.5% PEG 6000 for 48 h | Enhanced tolerance to heat and drought | [115] |
Wheat | Spd, Spm (1 mM) sprayed before HT and lasted for 5 d on the flag leaves and panicles | In the field: Average temperature inside (34.9 °C) and outside (30.5 °C) | Alleviate the photosynthesis in flag leaves | [112] |
Wheat | Spd, Spm (1 mM) before HT, sprayed on the flag leaves and panicles | In the field: otuside the shed (26.7–32.3 °C) and inside the shed (37.7–32.1 °C) | Alleviate grain filling | [113] |
5.2. Protective Effects to High Temperature Stress in Genetically Modified Plants with Altered PA Metabolism
6. Final Remarks and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Perkins, S.E.; Alexander, L.V.; Nairn, J.R. Increasing frequency, intensity and duration of observed global heatwaves and warm spells. Geophys. Res. Lett. 2012, 39, L20714. [Google Scholar] [CrossRef]
- Thornton, P.K.; Ericksen, P.J.; Herrero, M.; Challinor, A.J. Climate variability and vulnerability to climate change: A review. Glob. Chang. Biol. 2014, 20, 3313–3328. [Google Scholar] [CrossRef] [PubMed]
- Leisner, C.P. Review: Climate change impacts on food security-focus on perennial cropping systems and nutritional value. Plant Sci. 2020, 293, 110412. [Google Scholar] [CrossRef] [PubMed]
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Climate Chang. 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Grayson, M. Agriculture and drought. Nat. Outlook 2013, 501, S1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panta, S.; Flowers, T.; Lane, P.; Doyle, R.; Haros, G.; Shabala, S. Halophyte agriculture: Success stories. Environ. Exp. Bot. 2014, 107, 71–83. [Google Scholar] [CrossRef]
- Alcázar, R.; Cuevas, J.C.; Planas, J.; Zarza, X.; Bortolotti, C.; Carrasco, P.; Salinas, J.; Tiburcio, A.F.; Altabella, T. Integration of polyamines in the cold acclimation response. Plant Sci. 2011, 180, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Arshad, M.S.; Farooq, M.; Asch, F.; Krishna, J.S.; Prasad, P.V.; Siddique, K.H. Thermal stress impacts reproductive development and grain yield in rice. Plant Physiol. Biochem. 2017, 115, 57–72. [Google Scholar] [CrossRef]
- Pandey, P.; Ramegowda, V.; Senthil-Kumar, M. Shared and unique responses of plants to multiple individual stresses and stress combinations: Physiological and molecular mechanisms. Front. Plant Sci. 2015, 6, 723. [Google Scholar] [CrossRef] [Green Version]
- Tiburcio, A.F.; Altabella, T.; Bitrián, M.; Alcázar, R. The roles of polyamines during the lifespan of plants: From development to stress. Planta 2014, 240, 1–18. [Google Scholar] [CrossRef]
- Groppa, M.D.; Benavides, M.P. Polyamines and abiotic stress: Recent advances. Amino Acids 2008, 34, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Alcázar, R.; Altabella, T.; Marco, F.; Bortolotti, C.; Reymond, M.; Koncz, C.; Carrasco, P.; Tiburcio, A.F. Polyamines: Molecules with regulatory functions in plant abiotic stress tolerance. Planta 2010, 231, 1237–1249. [Google Scholar] [CrossRef]
- Seo, S.Y.; Kim, Y.J.; Park, K.Y. Increasing polyamine contents enhanced the stress tolerance via reinforcement of antioxidative properties. Front. Plant Sci. 2019, 10, 1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todorova, D.; Katerova, Z.; Alexieva, V.; Sergiev, I. Polyamines- possibilities for application to increase plant tolerance and adaptation capacity to stress. Gen. Plant Physiol. 2015, 5, 123–144. [Google Scholar]
- Chen, D.; Shao, Q.; Yin, L.; Younis, A.; Zheng, B. Polyamine function in plants: Metabolism, regulation on development, and roles in abiotic stress responses. Front. Plant Sci. 2019, 9, 1945. [Google Scholar] [CrossRef] [PubMed]
- Minocha, R.; Majumdar, R.; Minocha, S.C. Polyamines and abiotic stress in plants: A complex relationship. Front. Plant Sci. 2014, 5, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berberich, T.; Sagor, G.H.M.; Kusano, T. Polyamines in plant stress response. In Polyamines; Kusano, T., Suzuki, H., Eds.; Springer: Tokyo, Japan, 2015; Volume 13, pp. 155–168. [Google Scholar]
- Romero, F.M.; Maiale, S.J.; Rossi, F.R.; Marina, M.; Ruíz, O.A.; Gárriz, A. Polyamine metabolism responses to biotic and abiotic stress. Methods Mol. Biol. 2018, 1694, 37–49. [Google Scholar] [CrossRef]
- Thomas, W.T. Drought-resistant cereals: Impact on water sustainability and nutritional quality. Proc. Nutr. Soc. 2015, 74, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Anjum, S.A.; Ashraf, U.; Tanveer, M.; Khan, I.; Hussain, S.; Shahzad, B.; Zohaib, A.; Saleen, M.F.; Ali, I.; Wang, L.C. Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front. Plant Sci. 2017, 8, 69. [Google Scholar] [CrossRef]
- You, J.; Chan, Z. ROS regulation during abiotic stress responses in crop plants. Front. Plant Sci. 2015, 8, 1092. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Agarwal, V.P.; Gupta, N.K. Efficacy of putrescine and benzyladenine on photosynthesis and productivity in relation to drought tolerance in wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plants 2012, 18, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Kotakis, C.; Theodoropoulou, E.; Tassis, K.; Oustamanolakis, C.; Ioannidis, N.E.; Kotzabasis, K. Putrescine, a fast-acting switch for tolerance against osmotic stress. J. Plant Physiol. 2014, 171, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Wang, L.; Yang, R.; Han, Y.; Hao, J.; Liu, C.; Fan, S. Effects of exogenous putrescine on the ultrastructure of and calcium ion flow rate in lettuce leaf epidermal cells under drought stress. Hort. Environ. Biotech. 2019, 60, 479–490. [Google Scholar] [CrossRef]
- Shi, H.; Ye, T.; Chang, Z. Comparative proteomic and physiological analyses reveal the protective effect of exogenous polyamines in the Bermudagrass (Cynodon dactylon). Response to salt and drought stresses. J. Proteome. Res. 2013, 12, 4951–4964. [Google Scholar] [CrossRef]
- Mustafavi, S.H.; Shekari, F.; Maleki, H.H. Influence of exogenous polyamines on antioxidant defence and essential oil production in valerian (Valeriana officinalis L.) plants under drought stress. Acta Agric. Slov. 2016, 107, 81–91. [Google Scholar] [CrossRef]
- Shi, J.; Fu, X.Z.; Peng, T.; Huang, X.S.; Fan, Q.J.; Liu, J.H. Spermine pretreatment confers dehydration tolerance of Citrus in vitro plants via modulation of antioxidative capacity and stomatal response. Tree Physiol. 2010, 30, 914–922. [Google Scholar] [CrossRef]
- Satish, L.; Rency, A.S.; Ramesh, M. Spermidine sprays alleviate the water deficit-induced oxidative stress in finger millet (Eleusine coracana L. Gaerth.) plants. 3 Biotech 2018, 8, 63. [Google Scholar] [CrossRef] [PubMed]
- Hassan, F.A.; Ali, E.F.; Alamer, K.H. Exogenous application of polyamines alleviates water stress-induced oxidative stress of Rosa damascena Miller var. trigintipetala Dieck. S. Afr. J. Bot. 2018, 116, 96–102. [Google Scholar] [CrossRef]
- Yan, M. Seed priming stimulate germination and early seedling growth of Chinese cabbage under drought stress. S. Afr. J. Bot. 2015, 99, 88–92. [Google Scholar] [CrossRef]
- Ibrahim, E.A. Seed priming to alleviate salinity stress in germinating seeds. J. Plant Physiol. 2016, 192, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Savvides, A.; Ali, S.; Tester, M.; Fotopoulos, V. Chemical priming of plants against multiple abiotic stresses: Mission possible? Trends Plant Sci. 2016, 21, 329–340. [Google Scholar] [CrossRef] [Green Version]
- Tiburcio, A.F.; Alcázar, R. Potential applications of polyamines in agriculture and plant biotechnology. Methods Mol. Biol. 2018, 1694, 489–508. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Farooq, M.; Wahid, M.A.; Wahid, A. Seed priming with putrescine improves the drought resistance of maize hybrids. Int. J. Agric. Biol. 2013, 15, 1349–1353. [Google Scholar]
- Li, Z.; Peng, Y.; Zhang, X.Q.; Ma, X.; Huang, L.K.; Yan, Y.H. Exogenous spermidine improves seed germination of white clover under water stress via involvement in starch metabolism, antioxidant defenses and relevant gene expression. Molecules 2014, 19, 18003–18024. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xu, H.; Wen, X.; Liao, Y. Effect of polyamine on seed germination of wheat under drought stress is related to changes in hormones and carbohydrates. J. Integr. Agric. 2016, 15, 2759–2774. [Google Scholar] [CrossRef] [Green Version]
- Ebeed, H.T.; Hassan, N.M.; Aljarani, A.M. Exogenous applications of polyamines modulate drought responses in wheat through osmolytes accumulation, increasing free polyamine levels and regulation of polyamine biosynthetic genes. Plant Physiol. Biochem. 2017, 118, 438–448. [Google Scholar] [CrossRef]
- Sadeghipour, O. Polyamines protect mung bean [Vigna radiata (L.) Wilczek] plants against drought stress. Biol. Futura 2019, 70, 71–78. [Google Scholar] [CrossRef]
- Hassan, N.; Ebeed, H.; Aljaarany, A. Exogenous application of spermine and putrescine mitigate adversities of drought stress in wheat by protecting membranes and chloroplast ultra-structure. Physiol. Mol. Biol. Plants 2020, 26, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Seki, M.; Umezawa, T.; Urano, K.; Shinozaki, K. Regulatory metabolic networks in drought stress responses. Curr. Opin. Plant Biol. 2007, 10, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Krasensky, J.; Jonak, C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 2012, 63, 1593–1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatnagar-Mathur, P.; Vadez, V.; Sharma, K.K. Transgenic approaches for abiotic stress tolerance in plants: Retrospect and prospects. Plant Cell Rep. 2008, 27, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Wuddineh, W.; Minocha, R.; Minocha, S.C. Polyamines in the context of metabolic networks. Methods Mol. Biol. 2018, 1694, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Pathak, M.R.; Teixeira da Silva, J.A.; Wani, S.H. Polyamines in response to abiotic stress tolerance through transgenic approaches. GM Crops Food 2014, 5, 87–96. [Google Scholar] [CrossRef]
- Shi, H.; Chan, Z. Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. J. Integr. Plant Biol. 2014, 56, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.H.; Wang, W.; Wu, H.; Gong, X.; Moriguchi, T. Polyamines function in stress tolerance: From synthesis to regulation. Front Plant Sci. 2015, 6, 827. [Google Scholar] [CrossRef] [Green Version]
- Alcázar, R.; Planas, J.; Saxena, T.; Zarza, X.; Bortolotti, C.; Cuevas, J.; Bitrián, M.; Tiburcio, A.F.; Altabella, T. Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous Arginine decarboxylase 2 gene. Plant Physiol. Biochem. 2010, 48, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Alcazar, R.; Cuevas, J.C.; Patron, M.; Altabella, T.; Tiburcio, A.F. Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana. Physiol. Plant. 2006, 128, 448–455. [Google Scholar] [CrossRef]
- Marco, F.; Alcázar, R.; Tiburcio, A.F.; Carrasco, P. Interactions between polyamines and abiotic stress pathway responses unraveled by transcriptome analysis of polyamine overproducers. OMICS 2011, 15, 775–781. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, K.; Takahashi, Y.; Berberich, T.; Imai, A.; Takahashi, T.; Michael, A.J.; Kusano, T. A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem. Biophys. Res. Commun. 2007, 352, 486–490. [Google Scholar] [CrossRef]
- Espasandin, F.D.; Maiale, S.J.; Calzadilla, P.; Ruiz, O.A.; Sansberro, P.A. Transcriptional regulation of 9-cis-epoxycarotenoid dioxygenase (NCED) gene by putrescine accumulation positively modulates ABA synthesis and drought tolerance in Lotus tenuis plants. Plant Physiol. Biochem. 2014, 76, 29–35. [Google Scholar] [CrossRef]
- Zhou, C.; Sun, Y.; Ma, Z.; Wang, J. Heterologous expression of EsSPDS1 in tobacco plants improves drought tolerance with efficient reactive oxygen species scavenging systems. S. Afr. J. Bot. 2015, 96, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Zhan, J.; Wang, Q.; Wu, X.; Chen, X.; Jia, B.; Liu, P.; Liu, L.; Ye, Z.; Zhu, L.; et al. Overexpression of the pear PbSPMS gene in Arabidopsis thaliana increases resistant to abiotic stress. Plant Cell Tiss. Organ. Cult. 2020, 140, 389–401. [Google Scholar] [CrossRef]
- Golldack, D.; Li, C.; Mohan, H.; Probst, N. Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Front. Plant Sci. 2014, 5, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Vinocur, B.; Altman, A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta 2003, 218, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef]
- Gupta, B.; Huang, B. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. Int. J. Genom. 2014, 2014, ID701596. [Google Scholar] [CrossRef]
- Daszkowska-Golec, A. Arabidopsis seed germination under abiotic stress as a concert of action of phytohormones. OMICS 2011, 15, 763–774. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.H.; Li, J.; Guo, S.R.; Tezuka, T. Effects of exogenous putrescine on gas-exchange characteristics and chlorophyll fluorescence of NaCl-stressed cucumber seedlings. Photosynth. Res. 2009, 100, 155–162. [Google Scholar] [CrossRef]
- Quinet, M.; Ndayiragije, A.; Lefèvre, I.; Lambillotte, B.; Dupont-Gillain, C.C.; Lutts, S. Putrescine differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in rice cultivars differing in salt resistance. J. Exp. Bot. 2010, 61, 2719–2733. [Google Scholar] [CrossRef] [PubMed]
- Khorshidi, M.; Hamedi, F. Effect of putrescine on lemon balm under salt stress. Int. J. Agric. Crop Sci. 2014, 7, 601–609. [Google Scholar]
- Xiong, F.; Liao, J.; Ma, Y.; Wang, Y.; Fang, W.; Zhu, X. The protective effect of exogenous putrescine in the response of tea plants (Camellia sinensis) to salt stress. HortScience 2018, 53, 1640–1646. [Google Scholar] [CrossRef] [Green Version]
- Ali, R.M.; Abbas, H.M.; Kamal, R.K. The effects of treatment with polyamines on dry matter and some metabolites in salinity–stressed chamomile and sweet majoram seedlings. Plant Soil Environ. 2009, 55, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.; Li, J.; Guo, S.; Kang, Y. Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. J. Plant Physiol. 2008, 165, 1620–1635. [Google Scholar] [CrossRef]
- Parvin, S.; Lee, O.R.; Sathiyaraj, G.; Khorolragchaa, A.; Kim, Y.J.; Yang, D.C. Spermidine alleviates the growth of saline-stressed ginseng seedlings through antioxidative defense system. Gene 2014, 537, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Puyang, X.; An, M.; Han, L.; Zhang, X. Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass (Poa pratensis L.) cultivars. Ecotoxicol. Environ. Saf. 2015, 117, 96–106. [Google Scholar] [CrossRef]
- Zhang, N.; Shi, X.; Guan, Z.; Zhao, S.; Zhang, F.; Chen, S.; Fang, W.; Chen, F. Treatment with spermidine protects chrysanthemum seedlings against salinity stress damage. Plant Physiol. Biochem. 2016, 105, 260–270. [Google Scholar] [CrossRef]
- Chunthaburee, S.; Sanitchon, J.; Pattanagul, W.; Theerakulpisut, P. Alleviation of salt stress in seedlings of black glutinous rice by seed priming with spermidine and gibberellic acid. Notulae Botanicae Horti Agrobotanici 2014, 42, 405–4013. [Google Scholar] [CrossRef] [Green Version]
- Rebecca, L.J.; Das, S.; Dhanalakshmi, V.; Anbuselvi, S. Effect of exogenous spermidine on salinity tolerance with respect to seed germination. Int. J. Appl. Agric. Res. 2010, 5, 163–169. [Google Scholar]
- Hu, X.; Zhang, Y.; Shi, Y.; Zhang, Z.; Zou, Z.; Zhang, H.; Zhao, J. Effect of exogenous spermidine on polyamine content and metabolism in tomato exposed to salinity-alkalinity mixed stress. Plant Physiol. Biochem. 2012, 57, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chang, X.X.; Zhang, L.; Li, J.M.; Hu, X.H. Spermidine application enhances tomato seedling tolerance to salinity-alkalinity stress by modifying chloroplast antioxidant systems. Russ. J. Plant Physiol. 2016, 63, 461–468. [Google Scholar] [CrossRef]
- Sang, T.; Shan, X.; Li, B.; Shu, S.; Sun, J.; Guo, S. Comparative proteomic analysis reveals the positive effect of exogenous spermidine on photosynthesis and salinity tolerance in cucumber seedlings. Plant Cell Rep. 2016, 35, 1769–1782. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Cui, L.; Zhang, Y.; Wang, Y.; Mao, P. The variation tendency of polyamines forms and components of polyamine metabolism in Zoysiagrass (Zoysia japonica Steud.) to salt stress with exogenous spermidine application. Front. Physiol. 2017, 8, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Sayed, A.I.; El-Hamahmy, M.A.M.; Rafudeen, M.S.; Ebrahim, M.K.H. Exogenous spermidine enhances expression of Calvin cycle genes and photosynthetic efficiency in sweet sorghum seedlings under salt stress. Biol. Plant. 2019, 63, 511–518. [Google Scholar] [CrossRef]
- Fang, W.; Qui, F.; Yin, Y.; Yang, Z. Exogenous spermidine promotes γ-aminobutyric acid accumulation and alleviates the negative effect of NaCl stress in germinating soybean (Glycine max L.). Foods 2020, 9, 267. [Google Scholar] [CrossRef] [Green Version]
- Jiang, D.X.; Chu, X.; Li, M.; Hou, J.J.; Tong, X.; Gao, Z.P.; Chen, G.X. Exogenous spermidine enhances salt-stressed rice photosynthetic performance by stabilizing structure and function of chloroplast and thylakoid membranes. Photosynthetica 2020, 58, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Roy, M.; Wu, R. Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci. 2001, 160, 869–875. [Google Scholar] [CrossRef]
- Urano, K.; Yoshiba, Y.; Nanjo, T.; Ito, T.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochem Biophys. Res. Commun. 2004, 313, 369–375. [Google Scholar] [CrossRef]
- Roy, M.; Wu, R. Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chlorides-stress tolerance. Plant Sci. 2002, 163, 987–992. [Google Scholar] [CrossRef]
- Alet, A.I.; Sánchez, D.H.; Cuevas, J.C.; Marina, M.; Carrasco, P.; Altabella, T.; Tiburcio, A.F.; Ruiz, O.A. New insights into the role of spermine in Arabidopsis thaliana under long-term salt stress. Plant Sci. 2012, 182, 94–100. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Ban, Y.; Inoue, H.; Matsuda, N.; Liu, J.; Moriguchi, T. Enhancement of spermidine content and antioxidant capacity in transgenic pear shoots overexpressing apple spermidine synthase in response to salinity and hyperosmosis. Phytochemistry 2008, 69, 2133–2141. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, K.; Takahashi, Y.; Berberich, T.; Imai, A.; Miyazaki, A.; Takahashi, T.; Michael, A.; Kusano, T. The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Lett. 2006, 580, 6783–6788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarza, X.; Atanasov, K.E.; Marco, F.; Arbona, V.; Carrasco, P.; Kopka, J.; Fotopoulos, V.; Munnik, T.; Gómez-Cadenas, A.; Tiburcio, A.F.; et al. Polyamine oxidase 5 loss-of-function mutations in Arabidopsis thaliana trigger metabolic and transcriptional reprogramming and promote salt stress tolerance. Plant Cell Environ. 2017, 40, 527–542. [Google Scholar] [CrossRef] [Green Version]
- Rihan, H.Z.; Al-Issawi, M.; Fuller, M.P. Advances in physiological and molecular aspects of plant cold tolerance. J. Plant Interact. 2017, 12, 143–157. [Google Scholar] [CrossRef]
- Mustafavi, S.H.; Shekari, F.; Abbasi, A. Putrescine improve low temperature tolerance of fennel (Foeniculum vulgare Mill.) seeds. Agron. Res. Mold. 2015, 48, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Diao, Q.; Qi, H. Putrescine enhances chilling tolerance of tomato (Lycopersicon esculentum Mill.) through modulating antioxidant systems. Acta Physiol. Plant. 2014, 36, 3013–3027. [Google Scholar] [CrossRef]
- Diao, Q.; Song, Y.; Shi, D.; Qi, H. Interaction of polyamines, Abscisic acid, nitric oxide, and hydrogen peroxide under chilling stress in tomato (Lycopersicon esculentum Mill.) seedlings. Front. Plant Sci. 2017, 8, 203. [Google Scholar] [CrossRef] [Green Version]
- Cuevas, J.C.; López-Cobollo, R.; Alcázar, R.; Zarza, X.; Koncz, C.; Altabella, T.; Salinas, J.; Tiburcio, A.F.; Ferrando, A. Putrescine as a signal to modulate the indispensable ABA increase under cold stress. Plant Signal Behav. 2009, 4, 219–220. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, N.A.; Ali, I.; Hafiz, I.A.; Alenazi, M.M.; Shafiq, M. Effects of Putrescine application on peach fruit during storage. Sustainability 2019, 11, 2013. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Nada, K.; Tachibana, S. Effects of spermidine pretreatment through the roots on growth and photosynthesis of chilled cucumber plants (Cucumber sativus L.). J. Jpn. Soc. Hort. Sci. 2002, 71, 490–498. [Google Scholar] [CrossRef]
- Nahar, K.; Hasanuzzaman, M.; Alam, M.M.; Fujita, M. Exogenous spermidine alleviates low temperature injury in mung bean (Vigna radiata L.) seedlings by modulating ascorbate-glutathione and glyoxalase pathway. Int. J. Mol. Sci. 2015, 16, 30117–30132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheteiwy, M.; Shen, H.; Xu, J.; Guan, Y.; Song, W.; Hu, J. Seed polyamines metabolism induced by seed priming with Spermidine and 5-Aminolevulinic acid for chilling tolerance improvement in rice (Oryza sativa L.) seedlings. Environ. Exp. Bot. 2017, 137, 58–72. [Google Scholar] [CrossRef]
- Chen, J.; Fang, J.; Guo, Z.; Lu, S. Polyamines and antioxidant defense system are associated with cold tolerance in centipedegrass. Front. Agric. Sci. Eng. 2018, 5, 129–138. [Google Scholar] [CrossRef]
- Jankovska-Bortkevič, E.; Gavelienè, V.; Šveikauskas, V.; Mockevičiūtè, R.; Jankauskienè, J.; Todorova, D.; Sergiev, I.; Jurkonienè, S. Foliar application of polyamines modulates winter oilseed rape responses to increasing cold. Plants 2020, 9, 179. [Google Scholar] [CrossRef] [Green Version]
- Kasukabe, Y.; He, L.; Nada, K.; Misawa, S.; Ihara, I.; Tachibana, S. Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol. 2004, 45, 712–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuevas, J.C.; López-Cobollo, R.; Alcázar, R.; Zarza, X.; Koncz, C.; Altabella, T.; Salinas, J.; Tiburcio, A.F.; Ferrando, A. Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol. 2008, 148, 1094–1105. [Google Scholar] [CrossRef] [Green Version]
- Tiburcio, A.F.; Altabella, T.; Ferrando, A. Plant having resistance to low temperature stress method of production thereof. U.S. Patent 9,139,841, 22 September 2015. [Google Scholar]
- Alet, A.I.; Sanchez, D.H.; Cuevas, J.C.; Del Valle, S.; Altabella, T.; Tiburcio, A.F.; Marco, F.; Ferrando, A.; Espasandin, F.D.; González, M.E.; et al. Putrescine accumulation in Arabidopsis thaliana transgenic lines enhances tolerance to dehydration and freezing stress. Plant Signal. Behav. 2011, 6, 278–286. [Google Scholar] [CrossRef] [Green Version]
- Wi, S.J.; Kim, W.T.; Park, K.Y. Overexpression of carnation S-adenosylmethionine decarboxylase gene generates a broad-spectrum tolerance to abiotic stresses in transgenic tobacco plants. Plant Cell Rep. 2006, 25, 1111–1121. [Google Scholar] [CrossRef]
- Luo, J.; Liu, M.; Zhang, C.; Zhang, P.; Chen, J.; Guo, Z.; Lu, S. Transgenic centipedegrass (Eremochloa ophiuroides [Munro] Hack.) overexpression S-adenosylmethionine decarboxylase (SAMDC) gene for improved cold tolerance through involvement of H2O2 and NO signaling. Front. Plant Sci. 2017, 8, 1655. [Google Scholar] [CrossRef] [Green Version]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef]
- Barnabás, B.; Jäger, K.; Fehér, A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 2008, 31, 11–38. [Google Scholar] [CrossRef]
- Valliyodan, B.; Nguyen, H.T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr. Opin. Plant Biol. 2006, 9, 189–195. [Google Scholar] [CrossRef]
- Waraich, E.A.; Ahmad, R.; Halim, A.; Aziz, T. Alleviation of temperatures stress by nutrient management in crop plants: A review. J. Soil Sci. Plant Nutr. 2012, 12, 221–244. [Google Scholar] [CrossRef] [Green Version]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Fujita, M. Exogenous nitric oxide alleviates high temperature induced oxidative stress in wheat (Triticum aestivum L.) seedlings by modulating the antioxidant defense and glyoxalase system. Aust. J. Crop Sci. 2012, 6, 1314–1323. [Google Scholar]
- Amooaghaie, R.; Moghym, S. Effect of polyamines on thermotolerance and membrane stability of soybean seedling. Afr. J. Biotechnol. 2011, 10, 9673–9679. [Google Scholar] [CrossRef]
- Hassanein, R.A.; El-Khawas, S.A.; Ibrahim, S.K.; El-Bassiouny, H.M.; Mostafa, H.A.; Abd El-Monem, A.A. Improving the thermo tolerance of wheat plant by foliar application of arginine or putrescine. Pak. J. Bot. 2013, 45, 111–118. [Google Scholar]
- Cheng, L.; Sun, R.R.; Wang, F.Y.; Peng, Z.; Kong, F.L.; Wu, J.; Cao, J.S.; Lu, G. Spermidine affects the transcriptome responses to high temperature stress in ripening tomato fruit. J. Zhejiang Univ. Sci. B 2012, 13, 283–297. [Google Scholar] [CrossRef] [Green Version]
- Sang, Q.; Shan, X.; An, Y.; Shu, S.; Sun, J.; Guo, S. Proteomic analysis reveals the positive effect of exogenous spermidine in tomato seedlings’ response to high-temperature stress. Front. Plant Sci. 2017, 8, 120. [Google Scholar] [CrossRef] [Green Version]
- Jing, J.G.; Guo, S.Y.; Li, Y.F.; Li, W.H. Effects of polyamines on agronomic traits and photosynthetic physiology of wheat under higher temperature stress. Photosynthetica 2019, 57, 912–920. [Google Scholar] [CrossRef] [Green Version]
- Jing, J.; Guo, S.; Li, Y.; Li, W. The alleviating effect of exogenous polyamines on heat stress susceptibility of different heat resistant wheat (Triticum aestivum L.) varieties. Sci. Rep. 2020, 10, 7467. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.Z.; Xing, F.; Wang, N.Q.; Peng, L.Z.; Chun, C.P.; Cao, L.; Ling, L.L.; Jiang, C.L. Exogenous spermine pretreatment confers tolerance to combined high-temperature and drought stress in vitro in trifoliate orange seedlings via modulation of antioxidative capacity and expression of stress-related genes. Biotechnol. Biotechnol. Equip. 2014, 28, 192–198. [Google Scholar] [CrossRef] [Green Version]
- Nahar, K.; Hasanuzzaman, M.; Alam, M.M.; Rahman, A.; Mahmud, J.A.; Suzuki, T.; Fujita, M. Insights into spermine-induced combined high temperature and drought tolerance in mung bean: Osmoregulation and roles of antioxidant and glyoxalase system. Protoplasma 2017, 254, 445–460. [Google Scholar] [CrossRef] [PubMed]
- Sagor, G.H.; Berberich, T.; Takahashi, Y.; Niitsu, M.; Kusano, T. The polyamine spermine protects Arabidopsis from heat stress-induced damage by increasing expression of heat shock-related genes. Transgenic Res. 2013, 22, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Zou, Y.; Ding, S.; Zhang, J.; Yu, X.; Cao, J.; Lu, G. Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J. Integr. Plant Biol. 2009, 51, 489–499. [Google Scholar] [CrossRef]
- Mellidou, I.; Karamanoli, K.; Beris, D.; Haralampidis, K.; Constantinidou, H.A.; Roubelakis-Angelakis, K.A. Underexpression of apoplastic polyamine oxidase improves thermotolerance in Nicotiana tabacum. J. Plant Physiol. 2017, 218, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, K.; Kashiwagi, K. Polyamine modulon in Echerichia coli: Genes involved in the stimulation of cell growth by polyamines. J. Biochem. 2006, 139, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Fu, H.; Bei, Q.; Luan, S. Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol. 2000, 124, 1315–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamasaki, H.; Cohen, M.F. NO signal at the crossroads: Polyamine-induced nitric oxide synthesis in plants? Trends Plant Sci. 2006, 11, 522–524. [Google Scholar] [CrossRef]
- Kerchev, P.; van der Meer, T.; Sujeeth, N.; Verlee, A.; Stevens, C.V.; Breusegen, F.V.; Gechev, T. Molecular priming as and approach to induce tolerance against abiotic and oxidative stresses in crops plants. Biotechnol. Adv. 2020, 40, 107503. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcázar, R.; Bueno, M.; Tiburcio, A.F. Polyamines: Small Amines with Large Effects on Plant Abiotic Stress Tolerance. Cells 2020, 9, 2373. https://doi.org/10.3390/cells9112373
Alcázar R, Bueno M, Tiburcio AF. Polyamines: Small Amines with Large Effects on Plant Abiotic Stress Tolerance. Cells. 2020; 9(11):2373. https://doi.org/10.3390/cells9112373
Chicago/Turabian StyleAlcázar, Rubén, Milagros Bueno, and Antonio F. Tiburcio. 2020. "Polyamines: Small Amines with Large Effects on Plant Abiotic Stress Tolerance" Cells 9, no. 11: 2373. https://doi.org/10.3390/cells9112373
APA StyleAlcázar, R., Bueno, M., & Tiburcio, A. F. (2020). Polyamines: Small Amines with Large Effects on Plant Abiotic Stress Tolerance. Cells, 9(11), 2373. https://doi.org/10.3390/cells9112373