Aberrant Bone Homeostasis in AML Is Associated with Activated Oncogenic FLT3-Dependent Cytokine Networks
Abstract
:1. Introduction
2. Material and Methods
2.1. Gene Expression Datasets
2.2. Differential Expression Analysis
2.3. Expression-Dependent Survival Analysis
2.4. Cell Lines
2.5. Gene Expression Analysis in Cell Lines on Selected Genes
3. Results
3.1. Differentially Expressed Genes (DEG) in FLT3 ITD AML
3.2. FLT3 ITD Affects Osteoclastogenesis of HSCs
3.3. FL Induced FLT3 Signalling Regulates Cytokines
3.4. Effect of FLT3 ITD on Regulation of OB Differentiation
3.5. Gene Expression in OC and OB Precursor Cell Lines in Response to FLT3 ITD or FLT3 WT Expression
3.6. Survival Prognosis of AML Patients Based on the Expression of Genes Involved in Bone Homeostasis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kollet, O.; Dar, A.; Shivtiel, S.; Kalinkovich, A.; Lapid, K.; Sztainberg, Y.; Tesio, M.; Samstein, R.M.; Goichberg, P.; Spiegel, A.; et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat. Med. 2006, 12, 657–664. [Google Scholar] [CrossRef]
- Shafat, M.S.; Gnaneswaran, B.; Bowles, K.M.; Rushworth, S.A. The bone marrow microenvironment—Home of the leukemic blasts. Blood Rev. 2017, 31, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Handschuh, L. Not Only Mutations Matter: Molecular Picture of Acute Myeloid Leukemia Emerging from Transcriptome Studies. J. Oncol. 2019, 2019, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Kode, A.; Manavalan, J.S.; Mosialou, I.; Bhagat, G.; Rathinam, C.V.; Luo, N.; Khiabanian, H.; Lee, A.; Murty, V.V.; Friedman, R.; et al. Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts. Nature 2014, 506, 240–244. [Google Scholar] [CrossRef] [Green Version]
- Ebeling, P.R.; Thomas, D.M.; Erbas, B.; Hopper, J.L.; Szer, J.; Grigg, A.P. Mechanisms of Bone Loss Following Allogeneic and Autologous Hemopoietic Stem Cell Transplantation. J. Bone Miner. Res. 1999, 14, 342–350. [Google Scholar] [CrossRef]
- Schulte, C.; Beelen, D.W.; Schaefer, U.W.; Mann, K. Bone Loss in Long-Term Survivors after Transplantation of Hematopoietic Stem Cells: A Prospective Study. Osteoporos. Int. 2000, 11, 344–353. [Google Scholar] [CrossRef]
- Weidner, H.; Rauner, M.; Trautmann, F.; Schmitt, J.; Balaian, E.; Mies, A.; Helas, S.; Baschant, U.; Khandanpour, C.; Bornhauser, M.; et al. Myelodysplastic syndromes and bone loss in mice and men. Leukemia 2017, 31, 1003–1007. [Google Scholar] [CrossRef] [PubMed]
- Massenkeil, G.; Fiene, C.; Rosen, O.; Michael, R.; Reisinger, W.; Arnold, R. Loss of bone mass and vitamin D deficiency after hematopoietic stem cell transplantation: Standard prophylactic measures fail to prevent osteoporosis. Leukemia 2001, 15, 1701–1705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, C.K.; Seo, E.Y.; Chen, J.Y.; Lo, D.; McArdle, A.; Sinha, R.; Tevlin, R.; Seita, J.; Vincent-Tompkins, J.; Wearda, T.; et al. Identification and specification of the mouse skeletal stem cell. Cell 2015, 160, 285–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, C.K.F.; Gulati, G.S.; Sinha, R.; Tompkins, J.V.; Lopez, M.; Carter, A.C.; Ransom, R.C.; Reinisch, A.; Wearda, T.; Murphy, M.; et al. Identification of the Human Skeletal Stem Cell. Cell 2018, 175, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Mansour, A.; Abou-Ezzi, G.; Sitnicka, E.; Jacobsen, S.E.W.; Wakkach, A.; Blin-Wakkach, C. Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. J. Exp. Med. 2012, 209, 537–549. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, E.; Goto, M.; Mochizuki, S.-I.; Yano, K.; Kobayashi, F.; Morinaga, T.; Higashio, K. Isolation of a Novel Cytokine from Human Fibroblasts That Specifically Inhibits Osteoclastogenesis. Biochem. Biophys. Res. Commun. 1997, 234, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Simonet, W.S.; Lacey, D.L.; Dunstan, C.R.; Kelley, M.; Chang, M.S.; Luthy, R.; Nguyen, H.Q.; Wooden, S.; Bennett, L.; Boone, T.; et al. Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell 1997, 89, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Boyce, B.F.; Xing, L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch. Biochem. Biophys. 2008, 473, 139–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giuliani, N.; Colla, S.; Morandi, F.; Rizzoli, V. The RANK/RANK ligand system is involved in interleukin-6 and interleukin-11 up-regulation by human myeloma cells in the bone marrow microenvironment. Haematologica 2004, 89, 1118–1123. [Google Scholar]
- Giuliani, N.; Colla, S.; Rizzoli, V. Update on the pathogenesis of osteolysis in multiple myeloma patients. Acta Bio-Med. Atenei Parm. 2004, 75, 143–152. [Google Scholar]
- Lean, J.M.; Fuller, K.; Chambers, T.J. FLT3 ligand can substitute for macrophage colony-stimulating factor in support of osteoclast differentiation and function. Blood 2001, 98, 2707–2713. [Google Scholar] [CrossRef]
- Dehlin, M.; Bokarewa, M.; Rottapel, R.; Foster, S.J.; Magnusson, M.; Dahlberg, L.E.; Tarkowski, A. Intra-articular fms-like tyrosine kinase 3 ligand expression is a driving force in induction and progression of arthritis. PLoS ONE 2008, 3, e3633. [Google Scholar] [CrossRef]
- Ramos, M.I.P.; Karpus, O.N.; Broekstra, P.; Aarrass, S.; Jacobsen, S.E.; Tak, P.P.; Lebre, M.C. Absence of Fms-like tyrosine kinase 3 ligand (Flt3L) signalling protects against collagen-induced arthritis. Ann. Rheum. Dis. 2013, 74, 211–219. [Google Scholar] [CrossRef]
- Ramos, M.I.; Perez, S.G.; Aarrass, S.; Helder, B.; Broekstra, P.; Gerlag, D.M.; Reedquist, K.A.; Tak, P.P.; Lebre, M.C. FMS-related tyrosine kinase 3 ligand (Flt3L)/CD135 axis in rheumatoid arthritis. Arthritis Res. Ther. 2013, 15, R209. [Google Scholar] [CrossRef] [Green Version]
- Voronov, I.; Manolson, M.F. Editorial: Flt3 ligand—Friend or foe? J. Leukoc. Biol. 2016, 99, 401–403. [Google Scholar] [CrossRef] [PubMed]
- Toffalini, F.; Demoulin, J.-B. New insights into the mechanisms of hematopoietic cell transformation by activated receptor tyrosine kinases. Blood 2010, 116, 2429–2437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frohling, S.; Scholl, C.; Levine, R.L.; Loriaux, M.; Boggon, T.J.; Bernard, O.A.; Berger, R.; Dohner, H.; Dohner, K.; Ebert, B.L.; et al. Identification of driver and passenger mutations of FLT3 by high-throughput DNA sequence analysis and functional assessment of candidate alleles. Cancer Cell 2007, 12, 501–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kresinsky, A.; Schnöder, T.M.; Jacobsen, I.D.; Rauner, M.; Hofbauer, L.C.; Ast, V.; König, R.; Hoffmann, B.; Svensson, C.-M.; Figge, M.T.; et al. Lack of CD45 in FLT3-ITD mice results in a myeloproliferative phenotype, cortical porosity, and ectopic bone formation. Oncogene 2019, 38, 4773–4787. [Google Scholar] [CrossRef] [PubMed]
- Rachner, T.D.; Coleman, R.; Hadji, P.; Hofbauer, L.C. Bone health during endocrine therapy for cancer. Lancet Diabetes Endocrinol. 2018, 6, 901–910. [Google Scholar] [CrossRef]
- Metzeler, K.H.; Hummel, M.; Bloomfield, C.D.; Spiekermann, K.; Braess, J.; Sauerland, M.C.; Heinecke, A.; Radmacher, M.; Marcucci, G.; Whitman, S.P.; et al. An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia. Blood 2008, 112, 4193–4201. [Google Scholar] [CrossRef]
- Verhaak, R.; Wouters, B.; Erpelinck, C.; Abbas, S.; Beverloo, H.; Lugthart, S.; Löwenberg, B.; Delwel, H.; Valk, P. Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling. Haematologica 2009, 94, 131–134. [Google Scholar] [CrossRef] [Green Version]
- Valk, P.J.; Verhaak, R.G.; Beijen, M.A.; Erpelinck, C.A.; Barjesteh van Waalwijk van Doorn-Khosrovani, S.; Boer, J.M.; Beverloo, H.B.; Moorhouse, M.J.; van der Spek, P.J.; Lowenberg, B.; et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N. Engl. J. Med. 2004, 350, 1617–1628. [Google Scholar] [CrossRef] [Green Version]
- De Jonge, H.J.M.; Valk, P.J.M.; Veeger, N.J.G.M.; Ter Elst, A.; Boer, M.L.d.; Cloos, J.; De Haas, V.; Heuvel-Eibrink, M.M.V.D.; Kaspers, G.J.L.; Zwaan, C.M.; et al. High VEGFC expression is associated with unique gene expression profiles and predicts adverse prognosis in pediatric and adult acute myeloid leukemia. Blood 2010, 116, 1747–1754. [Google Scholar] [CrossRef] [Green Version]
- Therneau, T.M.; Grambsch, P.M. A Package for Survival Analysis in R. R package version 3.2-7. In Modeling Survival Data: Extending the Cox Model; Springer: New York, NY, USA, 2000. [Google Scholar]
- Grundler, R.; Miething, C.; Thiede, C.; Peschel, C.; Duyster, J. FLT3-ITD and tyrosine kinase domain mutants induce 2 distinct phenotypes in a murine bone marrow transplantation model. Blood 2005, 105, 4792–4799. [Google Scholar] [CrossRef]
- Gazzinelli, R.T.; Hieny, S.; Wynn, T.A.; Wolf, S.; Sher, A. Interleukin 12 is required for the T-lymphocyte-independent induction of interferon gamma by an intracellular parasite and induces resistance in T-cell-deficient hosts. Proc. Natl. Acad. Sci. USA 1993, 90, 6115–6119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, C.; Irie, N.; Takada, Y.; Shimoda, K.; Miyamoto, T.; Nishiwaki, T.; Suda, T.; Matsuo, K. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab. 2006, 4, 111–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horwood, N.J.; Elliott, J.; Martin, T.J.; Gillespie, M.T. IL-12 Alone and in Synergy with IL-18 Inhibits Osteoclast Formation In Vitro. J. Immunol. 2001, 166, 4915–4921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagata, N.; Kitaura, H.; Yoshida, N.; Nakayama, K. Inhibition of RANKL-induced osteoclast formation in mouse bone marrow cells by IL-12: Involvement of IFN-gamma possibly induced from non-T cell population. Bone 2003, 33, 721–732. [Google Scholar] [CrossRef]
- Svensson, M.N.D.; Erlandsson, M.C.; Jonsson, I.-M.; Andersson, K.; Bokarewa, M. Impaired signaling through the Fms-like tyrosine kinase 3 receptor increases osteoclast formation and bone damage in arthritis. J. Leukoc. Biol. 2015, 99, 413–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Y.; You, X.; Xing, W.; Zhang, Z.; Zou, W. Paracrine and endocrine actions of bone—The functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res. 2018, 6, 16. [Google Scholar] [CrossRef]
- Luu, H.H.; Song, W.X.; Luo, X.; Manning, D.; Luo, J.; Deng, Z.L.; Sharff, K.A.; Montag, A.G.; Haydon, R.C.; He, T.C. Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J. Orthop. Res. 2007, 25, 665–677. [Google Scholar] [CrossRef] [PubMed]
- Meshcheryakova, A.; Mechtcheriakova, D.; Pietschmann, P. Sphingosine 1-phosphate signaling in bone remodeling: Multifaceted roles and therapeutic potential. Expert Opin. Ther. Targets 2017, 21, 725–737. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Zhou, Y.; Friis, T.; Beagley, K.W.; Xiao, Y. S1P-S1PR1 Signaling: The “Sphinx” in Osteoimmunology. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef]
- Pinzone, J.J.; Hall, B.M.; Thudi, N.K.; Vonau, M.; Qiang, Y.-W.; Rosol, T.J.; Shaughnessy, J.D. The role of Dickkopf-1 in bone development, homeostasis, and disease. Blood 2009, 113, 517–525. [Google Scholar] [CrossRef] [Green Version]
- Colditz, J.; Picke, A.; Hofbauer, L.C.; Rauner, M. Contributions of Dickkopf-1 to Obesity-Induced Bone Loss and Marrow Adiposity. Jbmr Plus 2020, 4, e10364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Lu, W.; King, T.D.; Liu, C.-C.; Bijur, G.N.; Bu, G. Dkk1 Stabilizes Wnt Co-Receptor LRP6: Implication for Wnt Ligand-Induced LRP6 Down-Regulation. PLoS ONE 2010, 5, e11014. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yoshiko, Y.; Yamamoto, R.; Minamizaki, T.; Kozai, K.; Tanne, K.E.; Aubin, J.; Maeda, N. Overexpression of Fibroblast Growth Factor 23 Suppresses Osteoblast Differentiation and Matrix Mineralization In Vitro. J. Bone Miner. Res. 2008, 23, 939–948. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Garcia, M.; Weng, L.; Jung, X.; Murakami, J.L.; Hu, X.; McDonald, T.; Lin, A.; Kumar, A.R.; DiGiusto, D.L.; et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia 2018, 32, 575–587. [Google Scholar] [CrossRef]
- Neben, K.; Schnittger, S.; Brors, B.; Tews, B.; Kokocinski, F.; Haferlach, T.; Muller, J.; Hahn, M.; Hiddemann, W.; Eils, R.; et al. Distinct gene expression patterns associated with FLT3- and NRAS-activating mutations in acute myeloid leukemia with normal karyotype. Oncogene 2005, 24, 1580–1588. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zhu, B.; Chen, J.; Huang, X. Feature genes predicting the FLT3/ITD mutation in acute myeloid leukemia. Mol. Med. Rep. 2016, 14, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; Lan, H.; Song, X.; Pan, Z. High Expression of the SH3TC2-DT/SH3TC2 Gene Pair Associated With FLT3 Mutation and Poor Survival in Acute Myeloid Leukemia: An Integrated TCGA Analysis. Front. Oncol. 2020, 10. [Google Scholar] [CrossRef]
- Duarte, D.; Hawkins, E.D.; Celso, C.L. The interplay of leukemia cells and the bone marrow microenvironment. Blood 2018, 131, 1507–1511. [Google Scholar] [CrossRef]
- Galán-Díez, M.; Kousteni, S. A bone marrow niche-derived molecular switch between osteogenesis and hematopoiesis. Genes Dev. 2018, 32, 324–326. [Google Scholar] [CrossRef] [Green Version]
- Pederson, L.; Ruan, M.; Westendorf, J.J.; Khosla, S.; Oursler, M.J. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc. Natl. Acad. Sci. USA 2008, 105, 20764–20769. [Google Scholar] [CrossRef] [Green Version]
- Hughes, D.E.; Dai, A.; Tiffee, J.C.; Li, H.H.; Mundy, G.R.; Boyce, B.F. Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-beta. Nature 1996, 2, 1132–1136. [Google Scholar] [CrossRef]
- Roux, S.; Lambert-Comeau, P.; Saint-Pierre, C.; Lépine, M.; Sawan, B.; Parent, J.-L. Death receptors, Fas and TRAIL receptors, are involved in human osteoclast apoptosis. Biochem. Biophys. Res. Commun. 2005, 333, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Houde, N.; Chamoux, E.; Bisson, M.; Roux, S. Transforming Growth Factor-β1 (TGF-β1) Induces Human Osteoclast Apoptosis by Up-regulating Bim. J. Biol. Chem. 2009, 284, 23397–23404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.; Wu, X.; Lei, W.; Pang, L.; Wan, C.; Shi, Z.; Zhao, L.; Nagy, T.R.; Peng, X.; Hu, J.; et al. TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nature 2009, 15, 757–765. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, S.K.; Johnston, H.M.; Whitty, G.A.; Williams, B.; Webb, R.J.; Denhardt, D.T.; Bertoncello, I.; Bendall, L.J.; Simmons, P.J.; Haylock, D.N. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 2005, 106, 1232–1239. [Google Scholar] [CrossRef]
- Stier, S.; Ko, Y.; Forkert, R.; Lutz, C.; Neuhaus, T.; Grünewald, E.; Cheng, T.; Dombkowski, D.; Calvi, L.M.; Rittling, S.R.; et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J. Exp. Med. 2005, 201, 1781–1791. [Google Scholar] [CrossRef]
Gene | Probe | GSE1159 | GSE6891 | GSE12417-GLP96 | GSE12417-GPL570 |
---|---|---|---|---|---|
BMP2 | 205289_at | −1.45, p = 0.52 | −2.03 p = 0.24 | * −2.42, p = 0.049 | −1.66, p = 0.33 |
205290_s_at | −2.70, p = 0.14 | −1.86, p = 0.30 | −2.40, p = 0.051 | −1.87, p = 0.27 | |
BMP6 | 206176_at | −2.04, p = 0.30 | −2.46, p = 0.12 | −1.0, p = 0.44 | −2.27, p = 0.16 |
215042_at | 0.25, p = 0.94 | −0.34, p = 0.88 | −1.22, p = 0.34 | −1.51, p = 0.38 | |
BMP7 | 209590_at | −0.76, p = 0.78 | −1.67, p = 0.37 | * −3.81, p = 0.02 | −0.51, p = 0.8 |
209591_s_at | 0.50, p = 0.86 | 0.99, p = 0.61 | −1.92, p = 0.12 | 0.56, p = 0.78 | |
CSF1 (M-CSF) | 209716_at | −0.10, p = 0.98 | 1.12, p = 0.59 | 1.88, p = 0.13 | 1.04, p = 0.59 |
210557_x_at | −0.88, p = 0.74 | −0.04, p = 0.99 | −1.52, p = 0.23 | −0.11, p = 0.7964 | |
211839_s_at | −0.89, p = 0.74 | 0.04, p = 0.98 | n.d. | −0.77, p = 0.7694 | |
207082_at | −0.59, p = 0.84 | −0.038, p = 0.99 | −0.62, p = 0.62 | 0.54, p = 0.79 | |
CSFR1 | 203104:at | −1.85, p = 0.37 | −0.74, p = 0.72 | * 2.66, p = 0.03 | 0.41, p = 0.58 |
CTHRC1 | 225681_at | n.d. | −1.63, p = 0.37 | n.d. | −2.23, p = 0.17 |
CXCL12 | 203666_at | −1.16, p = 0.63 | −1.71, p = 0.34 | * −2.42, p = 0.048 | −0.28, p = 0.89 |
209687_at | −1.66, p = 0.43 | −1.33, p = 0.50 | −1.48, p = 0.23 | −0.51, p = 0.80 | |
DKK1 | 204602_at | −0.0036, p = 0.99 | −1.86, p = 0.29 | * −3.02, p = 0.013 | 0.85, p = 0.65 |
FGF23 | 221166_at | −0.88, p = 0.74 | −1.64, p = 0.37 | ** −3.55, p = 0.004 | −0.90, p = 0.64 |
FLT3 | 206674_at | 3.32, p = 0.057 | *** 4.67, p = 0.00066 | ** 3.66, p = 0.0029 | 3.27, 0.05 |
FLT3LG | 206980_s_at | −2.21, p = 0.25 | −1.82, p = 0.30 | 0.34, p = 0.81 | −1.77, p = 0.29 |
210607_at | −2.17, p = 0.26 | * −2.99, p = 0.045 | −0.03, p = 0.98 | −2.31, p = 0.15 | |
IL12A | 207160_at | * 3.53, p = 0.044 | *** 5.22, p = 0.00013 | **** 6.38, p = 1.49e-6 | 3.32, p = 0.05 |
IL-1β | 39402_at | −0.53, p = 0.86 | −0.67, p = 0.75 | 1.45, p = 0.25 | 0.83, p = 0.66 |
KITLG (SCF) | 207029_a | 0.45, p = 0.87 | 1.37, p = 0.49 | −0.73, p = 0.59 | 0.15, p = 0.95 |
211124_s_a | 1.22, p = 0.62 | 2.61, p = 0.10 | −0.63, p = 0.64 | 0.36, p = 0.87 | |
Kremen2 | 219692_at | −1.0, p = 0.70 | −0.81, p = 0.69 | −2.00, p = 0.11 | 0.85, p = 0.65 |
MMP9 | 203936_s_at | −1.26, p = 0.59 | −2.65, p = 0.08 | −2.26, p = 0.06 | −1.59, p = 0.35 |
OSCAR | 1554503_a_at | n.d. | 1.49, p = 0.43 | n.d. | 1.82, p = 0.27 |
Runx2 | 216994_s_at | 1.06, p = 0.67 | −0.88, p = 0.66 | −0.55, p = 0.67 | −0.67, p = 0.74 |
221282_x_at | 0.42, p = 0.90 | −1.16, p = 0.57 | −0.09, p = 0.96 | 1.06, p = 0.57 | |
221283_at | 0.39, p = 0.90 | −2.08, p = 0.22 | −2.93, p = 0.169 | −0.76, p = 0.72 | |
236858_s_at | n.d. | −1.44, p = 0.46 | 1.58, p = 0.36 | n.d. | |
236859_at | n.d. | −1.83, p = 0.30 | −2.81, p = 0.96 | n.d. | |
S1PR1 | 204642_at | −3.0, p = 0.09 | * −3.36, p = 0.02 | 0.79, p = 0.55 | −1.92, p = 0.25 |
SPP1 | 209875_s_at | −2.11, p = 0.28 | * −3.30, p = 0.02 | −1.64, p = 0.19 | −1.79, p = 0.28 |
TGFβ1 | 203084_at | −1.87, p = 0.36 | −0.10, p = 0.96 | 0.72, p = 0.59 | −1.97, p = 0.23 |
203085_s_at | −0.52, p = 0.86 | 0.38, p = 0.87 | * 3.05, p = 0.012 | 2.63, p = 0.11 | |
TNFα | 207113_s_at | 0.33, p = 0.92 | −0.27, p = 0.91 | 0.61, p = 0.65 | 0.47, p = 0.82 |
TNFRSF11A (RANK) | 207037_at | −0.84, p = 0.75 | −1.63, p = 0.38 | −0.62, p = 0.64 | 0.67, p = 0.73 |
238846_at | n.d. | −2.69, p = 0.08 | n.d. | 0.86, p = 0.65 | |
TNFRSF11B (OPG) | 204932_at | −1.0, p = 0.69 | −1.13, p = 0.58 | 0.77, p = 0.56 | 0.55, p = 0.79 |
204933_s_at | 1.49, p = 0.50 | −0.35, p = 0.88 | −0.49, p = 0.72 | −0.20, p = 0.92 | |
TNFSF11 (RANKL) | 210643_at | 0.48, p = 0.88 | 1.00, p = 0.60 | 2.20, p = 0.075 | −0.45, p = 0.83 |
Gene | FLT3 WT | FLT3 ITD | ||
---|---|---|---|---|
Cxcl12 (Sdf-1) | 0.65 | p = 0.4009 | 1.06 | p = 0.9683 |
Mmp9 | 0.86 | p = 0.1168 | 0.38 | p = 0.0863 |
Oscar | 0.71 | p = 0.8497 | 1.81 | p = 0.3517 |
Spp1 | 0.28 | p = 0.0464 | 0.45 | p = 0.1204 |
Tnfrsf11a (Rank) | 0.54 | p = 0.7416 | 2.14 | p = 0.2281 |
Tnfsf11 (Rankl) | 0.51 | p = 0.3386 | 1.80 | p = 0.1015 |
Gene | FLT3 WT | FLT3 ITD | ||
---|---|---|---|---|
Bmp2 | 1.48 | p = 0.6012 | 3.39 | p = 0.9330 |
Bmp4 | 1.74 | p = 0.3289 | 0.57 | p = 0.6563 |
Bmp6 | 2.58 | p = 0.4529 | 0.68 | p = 0.9636 |
Dkk1 | 1.27 | p = 0.7421 | 3.32 | p = 0.6392 |
Fgf23 | 0.90 | p = 0.9980 | 8.95 | p = 0.0073 |
Runx2 | 0.90 | p = 0.9824 | 1.03 | p = 0.9983 |
Sost | 1.27 | p = 0.9855 | 3.32 | p = 0.3969 |
Tnfrsf11b (Opg) | 0.11 | p = 0.4735 | 2.60 | p = 0.3441 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bär, I.; Ast, V.; Meyer, D.; König, R.; Rauner, M.; Hofbauer, L.C.; Müller, J.P. Aberrant Bone Homeostasis in AML Is Associated with Activated Oncogenic FLT3-Dependent Cytokine Networks. Cells 2020, 9, 2443. https://doi.org/10.3390/cells9112443
Bär I, Ast V, Meyer D, König R, Rauner M, Hofbauer LC, Müller JP. Aberrant Bone Homeostasis in AML Is Associated with Activated Oncogenic FLT3-Dependent Cytokine Networks. Cells. 2020; 9(11):2443. https://doi.org/10.3390/cells9112443
Chicago/Turabian StyleBär, Isabel, Volker Ast, Daria Meyer, Rainer König, Martina Rauner, Lorenz C. Hofbauer, and Jörg P. Müller. 2020. "Aberrant Bone Homeostasis in AML Is Associated with Activated Oncogenic FLT3-Dependent Cytokine Networks" Cells 9, no. 11: 2443. https://doi.org/10.3390/cells9112443
APA StyleBär, I., Ast, V., Meyer, D., König, R., Rauner, M., Hofbauer, L. C., & Müller, J. P. (2020). Aberrant Bone Homeostasis in AML Is Associated with Activated Oncogenic FLT3-Dependent Cytokine Networks. Cells, 9(11), 2443. https://doi.org/10.3390/cells9112443